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Figure 1. The scene of our dataset and comparison between our model and GraspCVAE [25]. The top-left image depicts the scene in our
dataset, comprising a table and an object. Below it are images from four random viewpoints out of 36. The three rows of images on the
right side represent, respectively, the single-view images, the generation results of GraspCVAE and our method. The green box indicates
the area where the hand-object penetration occurs due to the lack of global perception ability of GraspCVAE.

Abstract

In this work, we explore a novel task of generating hu-
man grasps based on single-view scene point clouds, which
more accurately mirrors the typical real-world situation of
observing objects from a single viewpoint. Due to the in-
completeness of object point clouds and the presence of
numerous scene points, the generated hand is prone to
penetrating into the invisible parts of the object and the
model is easily affected by scene points. Thus, we intro-
duce S2HGrasp, a framework composed of two key mod-
ules: the Global Perception module that globally perceives
partial object point clouds, and the DiffuGrasp module de-
signed to generate high-quality human grasps based on
complex inputs that include scene points. Additionally, we
introduce S2HGD dataset, which comprises approximately
99,000 single-object single-view scene point clouds of 1,668
unique objects, each annotated with one human grasp. Our
extensive experiments demonstrate that S2HGrasp can not
only generate natural human grasps regardless of scene
points, but also effectively prevent penetration between the
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hand and invisible parts of the object. Moreover, our model
showcases strong generalization capability when applied
to unseen objects. Our code and dataset are available at
https://github.com/iSEE-Laboratory/S2HGrasp.

1. Introduction
Learning and capturing hand-object interactions stands as
a foundation for understanding human behaviors and has
many practical applications. From augmented and vir-
tual reality [24] to the domains of robotic grasps, human-
computer interaction [35, 41] and learning from human
demonstrations [13, 15, 37, 45], the comprehension and
replication of these interactions are of significance.

In this work, we focus on understanding the interactions
involved in generating 3D human grasps for objects. We
recognize most existing grasp generation methods depend
on full 3D object models [25, 26], yet in real-world sce-
narios, objects and scenes are commonly perceived from a
single viewpoint, leading to incomplete object point clouds
with potential scene noise. Consequently, existing methods
find it challenging to capture the complete geometric fea-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

831



tures of a partial object and generate human grasps based
on such single-view point clouds, limiting their practical
applicability. Clearly, a major challenge of this task is the
incompleteness of the object. If the model cannot perceive
the object’s overall shape, the generated grasp is likely to
penetrate into the invisible parts of the object. Furthermore,
due to interference from scene points, there is a risk that the
generated hand will collide with the scene elements.

To address the challenges, we introduce S2HGrasp, a
novel framework designed for generating human grasps on
single-view scene point clouds. S2HGrasp incorporates a
Global Perception module that facilitates the global under-
standing of partial object point clouds, and a DiffuGrasp
module aiming at generating high-quality human grasps
from complex inputs that contain numerous scene points.

Specifically, the Global Perception module employs a
multi-task learning paradigm, including single-view point
cloud completion and classification tasks. This module
helps to capture the object’s global geometric features, and
effectively prevents the generated hands from penetrating
into the object’s invisible parts. During testing, we can
directly extract global features from the input single-view
point clouds without the need of point cloud completion
and classification tasks. Through feature alignment in la-
tent space, our module can capture global features from the
partial object in a single-stage process. Concurrently, the
DiffuGrasp module is designed to generate human grasps
and it adds noise to the normalized hand parameters when
training. Then it conditions on the scene features and pre-
dicts the original hand parameters. In testing, the Diffu-
Grasp module progressively denoises a random noise with
the condition of scene features, and predicts the final rea-
sonable hand parameters. Leveraging its powerful condi-
tional generation capabilities, the DiffuGrasp module is ca-
pable of generating high-quality grasps that are close to the
object, even when the input includes scene points.

In addition, we introduce a novel dataset named S2HGD,
specifically for human grasp generation on single-view
scene point clouds. Constructed using the BlenderProc [11]
simulator and derived from OakInk dataset [51], S2HGD
has a collection of 1,668 unique objects. Each object is
individually placed on a tabletop setting. RGB-D images
are captured across 36 distinct viewpoints, and correspond-
ing single-view point clouds are derived from depth infor-
mation. Overall, S2HGD comprises roughly 99,000 point
clouds, each paired with a reasonable human grasp.

Our experimental results indicate that our end-to-end ap-
proach S2HGrasp outperforms existing generation methods
and two-stage methods without data preprocessing and TTA
(test-time adaptation, which fails to work well in our task
due to the incompleteness of the objects). Additionally, our
model not only generates natural and plausible grasps but
also exhibits the ability to generalize to unseen objects.

In summary, our main contributions are as follows: 1)
We explore a new task of human grasp generation on single-
view scene point clouds and achieve favorable results. 2)
We propose a novel model named S2HGrasp, which em-
ploys a Global Perception module to endow the model with
the ability to globally perceive single-view point clouds,
and a DiffuGrasp module to generate high-quality grasps
despite the complex input that contains the object and scene
points. 3) We construct S2HGD, a new dataset for human
grasp generation based on single-object single-view scene
point clouds. Our code and dataset will both be available.

2. Related Work

Hand-object interaction and grasp. Hand-object interac-
tion is currently receiving increasing attention and involves
two main tasks: 1) reconstructing 3D models of hands and
objects based on images [6, 12, 16–18, 27, 32, 33, 43, 50]
and 2) predicting how to grasp an object based on its visual
representation (images or point clouds) [4, 8, 10, 25, 26, 29,
42, 52]. GraspTTA [25] can generate human grasps based
on the consistency between hand contact points and object
contact regions given complete objects. Affordance Diffu-
sion [52] employs diffusion model to generate hand-object
interacting images given object images. When it comes to
dexterous hand grasp, [49] and [44] work well using gen-
erative models and reinforcement learning, and [29] use a
single-shot network to predict dexterous hand grasp in clut-
ter. Existing works mainly focus on generating grasps for
complete objects, however, in real world, objects are of-
ten observed from a single viewpoint. Thus we study hu-
man grasp generation on single-view scene point clouds,
employing two modules to tackle the challenges of incom-
pleteness of the object and impact of scene elements.

3D point cloud completion. 3D point cloud completion
enables the model to have global perception capability and
has various methods, including point-based [30, 47, 54],
view-based [21, 55], convolution-based [48], graph-based
[34], generative model-based [23], transformer-based [53]
approaches, etc. Point Completion Network (PCN) [54] is
a learning-based shape completion method, and its decoder
designed for point cloud features does not require any as-
sumptions about the shape or category of the point clouds.
It can generate both coarse and fine-grained completions
with a relatively small number of parameters. Motivated
by PCN [54], we design a Global Shape Perception (GSP)
to complete partial point clouds. Compared to other SOTA
methods for point cloud completion, this approach allows
for the presence of scene points and achieves a satisfactory
completion result, giving the model global awareness.

Diffusion model. Diffusion models have emerged as the
new deep generative models that progressively destruct data
by injecting noise, then learn to reverse this process for sam-
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Figure 2. S2HGrasp framework. The scene encoder takes single-view scene point clouds as input and extracts their features through
PointNet++ [36] and a transformer block. The features are then used in point cloud completion (GSP), classification (GCP), and grasp
generation (DiffuGrasp). GSP and GCP won’t be used in testing. In the DiffuGrasp Training, the model adds noise to the normalized hand
parameters and extracts hand features after passing the parameters into the MANO layer [39]. Then the object features and hand features
will be fed into a transformer decoder to predict the original hand parameters. When testing, the DiffuGrasp Sampling starts from a random
noise and iteratively denoises it, resulting in final hand parameters.

ple generation. They have been used in a variety of do-
mains, like computer vision [3, 5, 20, 57], natural language
processing [1, 28], temporal data modeling [9] and multi-
modal modeling [2]. Notably, [22] introduces a SceneDif-
fuser for 3D scene understanding, and it also generates dex-
terous hands by adding noise to hand parameters and de-
noising them. Differently, we convert noised hand parame-
ters into point clouds, extract their features, and then decode
them to get final grasps. This improves the naturalness of
generated hands, as demonstrated later in our experiments.

3. S2HGrasp
3.1. Problem Statement and Method Overview

We explores a novel task: generating physically plausible
human grasps for objects based on single-view scene point
clouds. We enable the model to globally perceive partial ob-
jects and generate high-quality grasps despite interference
from scene points. The input is point clouds P ∈ RN×3

(where N is the number of points including tabletop and
partial object), captured from a single viewpoint. The out-
put is human grasp parameters H ∈ R61 modeled via differ-
entiable MANO layer [39], with shape parameter β ∈ R10

for size of the hand and pose parameter θ ∈ R45 for joint
angle of 15 joints, as well as R ∈ R3 and T ∈ R3 for ro-
tation and translation of wrist joint respectively. Given the
hand parameters, MANO layer will output the hand mesh
with M̂ = (V̂ ∈ R778×3, F̂), where V̂ and F̂ denote hand
vertices and faces. This task is more aligned with real-world
scenarios and is beneficial for practical applications.

The generated grasps should be not only natural and
plausible, but also able to firmly hold objects in physics-
based simulators. Due to the incompleteness of object point
clouds, the model must possess the capability to globally
perceive the object to prevent hands from penetrating into
the invisible parts of the object. Moreover, the model needs
to generate high-quality human grasps despite interference
from scene points. Therefore, we propose a model named
S2HGrasp, as summarized in Fig. 2, which consists of two
modules: Global Perception module and DiffuGrasp mod-
ule, to generate human grasps on single-view point clouds.

S2HGrasp is an end-to-end framework. The Global Per-
ception module equips the model with the ability to per-
ceive global geometric features of partial objects, while
the DiffuGrasp module is responsible for resisting interfer-
ence from scene points and generating high-quality human
grasps. In the training process, our model takes single-view
point clouds and corresponding hand parameters as input
and uses an encoder to extract scene features. The Global
Perception module endows these features with the global
perception of the object. The DiffuGrasp module condi-
tions on these features, adds noise to hand parameters, and
trains a decoder to recover the original hand parameters. In
testing, DiffuGrasp starts by sampling a random noise and
progressively denoises it to derive the final hand parameters.

3.2. Global Perception

The Global Perception module aims at enabling the model
to perceive the global geometric characteristics of the ob-
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ject from single-view point clouds. Thanks to the multi-
task learning paradigm in training, our model can directly
extract the scene features that contain global perception of
the partial object in a single-stage process when testing.
The resulting scene features will be used in the DiffuGrasp
module, making the generated human grasps more natural,
avoiding penetration with invisible parts of the object. Our
scene point cloud features Fs are primarily extracted using
PointNet++ [36], and we utilize a transformer block simi-
lar to [56] to add attention mechanisms, making the model
focus more on the local regions suitable for grasping.

Firstly, we design a Global Shape Perception (GSP) to
perform point cloud completion task on the extracted fea-
ture, motivated by PCN [54]. After getting the feature Fs

of single-view scene point clouds, we pass it through our
GSP and result in N points of the completed object. Subse-
quently, containing the global perception of the object, Fs

can be better utilized in the human grasp generation.
Secondly, we design a Global Category Perception

(GCP) to perform point cloud classification task. Specifi-
cally, we feed the obtained scene feature Fs into a classifi-
cation head to output the object category. Since the object is
incomplete and the input contains both the object and scene
points, this classification task is challenging. Nevertheless,
we calculate the F1 score for the classification results of
S2HGrasp trained on S2HGD, achieving a score of 0.96. It
indicates that GCP performs well, enabling the model to fo-
cus more on the object. By predicting the object’s category,
it can better perceive the object’s overall shape.
Global Perception Loss. In the GSP of the Global Percep-
tion module, we use a Chamfer Distance loss LGSP be-
tween the completed point clouds and the corresponding
complete object point clouds for supervision, enabling it to
have the capability to perceive the global feature of the ob-
ject. In the GCP, we use Cross Entropy Loss LGCP . The
total loss of the Global Perception module is defined as,

LGlo = λGSP · LGSP + λGCP · LGCP . (1)

3.3. DiffuGrasp

Since the input for our task is single-view scene point clouds
including the tabletop and the object, the presence of nu-
merous scene points can affect the quality of the generated
hand and may lead to collision with the scene points. There-
fore, we design the DiffuGrasp module with two innova-
tions, to generate high-quality and diverse human grasps
from complex input. Besides, we also design a plane loss to
avoid collision between the hand and the tabletop.

First, we add noise to hand parameters, but direct noise
injection is not feasible due to the differences in the ranges
and meanings of the parameters. Therefore, we perform
specific normalization for each parameter based on its
meaning and range. Second, hand parameters include hand
shape, pose, and position information, and directly decod-

ing parameters does not effectively model these informa-
tion. Thus, we pass them through MANO layer [39] to con-
vert them into point clouds and use hand encoder to obtain
their features before feeding them into the decoder.

Following the practices of conditional diffusion model
[20, 38], in our work, the DiffuGrasp module is with con-
dition Fs, i.e., the feature of single-view point clouds.
The DiffuGrasp module can progressively generate human
grasps that are close to the object and avoid penetration with
the object and the scene during the denoising process.
- Training Process. Conditioning on the single-view scene
point cloud feature Fs, the DiffuGrasp module adds noise
to the normalized hand parameters H ∈ R61. After get-
ting the hand feature Fh, we feed it together with Fs into a
transformer decoder and train the decoder at various noise
levels to predict the original hand parameters, i.e., denoise
H0 for different Ht given t, shown as below:

Ht =
√
1− αtH0 +

√
αt · ϵ,H′

0 = Model(Ht), (2)
where ϵ is noise, α is noise coefficient and αt =

∏t
i=1 αi.

- DiffuGrasp Loss. Referring to the codes in DDPM [19],
calculating the loss on the input and calculating the loss
on the noise are equivalent, so we use Reconstruction Loss
along with Cmap Loss, Penetration Loss and Plane Loss
to train our transformer decoder. Specifically, 1) Recon-
struction Loss of hand parameters and hand point clouds
Ph ∈ R778×3 is used to minimize reconstruction error,

Lparam = |H′
0 −H0|, LV = ||V̂ − Ph||22. (3)

2) Cmap Loss is used to ensure the generated hand is
as close to the object as possible. We compute the dis-
tance from the hand’s contact points Vp to the object’s
point clouds. For each point Po

i , the distance D(Po
i ) =

minj ||Vp
j − Po

i ||22. If the distance is less than a threshold,
we consider the point as a potentially contactable point on
the object, i.e., contact map. One of our training objectives
is to make the contact points on the hand as close as possible
to the contact map on the object as,

Lcmap =
∑

i
D(Po

i ), for all D(Po
i ) ≤ T . (4)

3) Penetration Loss is used to penalize cases where the hand
penetrates into the object. Specifically, we define the subset
of object points that penetrate into the hand’s mesh as Po

in,
and the penetration loss is defined as minimizing the dis-
tances from these points to their nearest points on the hand,

Lpenetr =
1

|Po
in|

∑
p∈Po

in

mini ||p− V̂i||22. (5)

Note that we don’t use the complete object to calculate
the Cmap loss and the Penetration loss, and it is only used
in the GSP module. Instead, we combine the input single-
view point clouds Ps with the corresponding completion re-
sult Pc from the GSP for loss calculations. Specifically, we
first calculate the minimum distance D(Pc

i ) = minj ||Ps
j −
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Pc
i ||22, and keep the points P̂c = {Pc

i ∈ Pc | D(Pc
i ) ≥ θ}.

We get the final completion result PC = P̂c ∪ Ps, which
is used for loss calculation. This approach prevents large
errors from directly using rough completion results to com-
pute loss functions. It also allows the model to have a
global perception of the object’s shape and avoids generat-
ing hands that penetrate into the unseen parts of the object.
4) Plane Loss. As for generating human grasps based on
scene point clouds, one of the challenges is to avoid contact
between the hand and the tabletop point clouds. Thus, we
design a plane loss to penalize cases where there is pene-
tration between the tabletop point clouds and the hand. To
avoid the enormous computational cost of calculating dis-
tances between tabletop point clouds and hand vertices, we
regress the parameters of the tabletop plane. We define the
hand points which are on the backside of the plane as V̂back,
and calculate the distance D(V̂i, P ) from each point V̂i in
V̂back to the plane P , and the plane loss is defined as,

Lplane =
∑

i
D(V̂i, P ), for all V̂i ∈ V̂back. (6)

Thus, the loss for the DiffuGrasp is:
LDiff = λparam · Lparam + λV · LV+

λc · Lcmap + λpe · Lpenetr + λpl · Lplane

(7)

- Sampling Process. The Sampling Process begins by ran-
domly sampling a noise from standard Gaussian distribu-
tion. Subsequently, it undergoes a denoising process for T
timesteps with the feature of single-view point clouds serv-
ing as a condition, and ultimately yields the final hand pa-
rameters. The normalization follows the same procedure as
described in the Training Process. We add noise calculated
from Ht and t to hand parameters Ht, and then feed them
into the Model, which includes the MANO layer, Hand En-
coder, and the Transformer Decoder as shown in Fig. 2, to
get Ht−1. After T iterations of the denoising process, the
model will get final H′

0. The distribution pθ (H0|Fs) repre-
sents our sampling process and can be shown as,

pθ (H0|Fs) = p (HT )

T∏
t=1

p (Ht−1|Ht,Fs) , (8)

p(Ht−1|Ht,Fs) = N (Ht−1;µθ(Ht, t,Fs),
∑
θ

(Ht, t,Fs))

(9)

Ht−1 =
√
αt−1H0 +

√
1− αt−1 − σ2

t · ϵ
(t)
θ (Ht) + σtϵt,

(10)
where σt = η

√
1−αt−1

1−αt
· (1− αt

αt−1
), η is DDIM [40] sam-

pling coefficient and ϵt ∼ N (0, I) is standard Gaussian
noise. For more details, please refer to supplementary file.

4. S2HGD Dataset
To better align with real-world scenarios where objects
are typically observed from a single viewpoint and to fur-

ther explore generating human grasps based on single-view
scene point clouds, we construct the S2HGD dataset. Here
we show how we build our S2HGD with BlenderProc [11]:

Data Source. Our raw data (including objects and human
grasp annotations) all come from the OakInk dataset [51].
We select a total of 1,667 objects from 35 different cate-
gories (e.g. bottle, knife, mug) as the dataset’s objects.

Simulation Environment Setting. In the simulation envi-
ronment, we select a table from ShapeNet [7] and position
36 cameras above the table, arranged in three concentric
circular arrays at heights of 0.25 meters, 0.45 meters, and
0.65 meters from the table respectively. Each circular array
contains 12 cameras at the same height, with a 30-degree
spacing between each camera, as shown in Fig. 1.

Data Processing. We drop an object from 20 cm above
the table, allowing it to fall onto the tabletop freely. This is
repeated ten times to get ten different poses. For each pose,
we capture an RGBD image from each camera and convert
it into single-view point clouds. After collecting all point
clouds, we test all grasps of each object, discard any that
contact the table and remove scenes lacking collision-free
grasp annotations. From the remaining grasps, we choose
the one closest to the object as the final annotation.

To enable our model to generate high-quality grasps for
both varying viewpoints of seen objects and entirely unseen
objects, we partition our dataset in two unique ways: View-
S2HGD focuses on varying viewpoints, whereas Object-
S2HGD is based on object diversity. Specifically, View-
S2HGD includes different single-view point clouds of the
same objects in training and testing sets. Object-S2HGD
ensures that the objects in the testing set are entirely absent
from the training set, allowing us to assess the model’s ca-
pacity for generalization to unseen objects.

In total, S2HGD contains 1,667 objects and about 99,000
single-view scene point clouds with one annotation each.

5. Experiments
5.1. Datasets and Experiment Setup

Implementation Details. The single-view point clouds in
our dataset consist of 2,000 points, with 1,000 points be-
longing to the object and 1,000 points to the tabletop. In
training, we use Adam optimizer and LR = 1e − 4, where
the LR is reduced by half when the model trained 100, 160
and 180 epochs. We totally train for 200 epochs and the
batch size is 60. Before training the entire model with View-
S2HGD and Object-S2HGD, we pre-train the GSP mod-
ule using single-view point clouds and their correspond-
ing complete objects from each dataset respectively for 200
epochs. The loss weights we use are λGSP = 5, λGCP = 2,
λparam = 300, λV = 15, λcmap = 300, λpe = 15,
λpl = 1 for View-S2HGD. For Object-S2HGD, only λpe
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Figure 3. The visualization of generated grasps of our S2HGrasp on our two datasets. The blue objects on the left represent the results of
View-S2HGD, while the red objects on the right represent the results of Object-S2HGD.

View-S2HGD Object-S2HGD HO3D-object Obman-object
GT GC [25] Ours GT GC [25] Ours GC [25] Ours GC [25] Ours

Penetration
Depth(cm) ↓ 0.27 0.23 0.21 0.26 0.25 0.21 2.11 1.38 0.32 0.21
Volume(cm3)↓ 6.60 13.54 6.58 7.22 14.48 5.58 8.66 4.87 9.84 4.62

Grasp Displace
Mean(cm)↓ 2.01 3.10 2.73 2.18 3.69 3.26 3.61 3.30 4.18 3.25

Variance(cm) ↓ ±2.73 ±3.49 ±3.16 ±2.69 ±3.94 ±3.38 ±3.93 ±3.73 ±4.31 ±3.75
Perceptual Score {1,. . . ,5} ↑ 4.54 2.60 3.25 4.52 2.54 3.14 2.11 2.89 2.04 3.13
Contact Ratio(%)↑ 100 98.07 99.41 100 97.87 98.67 97.62 99.06 85.82 96.06

Diversity(σ2)
Axis(10−2) ↑ 2.15 0.85 1.03 2.29 0.52 0.71 0.50 0.79 0.56 0.70
Angle(10−2) ↑ 8.86 3.29 4.51 9.68 2.04 2.75 1.32 1.95 2.28 2.67

Table 1. Quantitative results compared with GraspCVAE [25] on S2HGD. The objects in HO3D and Obman datasets are used to demon-
strate the generalization capability. The Penetration Volume metric and the Grasp displace metric are our main indicators. The results
show that our method outperforms GraspCVAE on all indicators (in bold) and is significantly effective in reducing hand-object penetration
caused by incomplete point clouds. The Penetration results of our method are even better than GT (with a blue background).

and λparam differ, being set to 20 and 250, respectively.
Datasets. We use S2HGD, Obman [16] and HO3D [14]
for our experiments. S2HGD is the dataset we mainly con-
duct our experiments on. We train and test our model on
both View-S2HGD and Object-S2HGD to demonstrate the
overall performance. We also conduct ablation experiments
on View-S2HGD. Obman and HO3D are used for study-
ing hand-object interaction and Obman is synthetic, while
HO3D is real. To validate generalization capability of our
method on unseen objects, we utilize the Object-S2HGD for
training and testing. We also select 30 objects from Obman
and 10 objects from HO3D to construct two testing sets us-
ing the same methodology employed in the construction of
S2HGD, to further assess generalization capability.
Evaluation Metrics. The primary goal of our model is
to generate plausible and natural human grasps for objects
based on single-view scene point clouds. Therefore, our
main evaluation metrics involve calculating the penetration
depth and volume between the object and the hand. We also
use a physics-based simulation environment to calculate the
grasp displace to assess the stability of the hand grasping
the object. Perceptual score is used to evaluate the natural-

ness of the generated grasps and we invite 50 participants
to rate the naturalness of generated grasps, using a scale
from 1 to 5, where higher scores indicate higher naturalness.
What’s more, to demonstrate the contact between the gen-
erated hand and the object, we also calculate contact ratio
between the hand and the object. Besides, to demonstrate
diversity of generated grasp poses, we introduce a diversity
metric. Specifically, we calculate the variance of the rota-
tion axes σ2

axis and angles σ2
angle for 15 joints, excluding

the wrist joint, across all grasp samples. Details about the
evaluation metrics can be found in the supplementary file.

5.2. Grasp Generation Performance

Visualization results. We visualize the generated grasps
on both the View-S2HGD and Object-S2HGD datasets, as
shown in Fig. 3. The results demonstrate that our model
can generate natural and plausible human grasps for differ-
ent single-view point clouds of seen objects and shows a
notable level of generalization for unseen objects. We also
visualize the performance of our GSP module, i.e. the par-
tial object point cloud completion results, as shown in the
left of Fig. 4. The first row is the input single-view point
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Figure 4. Visualization of point cloud completion and our failure cases. Left: Point cloud
completion results, with the input single-view point clouds in the top row and completion
results below (gray points for the tabletop, red for the object). Right: Failure cases, with
single-view images at the top and corresponding failure cases of our method below.
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Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
w/o encoder [22] 0.21 6.70 3.13±3.40 98.49
w/ encoder(ours) 0.21 6.58 2.73±3.16 99.41

Table 2. Comparison with method [22] that without hand encoder.

clouds and the second row is the completion results. The
output of our GSP module consists of only the red points.
We also visualize some failure cases, shown in the right
part of Fig. 4. The first example fails due to the complex
shape of the object and it’s difficult to perceive its global
shape from only partial point clouds, leading to the gener-
ated hand penetrating into the object. The last two examples
fail because only a small part of the object is visible from the
viewpoint. There are too few points to generate a reasonable
grasp. More visualization results are in the supplementary
file, including the HO3D and Obman datasets.
Comparing with GraspCVAE. As shown in Table 1, we
conduct experiments on our View-S2HGD and Object-
S2HGD datasets and the testing sets we construct using the
objects selected from HO3D [14] and Obman [16] datasets.
We compare our model with the SOTA method GraspTTA
[25] for the task of generating human grasps based on com-
plete object point clouds. GraspTTA employs ContactNet
for Test-Time Adaptation (TTA), which predicts contact
areas with the condition of complete object point clouds.
Since our task involves single-view scene point clouds as
input, with partial object point clouds and interference from
scene point clouds, TTA is challenging to apply. Thus, in
the comparative experiments, we did not include the TTA
module, only utilizing the GraspCVAE network (GC).

The results indicate that our model outperforms GraspC-
VAE across all datasets. From the “Penetration” met-
ric, it can be seen that GraspCVAE, due to its lack of
global perception of single-view point clouds, produces
grasps that are significantly penetrate into the object, while
ours are much less, even better than GT. Additionally, our
model also demonstrates superior generalization capability
on unseen objects compared to GraspCVAE. Regarding the

Method
Penetration Grasp Displace Contact

Depth↓ Volume↓ Mean±Variance↓ Ratio↑
PCN+GC 0.22 11.34 6.00±4.83 85.66
PCN+DG 0.20 7.68 6.50±4.51 72.85

Ours 0.21 5.58 3.26±3.38 98.67

Table 3. Comparison with two-stage methods. We use our model
trained on Object-S2HGD to compare with others. The two-stage
methods initially complete the single-view point cloud (by PCN
[54]), and generate human hand grasps on the completed point
cloud using GraspCVAE (GC) [25] and our DiffuGrasp(DG).

“Grasp Displace” metric, a larger penetration volume may
result in better grasping stability (the larger the penetra-
tion, the greater the force on the fingers in the simulator),
which could make the results of GraspCVAE seem favor-
able. However, an ideal grasp should have both smaller pen-
etration volume and good stability. Therefore, we present
the balance on these two metrics of both methods in Fig. 5.
It is evident that the points representing our method are
closer to the origin point, which also indicates that our
method better unifies penetration with grasp stability, mean-
ing the generated grasps are more natural and reasonable.

To generate more natural and stable grasps, instead of di-
rectly passing hand parameters into the decoder as done in
[22], we first convert the hand parameters into point clouds
and extract their features. We then feed the features into
the decoder to predict the hand parameters. Our method in-
corporates more shape and positional information about the
hand than direct decoding the hand parameters. To verify
the effectiveness of our method, we conduct comparative
experiments with the approach without the hand encoder
used in [22], as shown in Table 2. The results show that,
with a similar penetration volume, our method achieves
higher grasp stability (smaller grasp displace), thereby ef-
fectively facilitating the generation of higher quality grasps
and demonstrating the advantages of our approach.
Comparing with two-stage methods. For the task of
generating human grasps based on single-view scene point
clouds, one intuitive approach is to first utilize point cloud
completion methods to complete the single-view point
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Method CVAE DiffuGrasp GP
penetration Grasp Displace Contact

Depth(cm)↓ Volume(cm3)↓ Mean ± Variance(cm)↓ Ratio(%)↑
CVAE ✓ 0.23 13.54 3.10 ± 3.49 98.07

DiffuGrasp ✓ 0.20 11.54 3.06 ± 3.33 98.80
DiffuGrasp + GP ✓ ✓ 0.21 6.58 2.73 ± 3.16 99.41

Table 4. Ablation results of the DiffuGrasp module and the Global Perception module(GP) on our View-S2HGD dataset. The role of
DiffuGrasp is demonstrated through a comparison with CVAE.

clouds. Subsequently, a generation method like GraspTTA
[25] is employed to generate grasps on the completed point
clouds. [46] and [31] utilize such two-stage methods to gen-
erate dexterous hand grasps in single-view scenes.

We first train a Point Completion Network (PCN) [54] to
complete the input single-view point clouds into full objects
with tabletop points. Then, we train GraspCVAE (GC) [25]
and our DiffuGrasp (DG) to generate human grasps based
on these completed results. The testing results are shown
in Table 3. The results demonstrate that our method outper-
forms both two-stage methods by a large margin. The rea-
son is that the two-stage method is not end-to-end, which
leads to accumulated errors in the process, impacting the
quality of generated grasps. In addition, most works of
point cloud completion are not suitable for such a situation
with scene points, which will lead to a decrease in the ac-
curacy of point cloud completion. However, the two-stage
method has very high requirements for the completion re-
sults of single-view point clouds. If the result is poor, the
generated grasp can easily penetrate into the object or not
make contact with it. In contrast, our end-to-end model
effectively avoids such problems. Last, the overall mod-
els of two-stage methods tend to be larger, require longer
and more tedious training processes, and are less straight-
forward to train compared to our end-to-end method.

5.3. Ablation Study

We conduct an ablation study on our S2HGrasp using our
View-S2HGD dataset to highlight the role of the Global
Perception module and demonstrate the advantages of our
DiffuGrasp module over CVAE, as shown in Table 4.
Global Perception. The comparative results, as well as the
visualizations of point cloud completion, highlight that this
module helps the object encoder capture global object char-
acteristics. This, in turn, assists the generation models in
producing more natural, collision-free human grasps.

Specifically, by comparing the results of “DiffuGrasp”
and “DiffuGrasp+GP”, we can find that with the Global Per-
ception module, our model can effectively reduce the vol-
ume of hand-object penetration (from 11.54 to 6.58) and en-
hance the stability of the grasp. This also demonstrates that,
with the aid of the Global Perception module, our model has
a good perception of the overall shape of local objects, and
can effectively prevent the generated hand from penetrating
into the invisible areas of the object.

DiffuGrasp. The previous work GraspTTA [25] leverages
CVAE to generate human grasps based on the full object
model, but suffers from severe model collapse and can’t
generate diverse grasps poses. We believe that the gener-
ative capabilities of CVAE are not sufficient, especially for
the more challenging task of generating human grasps based
on single-view scene point clouds. Therefore, we conduct
comparative experiments on our View-S2HGD dataset us-
ing our DiffuGrasp and CVAE (without TTA, as TTA can-
not be applied to incomplete point clouds) to demonstrate
the advantages of our DiffuGrasp in this task.

Results show that even without the Global Perception
module, the penetration volume of DiffuGrasp is smaller
than that of CVAE (11.54 to 13.54). Moreover, DiffuGrasp
achieves higher grasp stability than CVAE with smaller
penetration, which also shows that the grasps generated
by DiffuGrasp are more reasonable and natural. In short,
despite the incompleteness of the object and the interfer-
ence from numerous scene points, DiffuGrasp outperforms
CVAE and can generate stable human grasps with minimal
penetration into the object. Additional ablation studies and
experiments are shown in the supplementary file.

6. Conclusion

In this work, we explore a new task of generating human
grasps based on single-view scene point clouds rather than
full object models. We propose S2HGrasp, along with a
new synthetic dataset S2HGD, to address the problem of
hand-object penetration caused by the incompleteness of
object point clouds. We design a Global Perception module
to globally perceive partial objects and a DiffuGrasp mod-
ule to generate plausible and natural human grasps despite
numerous scene points. Our S2HGrasp effectively over-
comes the limitation of existing approaches and extends hu-
man grasp generation beyond full object models, benefiting
the study of hand-object interactions. The experimental re-
sults demonstrate that S2HGrasp outperforms other meth-
ods and achieves satisfying performance and generalization
capabilities across different datasets and unseen objects.
Acknowledgments. This work was supported partially by
the National Key Research and Development Program of
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