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Figure 1. Our single-view 3D reconstruction method, Slice3D, predicts multi-slice images to reveal occluded parts without changing the
camera (in contrast to multi-view synthesis), and then lifts the slices into a 3D model. This leads to better recovery of occluded parts
than both encoder-decoder based methods such as DISN [65] and 3D reconstructions from diffusion-synthesized multi-view images (via
Zero-1-to-3 [29]) such as One-2-3-45 [28], where the key challenge of the latter is multi-view inconsistency, as shown on the right.

Abstract

We introduce multi-slice reasoning, a new notion for
single-view 3D reconstruction which challenges the current
and prevailing belief that multi-view synthesis is the most
natural conduit between single-view and 3D. Our key ob-
servation is that object slicing is a more direct, and hence
more advantageous, means to reveal occluded structures
than altering camera views. Specifically, slicing can peel
through any occluder without obstruction, and in the limit
(i.e., with infinitely many slices), it is guaranteed to unveil
all hidden object parts. We realize our idea by developing
Slice3D, a novel method for single-view 3D reconstruction
which first predicts multi-slice images from a single RGB
input image and then integrates the slices into a 3D model
using a coordinate-based transformer network to product a
signed distance function. The slice images can be regressed
or generated, both through a U-Net based network. For the
former, we inject a learnable slice indicator code to desig-
nate each decoded image into a spatial slice location, while
the slice generator is a denoising diffusion model operating
on the entirety of slice images stacked on the input channels.
We conduct extensive evaluation against state-of-the-art al-
ternatives to demonstrate superiority of our method, espe-
cially in recovering complex and severely occluded shape
structures, amid ambiguities. All Slice3D results were pro-
duced by networks trained on a single Nvidia A40 GPU,
with an inference time of less than 20 seconds.

1. Introduction

Single-view 3D reconstruction has been one of the exten-
sively studied problems in computer vision. Despite the
rapid advances on learning-based approaches to tackle this
problem, including the latest attempts to leverage large
foundational models and powerful diffusion-based genera-
tors, the most fundamental challenge still remains: how to
faithfully reconstruct occluded parts from just one view?

Conventional encoder-decoder based methods, e.g., [9,
17, 25, 44, 53, 65], rely on direct 3D supervision to learn
mappings from global or local image features to 3D, but
such features from just a single view often do not have
the capacity to handle severe occlusion. Also, recent evi-
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Figure 2. Multi-view vs. multi-slice for occlusion revelation, with
orange edges showing revealed parts and black edges showing oc-
cluded parts. In the limit, multi-view (i.e., infinitely many views)
may still leave undisclosed parts (a), e.g., the bulb, while infinitely
many slices would guarantee complete structure revelation (b).
With limited slices (c) and views (d), four each, the multi-slice ap-
proach tends to reveal more shape structures.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9881



Regression-based Slicing

Generation-based Slicing

… …Denosing
U-Net

Slice Indicator Code 
Input
View

Noises ∈ 𝑅!×#×$% Generated 12 Slices

3D Reconstruction

condition

…
U-Net

Encoder

U-Net
Decoder

Latent Code

𝐸&
'

𝐸!"

(		
				
				
				
				
				
				
				
				
				
				
				
				
			)

Transformer

𝑞(

3D query point 𝑞
2D proj. of 𝑞

SDF

…

…

Concat.
𝑉!"𝐸#"

𝐸$%

𝑆%!"

𝑆%#"

𝑆%$%

12 Slices

𝐻

𝑊
Concat.

𝑉#"

Concat.
𝑉$%

𝑆"!" 𝑆"#" 𝑆"$% 𝑆"&%

Figure 3. Slice3D for single-view 3D reconstruction from multi-slice images. The example shows 4 slice images per X , Y , Z direction,
which can be obtained by either a regressor or a generator. Regression is carried out by a U-Net encoder-decoder, where the decoder takes
an extra slice indicator code that is appended to the encoder output, to obtain a slice image. There is one indicator code for each of the
3× 4 = 12 slices, that is optimized during training. Our generator is a denoising diffusion model which produces a concatenation of slice
images following the distribution of the ground-truth (GT) images, when conditioned on the single-view input. Inference from random
noises may output multiple plausible results. The 3D reconstruction stage inputs the predicted slice images and produces an implicit field.
We first extract hierarchical CNN features from the input slices, then project a 3D query point onto the 2D planes of the feature maps, and
finally gather all the query-related features and send them into a transformer [58] to predict the signed distance at the query point.
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Figure 4. Our slice image prediction networks are trained using
occlusion-revealing multi-slice images produced from a GT 3D
object mesh along a predetermined set of slicing directions (the
X , Y , Z axes of the object bounding box in the example above),
while keeping the hollows as holes in the images, through which
the back faces of the mesh can be visible. The 3D mesh may be
textured, but the slice images are all rendered without texture.

dence suggests that many of these methods are essentially
performing image classification or retrieval [55]. As such,
occlusion recovery is by and large a “hit or miss”. Differen-
tiable rendering enables 3D reasoning from images without
3D supervision [7, 38], but image-space rendering losses
alone do not account for occluded structures.

Recently, more and more works model the reconstruction
problem as a single-view conditioned generative task, aim-
ing to learn a distribution of unseen structures. Typically,
multi-view images are generated from single view via dif-
fusion. This is followed by multi-view reconstruction, e.g.,
via neural radiance fields (NeRF) [6, 28, 42], to obtain 3D
outputs. However, multi-view consistency is a reoccurring
challenge (see Fig. 1), especially over disparate views.

We introduce a novel approach to single-view 3D recon-
struction which is occlusion-revealing (Fig. 2) by first pre-
dicting multi-slice images from a single-view input and then
integrating the slices into a 3D model; see Fig. 3. Fig. 4
shows slice images provided during training along a set of
slicing directions. Each slice represents the projected im-
age, in the input camera view, of one slice of the 3D mesh
model. For the TV example shown, a completely occluded
leg, in the camera view, is revealed in the slice images.

The motivations behind our multi-slice reconstruction
are three-fold. First, slicing through a volume or 3D mesh
is a natural way to reveal occluded parts. Second, with the
slice images forming an intermediate representation, our ap-
proach breaks the difficult problem of mapping from single
view to 3D into two comparatively simpler tasks: slice pre-
diction followed by 3D reconstruction from slices.

More importantly, when contrasting our multi-slice rep-
resentation with the popular multi-view approach for occlu-
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Figure 5. Singe-view reconstruction of severely occluded parts in
a lamp (e.g., the bulb) by Slice3D vs. One-2-3-45 [28], a state-of-
the-art multi-view approach. The multi-view images in [28] were
obtained by Zero-1-to-3 [29], which was trained on renderings of
800K 3D models [10]. It is conceivable that with a limited number
of views (12, the same as our slice count), the bulbs were barely
visible due to occlusion by the lamp shades and bases.

sion revelation, we observe that slicing in the limit (i.e., with
infinitely many slices) is guaranteed to unveil all hidden
structures, while the same cannot be said about multi-view
captures, as illustrated in Fig. 2 (a-b), for a 2D lamp ex-
ample. In practice, when slice and view counts are both
limited, the slicing approach is more occlusion-revealing
in general since it can peel through any occluders with-
out any obstruction, unlike the multi-view case; see (c-d).
On the technical front, neither our slice prediction step nor
the 3D reconstruction step is concerned with camera view
changes or multi-view consistency, which facilitates the use
of convolutional features. In Fig. 5, we show the above con-
trasting characteristics of the multi-slice vs. multi-view ap-
proaches manifested in a real 3D lamp reconstruction.

As outlined in Fig. 3, our slice images can be produced
by either a regressive network or a generative one, both
employing a U-Net architecture, with network losses mea-
sured against ground-truth (GT) images obtained by slicing
3D models from the training set; see Fig. 4. In the regres-
sive network, we inject a learnable slice indicator code into
the encoder-decoder setup to designate each decoded image
into the proper spatial slice location. The slice generator
is a denoising diffusion model operating on separate chan-
nels for different slice images. In the second stage, 3D re-
construction from the obtained slice images, we design a
coordinate-based transformer to obtain an implicit field.

Our network is coined Slice3D. We conduct extensive
experiments on ShapeNet [5] and Objverse [10] for evalu-
ation. Quantitative and qualitative comparisons are made
to representative methods including encoder-decoders cap-
turing local image features [65], autoregressive latent mod-
els [36], generative model inversion [42], and three recent
methods with diffusion + NeRF [6, 28, 33], demonstrating
superiority of our method in terms of reconstruction quality,
generalizability, and handling of ambiguities.

2. Related work

The earliest inspiration for our multi-slice 3D reconstruc-
tion idea was GANHopper by Lira et al. [26]. In the con-

text of unsupervised image-to-image translation, the key
idea of their work is to gradually execute the translation
between disparate domains by making small “hops,” rather
than completing it in one go. We were then motivated to
tackle the single-view 3D reconstruction problem as a do-
main translation task, hopping through the multi-slice im-
ages so as to bridge the gap between 2D and 3D.
Neural fields. Neural implicit functions [63] are learned by
a neural network to predict such properties as color, occu-
pancy, opacity, and surface normals. Earlier works such as
IM-Net [8], occupancy networks [34], and DeepSDF [41]
represent a 3D shape as a latent code and send it to a de-
coder formed by MLPs to predict occupancy or SDF values
for any query point sampled in 3D. NeRF [35] and its vari-
ants [15] represent a 3D scene using a neural radiance field
for novel view synthesis. Many works on neural 3D recon-
struction [15, 63] take on single- or multi-view images as
well as point clouds as input. In contrast, the reconstruction
module in Slice3D is built on multi-slice images.
Single-view reconstruction from image features. An early
work to exploit neural image features for 3D reconstruc-
tion was Pixel2Mesh [59], which uses a graph representa-
tion. Subsequently, neural implicit fields have been widely
adopted for single-view reconstruction. IM-Net [8] first ex-
tracts a global latent code, from an input view, to learn a
3D implicit field. Auto-SDF [36] and ShapeFormer [66]
employ vector quantization (VQ) [57] to improve the repre-
sentation of latent features. More recent works [22, 37, 68]
consider single-view reconstruction as a 3D generation task
conditioned on the latent code of the input view. However,
a global latent code is insufficient to capture finer details on
a 3D object, often leading to overly smoothed or retrieved
outcomes that do not faithfully represent the input. To al-
leviate this problem, both DISN [65] and D2IM-Net [25]
opted to learn local images features, along with global ones,
to improve the recovery of fine-grained topological (e.g.,
thin) features and surface details, respectively.
3D reconstruction via multi-view. Conventional 3D re-
construction approaches [14] involve multi-view reason-
ing. With recent advances in generative AI, a prevailing
practice in single-view 3D reconstruction is to first em-
ploy generative models such as GANs [16, 23] and diffu-
sion [11, 20, 45, 50] to generate several novel views from
the input view, and then feed them to a multi-view 3D re-
construction module such as NeRF. NeRF-based surface re-
construction [39, 60, 67] can be further employed to output
3D meshes. EG3D [3] and NeRF-from-Image [42] build
NeRFs or its variants upon the outputs of a style-GAN [23],
while more recent works [4, 6, 18, 28–30, 33, 42, 43, 51, 62,
64] are favoring diffusion models such as Stable Diffusion
(SD) [45]. To date, Zero-1-to-3 [29] represents the state of
the art on single- to multi-view synthesis; it is built on SD
and fine-tuned by 800K 3D models from Objaverse [10].
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To alleviate the multi-view consistency problem, which
is an reoccurring challenge for the image-space generative
methods, recent methods [30, 31, 43, 52, 71] aim to enhance
the consistency by performing spatial attention between dif-
ferent views, which dramatically increases the computa-
tional overhead. Nevertheless, the consistency of two dis-
parate views is still far from satisfactory. A deeper reason
is that standard convolutional neural networks (CNNs) are
not inherently rotation-invariant, making it difficult to build
correspondences between significantly different views.
Slice representation. There have been techniques to use
object slices to reconstruct a 3D shape, e.g., as inspired
by Magnetic Resonance Imaging (MRI). Early works in
computer graphics employ either parallel cross-sectional
curves, e.g., [24], or non-parallel curve networks, e.g., [27],
as inputs. Recently, with the advent of machine learning,
OReX [48] and Cut-and-Approximate [40] develop neural
reconstruction models to obtain 3D meshes, also from a
sparse collection of 2D planar cross-sections, while Neural-
Slice [21] uses slicing to obtain 3D shapes from 4D tetrahe-
dral meshes. However, none of these techniques, nor others
that we are aware of, address the problem of single-view
3D reconstruction since their inputs all consist of 3D data
such as curve slices or point clouds. Moreover, our method
learns to predict much fewer slice images and use them as
input to a transformer-based reconstruction module.
Dip. Dip transform [2] is an ingenious way to acquire oc-
cluded 3D structures by measuring fluid displacement when
an object is repeatedly oriented and dipped into a fluid.
Similar to slicing, Dip was also designed to “reach” oc-
cluded parts that optical captures via lines of sight cannot.
However, both the occlusion revelation (liquid penetration
vs. slicing) and target applications (acquisition vs. single-
view reconstruction) are completely different.
Multi-plane image (MPI). Introduced by Zhou et al. [72],
an MPI representation for a scene consists of a set of fronto-
parallel planes at fixed depths, with each image intended to
capture scene appearance and visibility at a specific depth.
Conceptually, both MPIs and our slice images provide a
layered scene representation for occlusion revelation. How-
ever, MPIs [13, 19, 56, 69, 72] have only been employed for
novel view synthesis, not 3D reconstruction, and the predic-
tion networks were trained on multi-view images, e.g., from
Youtube videos [72]. The generated MPIs only reveal a
small amount of occluded scenes to account for view shifts.
In contrast, our method directly cuts through a 3D object to
reveal all the occluded parts at several depth ranges.

3. Method

Our method is based on a slicing representation; see Sec-
tion 3.1 and Fig. 4. Given a single-view RGB image I ∈
RH×W×3 of a 3D object, we first learn a slicing network

(Section 3.2) which takes I as input and outputs its cor-
responding multi-slice images. Then, an SDF prediction
network is trained (Section 3.3) to leverage image features
from the slices to produce an implicit field of the object.

3.1. Slicing Representation

As shown in Fig. 4, given a 3D object mesh, we slice it
along the X , Y , and Z axes of its bounding box and ren-
der the sliced segments. The slice images can optionally
include textures or have holes filled. By default, we re-
move the textures and keep the holes, which could reveal
back faces of the mesh, and overall, it produces the best
experimental results. The rendered slice images consist of
{Sj

i |1 ≤ i ≤ Ns, j ∈ {X,Y, Z}}, where Sj
i ∈ RH×W×1, j

denotes the axis and Ns is the number of slices along each
axis. In our current implementation, we produce Ns = 4
slices per direction. Compared to planar cross-sections or
tomography scans which consist of densely stacked pla-
nar images, our slicing representation is more compact with
each slice image revealing more object semantics.

3.2. Slice Regression and Generation

Given an image I , observing a 3D shape from a single view,
we aim to train a slicing network Fs that can produce the
slice images from I: Fs(I) = {Ŝj

i }. We have two different
designs for such a network: regressive and generative. The
former aims to regress GT slices, assuming deterministic
occluded parts based on the partial observation of the input
view. The latter aims to generate slices that are consistent
with the input view, considering various possible occluded
parts that do not necessarily match the GT slices.

3.2.1 Regression-based Slicing

We employ a U-Net [46] encoder-decoder to regress the
slices from I . As shown in the top-left of Fig. 3, an indica-
tor code Ej

i ∈ RNe is concatenated with the latent code of
I to indicate which slice to output: Ŝj

i = Fd([Fe(I);E
j
i ]),

where Fe and Fd are the encoder and decoder of Fs, respec-
tively, and [; ] denotes concatenation.

The indicator codes {Ej
i } are randomly initialized and

jointly optimized with the whole network. The loss function
Lreg is the reconstruction error measured by the L1-Norm
and perceptual loss [70] (Lp) for all slices:

Lreg =

∑
i,j ||Ŝ

j
i − Sj

i ||1 + Lp(Ŝ
j
i , S

j
i )

|S|
, (1)

where |S| = 3 ·Ns is the total number of slices.

3.2.2 Generation-based Slicing

Single-view occlusion revelation is clearly ill-posed, with
potential ambiguities leading to multiple plausible 3D re-
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Figure 6. The pipeline of generation-based slicing via DDPM.
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denotes the injection of noise to slice images.

constructions. To this end, we consider slicing as an image-
conditioned generation task and develop a generation-
based slicing via Denoising Diffusion Probabilistic Models
(DDPM) [20], whose detailed pipeline is shown in Fig. 6.

The key challenge of applying DDPM lies in how to
generate consistent slices. Rather than diffusing each sin-
gle slice, we propose to concatenate all slices into an ag-
gregated structure [S], along either the color dimension
([S] ∈ RH×W×|S|) or a spatial dimension such as height
([S] ∈ R(|S|·H)×W×1). The concatenation of slices in-
structs DDPM to learn the correlation of slices, yielding
consistent generation results. By default, we concatenate
along the color dimension. The comparison of these two
concatenation ways can be found in the supplementary.

Following DDPM, we first inject a noise ϵ ∼ N (0, 1)
to [S] to obtain [S̄]. The noised slices [S̄] are then sent to
a U-Net based denoising network Fdn that outputs the pre-
dicted noise conditioned on I: ϵ̂ = Fdn([S̄], I). In prac-
tice, the injection and prediction of noise ϵ involve an iter-
ation step t, which we omit here for brevity. To better con-
dition I for denoising diffusion, we employ a pre-trained
VGG to extract multi-layer features from I and add them
into the corresponding layers in the encoder of Fdn (see the
blue part of Fig. 6). The loss function is the denosing loss:
Lgen = ||ϵ̂ − ϵ||22. After training, we can sample random
noises to generate a set of slice images {Ŝj

i }.
Compared to regression-based slicing, generation-based

slicing can produce multiple plausible outputs rather than a
single deterministic result, but requires much longer infer-
ence time due to the nature of diffusion models.

3.3. Learning Implicit Field from Slices

We learn an implicit field from slice images, by projecting
a 3D query point onto each slice image, extracting query-
specific features, and then aggregating them to predict a
signed distance. For regression-based slicing, we train the
SDF prediction network on the predicted slices from the
previous section thus the whole pipeline can be trained end-
to-end. For generation-based slicing, we train the SDF pre-

diction network on GT slice images since the generated
slices may not match the GT signed distances.

Specifically, for a query point q ∈ R3, we project it to
a location q̃ ∈ R2 on the 2D image plane according to
the camera parameters Θ. For slice Ŝj

i (regression) or Sj
i

(generation), we first extract its feature maps, then retrieve
features from each feature map corresponding to location
q̃, and finally concatenate them to obtain the image fea-
ture vector V j

i ∈ R1×1×Nc . The retrieval is accomplished
via bi-linear interpolation over the features grids that en-
compass the location of q̃. We design a transformer net-
work [58] Ft which learns to aggregate the feature vec-
tors from all slices to predict the signed distance d̂: d̂ =
Ft([q

′, V X
1 , ..., V Z

Ns
]), where q′ ∈ RNc is linearly projected

from q to be the same dimension with V j
i . The optimization

objective is to minimize the L1 distance between predicted
and GT signed distance: Limp = ||d̂ − d||1. In regression-
based slicing, Limp and Lreg are jointly optimized.

DISN [65] extracts from only the input view I to obtain a
feature vector V . For query points located around occluded
parts of the object (e.g., the query point in Fig. 3), V is irrel-
evant to q since it is extracted from the front parts that block
q, often leading to erroneous SDF prediction. In contrast,
one or more of our slice images could reveal the occluded
parts, yielding more accurate features fed to the transformer
for SDF prediction. After learning the implicit field, we ap-
ply Marching Cubes [32] to obtain triangle meshes. Esti-
mating the extrinsics (camera poses) of Θ can output 3D
shapes in canonical poses, which is optional and applied
only on ShapeNet [5]; See more details in Supplemental.

4. Results and Evaluation
Dataset. We utilize two well-known datasets, ShapeNet [5]
and Objaverse [10], to train and test our network. For
ShapeNet, our method is applied to Chairs and Air-
planes separately, using the train/validation/test split as in
SHREC16 [47]. Objaverse is a challenging dataset, where
many objects may not belong to a clear category. In our
experiment, we randomly selected ≈40K shapes from Ob-
javerse to keep resource and time costs manageable, while
ensuring diversity of the collection. We follow a 95%-5%
train-test split over the 40K selected shapes, ensuring that
every training model we use is also from the training set of
Zero-1-2-3 [29]. Note that Zero-1-2-3 used a train-test split
of 99%-1% over the entire 800K models in Objaverse.
Rendering Slice Images. We employ the bisect function in
Blender [1] to cut an object mesh into slices and then render
them. By default, we keep internal cavities and holes pro-
duced by slicing. Since many 3D models in Objaverse are
not in, or have no, canonical poses and feature random rota-
tions, slicing them along the default X , Y , and Z directions
is not suitable. To this end, we opted for camera-aligned
slicing instead. Specifically, we set the camera position, in-
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Datasets ShapeNet Chairs ShapeNet Airplanes
Metrics CD↓ F1↑ HD↓ CD↓ F1↑ HD↓

DISN [65] 3.25 2.34 7.84 3.48 2.81 7.62
Auto-SDF [36] 25.0 0.77 15.8 - - -
NeRF-Img [42] 19.5 1.27 13.4 16.0 1.41 14.0
One-2-3-45 [28] 12.5 1.01 11.7 23.4 0.75 12.6

Ours 2.80 2.43 6.75 2.99 2.83 6.45

DISN* [65] 3.02 2.42 7.86 3.19 2.96 7.56
SSDNeRF* [6] 8.98 2.06 10.9 10.4 2.00 10.4

Ours* 2.67 2.53 6.70 2.81 2.96 6.38

Table 1. Quantitative results of single-view 3D reconstruction on
ShapeNet Chairs and Airplanes. ‘*’ denotes using ground-truth
(GT) camera poses. Slice3D (ours) uses regression-based slicing.

troduce a random rotation to the object, position it in front
of the camera, and utilize the camera’s axes for slicing. Un-
der this setting, estimating the rotation of objects is unnec-
essary; see more details in the supplementary material.
Implementation Details. When preparing training data, we
use the Vega FEM Library [49] for SDF computation, same
as DISN [65] and AutoSDF [36]. For each object, the diag-
onal length of the object’s 3D bounding box is normalized
to 1. We set H and W to 128, Ne to 128, Ns to 4, and Np

to 1,024. We train our model on only one Nvidia A40 GPU.
Evaluation Metrics. We use Chamfer L2 Distance (CD),
F-score%1 (F1) [54], and Hausdorff Distance (HD) to eval-
uate reconstruction results. Besides these 3D metrics, we
also evaluate using 2D metrics, PSNR, SSIM [61], and
LPIPS [70], on 24 rendered views of reconstructed meshes.

4.1. Comparisons to State Of The Art (SOTA)

We compare our method with SOTA methods including
DISN [65], AutoSDF [36], NeRF-From-Img [42], SSD-
NeRF [6], RealFusion [33], and One-2-3-45 [28]. Note that
when showing visual results, we always present two views
to remove any view bias towards the input.
ShapeNet. Figs. 7 and 8 demonstrate the effectiveness of
our approach in reconstructing obscured sections of ob-
jects while precisely restoring visible ones. In contrast,
DISN [65] can barely reconstruct the occluded parts. Au-
toSDF [36] and NeRF-From-Image [42] rely on latent fea-
tures for reconstruction, which can yield rather clean results
but they do not necessarily respect the input image, as the
chair results from Fig. 7 evidently showed. SSDNeRF [6]
tends to produce erroneous geometric details and the sur-
faces are not as smooth as from other methods, especially
for the airplane examples in Fig. 8. Generally speaking,
One-2-3-45 [28] yields rough and bulky geometries that
clearly lack details. Additionally, our method outperforms
the other methods in the reconstruction of unconventional
inputs, as shown by the two airplanes in Fig. 8.

Tab. 1 shows quantitative comparisons to the above
methods on the two ShapeNet categories. When our method
operates without using GT camera poses and relies on esti-

Method CD↓ F1↑ HD↓ PSNR↑ SSIM↑ LPIPS↓

DISN [65] 28.2 1.47 23.0 21.9 8.79 15.2
One-2-3-45 [28] 35.4 0.87 29.8 19.8 8.55 19.8

Ours (G) 25.0 1.51 16.4 22.3 8.84 13.4
Ours (R) 16.6 1.53 13.4 22.6 8.88 12.8

Table 2. Quantitative results of single-view 3D reconstruction on
the Objaverse dataset. ‘R’ and and ‘G’ denote regression-based
and generation-based slicing in Slice3D, respectively.

mated poses, its performance sees only a marginal degrada-
tion. Notably, for Chair, our method with estimated poses
even outperforms DISN and SSDNerf with GT poses. It is
also notable that One-2-3-45 tends to output dilated shapes.
Although it falls behind DISN in quantitative results, it
usually generates more complete shapes and more accurate
topologies than DISN; see Figs. 7 and 8.
Objaverse. Since AutoSDF [36], NeRF-From-Image [42],
and SSDNeRF [6] are all category-specific methods, they
cannot be trained on Objaverse which consists of many 3D
objects with no clear categories. Thus, we mainly compare
our method with DISN [65], RealFusion [33], and One-2-
3-45 [28]; see Fig. 9 for a qualitative comparison.

Note that RealFusion [33] and One-2-3-45 [28] both
leverage a significantly larger volume of training data com-
pared to our method, as they both rely on a pre-trained
Stable Diffusion [45] model. Despite this disparity in the
scale of the training sets, our method still outperforms these
two methods, as well as DISN; see Fig. 9. Quantitatively,
Tab. 2 demonstrates our method’s across-the-board advan-
tage over DISN and One-2-3-45 (more so on Objaverse than
on ShapeNet), in both 3D and 2D metrics, especially CD,
HD, and LPIPS. These results also show that our method
possesses the capacity to generalize across common shapes
rather than being confined to specific categories.
Real-world Image Input. To further stress-test the methods,
we perform Google image search on object keywords (e.g.,
“chair”, “airplane”, etc.) and take the top-1 image with oc-
clusions as input. In addition, we use some examples from
Google Scanned Objects (GSO) [12] dataset. Fig. 10 shows
that our method performs the best in recovering occluded
parts while preserving fine details, e.g., the turbines of the
airplane, the heel, and the opening of the boot.
Multi-slice vs. Multi-view Reconstruction. Fig. 11 com-
pares between multi-slice and multi-view reconstructions.
We demonstrate two different sets of multi-slices and multi-
views generated from our method and One-2-3-45 [28]. Our
generated slice images depict two distinct configurations of
chair legs, maintaining high consistency across slices. In
contrast, the multiple views synthesized in One-2-3-45 do
encounter inconsistency issues, compromising an accurate
3D reconstruction. We show three slices in each set and
more can be found in the supplementary material.
Training and Inference Costs. Unlike RealFusion [33] and
One-2-3-45 [28], our method does not depend on a large
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Input DISN AutoSDF NeRF-From-Img SSD-NeRF OursOne-2-3-45

Figure 7. Visual comparison between single-view 3D reconstruction methods on two ShapeNet chairs. DISN and our method (based on
regressive slicing) utilize the same estimated camera parameters. Two different views are displayed to remove view bias.

Input DISN NeRF-From-Img SSD-NeRF OursOne-2-3-45

Figure 8. Visual comparison between single-view 3D reconstruction methods on two somewhat unconventional airplanes from ShapeNet.

Input DISN OursRealFusion One-2-3-45 Input DISN OursRealFusion One-2-3-45

Figure 9. Visual comparison between cross-category reconstruction methods on Objaverse. Our method better recovers overall geometries,
fine details, and is more faithful to the inputs. Except for the seaweed (squared), all the other models are in the training set of Zero-1-to-3.

Input DISN RealFusion One-2-3-45 Ours

Figure 10. On real-world image inputs. Top two from Google
image search and the others from GSO [12]. Zoom in for details.

pre-trained model [45]. NeRF-based methods tend to have
long inference times, as many of them require per-test op-
timization. Our method has much faster inference times:
10 or 20 seconds with slice regression or generation, com-

pared to 90 minutes for RealFusion and 45 seconds for
One-2-3-45 and SSDNeRF, while delivering superior re-
sults. With similar inference times to DISN, Auto-SDF,
and NeRF-From-Img, our method has better reconstruction
quality. See supplementary material for more details.

4.2. Ablation Study

Generative vs. Regressive Slicing. As shown in the first
row of Fig. 11, for generation-based slicing, we can pro-
duce multiple plausible results for a given input view. Tab. 2
shows that regressive slicing outperforms generative slicing
when compared to GT. However, it is notable that the 3D
outputs may differ from GT when input views have ambigu-
ous occluded parts. Regressive training struggles to handle
such one-to-many mappings, leading to generation outper-
forming regression in reconstructing occluded parts.
Number of Slices. We test the performance of our method
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Input Generated Slices/Multi-views #1 Rec. Mesh #1 Generated Slices/Multi-views #2 Rec. Mesh #2
𝑆"!" 𝑆"#$ 𝑆"!% 𝑆"!" 𝑆"#$ 𝑆"!%

One-2-3-45

Figure 11. Multi-slice vs. multi-view reconstructions amid ambiguities in the chair legs. Both One-2-3-45 (bottom) and Slice3D (top) can
produce multiple results. Our results are both plausible from consistent slices, while One-2-3-45 suffers from multi-view inconsistencies.

Setting CD↓ F1↑ HD↓ Setting CD↓ F1↑ HD↓
One-hot ind. 2.68 2.53 6.82 only X 2.88 2.39 7.74
DISN+Depth 2.99 2.43 7.81 only Y 2.75 2.45 6.84
Ns = 2 2.90 2.46 7.31 only Z 3.08 2.38 7.60
Ns = 4 2.67 2.53 6.70 Filled 2.73 2.50 7.37
Ns = 8 2.56 2.56 6.93 w/ textures 2.82 2.50 7.70

Table 3. Ablation studies on ShapeNet Chairs.

with regression-based slicing by varying Ns between 2, 4,
and 8, on ShapeNet Chairs. From Tab. 3, it is evident that
larger Ns leads to better reconstruction quality. However,
Ns = 8 will dramatically increase the computational cost of
our method since its complexity is O(N2

s ), as pair-wised at-
tentions are performed on the slices in the transformer. As a
trade-off between reconstruction quality and computational
complexity, we set Ns = 4 by default.

Tab. 3 also covers several other ablation studies.
Learned v.s. One-hot Slice Indicator. Learned indicator
codes (the default setting) achieve slightly better perfor-
mance than using one-hot codes to indicate slice locations.
This can be seen by comparing numbers from the first half
row of Tab. 3 to those in the last row of Tab. 1.
Slices v.s. Depth Images. Since our slice images offer
layered information, it is logical to perform a comparison
against depth images as supplementary information. We
compared the performance of DISN when concatenating
estimated depth images with the input view. Results are
shown in the “DISN+Depth” half row, which indicates that
depth images can only provide marginal improvement.
Three Axes v.s. One Axis. We also investigated the op-
tion of slicing along only one axis. Not surprisingly, Tab. 3
shows that this underperforms against using three axes.
Solid v.s Hollow Slices. Tab. 3 also demonstrates that not
filling the holes improves the performance as more infor-
mation about the inner/outer surfaces is revealed this way.
Using Textured Slices. We can optionally keep object tex-
tures in the slice images. Experimental results show that
removing the textures in the slice images can achieve better
reconstruction. The reasons could be: 1) learning to pro-
duce slice images without textures could help the model
better distinguish geometries from textures; 2) for some 3D

models the color of inner and outer surfaces could be differ-
ent which may complicate the learning process.

5. Discussion and Future Work
Our multi-slice idea represents a significant departure from
conventional approaches to single-view 3D reconstruction.
Through conceptual illustrations (Fig. 5) and extensive ex-
periments, we demonstrate its compelling properties in re-
covering occluded object structures. Note again that all the
Slice3D results on Objaverse [10] were obtained by net-
works trained on a very small subset (40K or 5%) of the
800K 3D models therein, whereas One-2-3-45 [28] utilizes
Zero-1-to-3 [29] for multi-view synthesis and the latter was
fine-tuned on the entirety of the 800K. Yet our results (Ta-
ble 2) show that Slice3D outperforms One-2-3-45 across the
board, suggesting that our model generalizes better, likely
owning to its superior occlusion-revealing abilities.

Our current implementation only uses four slices per di-
rection, which is quite coarse. Since there is no camera
rotation, parts of an object far away from the camera are in
smaller scale, e.g., the rear leg of the chair in Fig. 10 and of
the buck in Fig. 9. This can hinder our network’s ability to
extract detailed features. More refined and gradual slicing
over those parts may be needed to improve matters.

The foremost limitation of slicing however, is that real-
istically, it can only be executed at scale on digital 3D mod-
els, not physical ones. On the other hand, the multi-view
approach can be applied to physical 3D objects by captur-
ing photos only, without ever needing 3D supervision, as in
RealFusion [33]. However, this is not without a high cost:
90 minutes by RealFusion vs. 45 seconds by One-2-3-45
(requiring 3D fine-tuning for multi-view synthesis) and less
than 20 seconds by Slice3D. We envision synthesizing 3D
models, not many but carefully crafted few, for the multi-
slice approach as an intriguing direction to explore.
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