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Abstract

Regression-based keypoint localization shows advan-
tages of high efficiency and better robustness to quantiza-
tion errors than heatmap-based methods. However, exist-
ing regression-based methods discard the spatial location
prior in input image with a global pooling, leading to in-
ferior accuracy and are limited to single instance localiza-
tion tasks. We study the regression-based keypoint local-
ization from a new perspective by leveraging the spatial lo-
cation prior. Instead of regressing on the pooled feature,
the proposed Spatial-Aware Regression (SAR) maintains the
spatial location map and outputs spatial coordinates and
confidence score for each grid, which are optimized with
a unified objective. Benefited by the location prior, these
spatial-aware outputs can be efficiently optimized, resulting
in better localization performance. Moreover, incorporat-
ing spatial prior makes SAR more general and can be ap-
plied into various keypoint localization tasks. We test the
proposed method in 4 keypoint localization tasks including
single/multi-person 2D/3D pose estimation, and the whole-
body pose estimation. Extensive experiments demonstrate
its promising performance, e.g., consistently outperforming
recent regressions-based methods†.

1. Introduction

Keypoint localization aims to locate target keypoints from
an input image and is a fundamental task in the field of
computer vision. It has a wide range of applications in hu-
man pose estimation [21, 26–28] and facial landmark de-
tection [19], et al. Existing methods for keypoint local-
ization can be summarized into two categories: heatmap-
based [21, 29, 31] and regression-based [10, 23, 25], re-
spectively. Regression-based method directly adopts neural
network to learn the mapping from input RGB image to key-
point coordinates. Heatmap-based method uses a probabil-
ity map (also referred as heatmap) to encode the likelihood

†Project page: https://github.com/kennethwdk/SAR
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Figure 1. Illustration of (Top) regression-based method, (Middle)
standard heatmap-based method, and (Bottom) the proposed SAR
for keypoint localization.

of the target location and retrieves it by selecting location
with the highest probability.

As illustrated in Fig. 1, heatmap-based method se-
lects pre-defined points on heatmaps as localization re-
sults, which are easy to optimize. However, low-
resolution heatmap leads to high quantization error and
high-resolution heatmap enlarges the computation and stor-
age cost. Regression-based method is more efficient and
robust to quantization error, but is hard to optimize and
commonly achieve inferior performance. One reason is that
conventional regression destroys the spatial location infor-
mation of the feature map by a global pooling, thus cannot
provide a good initialization for the following regression.
This design also limits the application of regression to dif-
ferentiate and locate multiple keypoints of the same type,
e.g., multi-person pose estimation.

This work is motivated to facilitate the regression-based
localization by embedding spatial location prior into re-
gression. Grids in the extracted feature map provide dif-
ferent starting points for regression, making them fitted to
locate different keypoints. Regressing from different start-
ing points also introduces duplicate predictions, and we do
not know which grids produce the best localization results.
Prior works [5, 18] assume the results of grids near the
target location are accurate and select them via a separate
classification branch. We argue that this heuristic design
is not optimal in all cases, e.g., for occluded or truncated
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keypoints. Moreover, this multi-task learning pipeline in-
troduces optimization inconsistency between classification
and regression [2] and is sensitive to many hyperparameters.

This work presents the Spatial-Aware Regression (SAR),
a novel regression method that effectively utilizes the spatial
location prior in input image to generate spatial-aware out-
puts and automatically select the best prediction. As shown
in Fig. 1, SAR regresses coordinates on each grid to utilize
its spatial location cues. Benefited by the prior, SAR is able
to leverage better starting points. Selecting different starting
points also helps to differentiate similar keypoints, making
SAR applicable to more challenging tasks like multi-person
pose estimation.

SAR performs localization on a set of grids, which can
be extracted by deep neural networks like CNN [4] or Vi-
sion Transformer [31]. To utilize the spatial location prior,
SAR introduces a spatial-aware regressor to locate target
locations based on spatial location of each grid. To handle
duplicate predictions, we propose a spatial-aware selector to
evaluate the quality of each regression as confidence score,
and select the best prediction. The selector is jointly opti-
mized with the regressor with a unified objective, leading to
automatic regression and selection without heuristic design
and complex hyperparameters. The introduced selector also
depresses the influence of inaccurate predictions. SAR can
work well on a low-resolution feature map, thus introduces
marginal computational overheads and maintains similar ef-
ficiency with existing regression-based methods.

SAR shares all merits of conventional regression and
surpasses it in many aspects. We test its effectiveness on
various keypoint localization tasks including single/multi-
person 2D/3D pose estimation and whole-body pose esti-
mation. Extensive experiments on 7 keypoint localization
benchmarks demonstrate its superior performance in key-
point localization. For example, SAR obtains 72.5% AP on
COCO Keypoint dataset [14], which is higher than conven-
tional regression and heatmap by 16.5% and 1.8%. SAR
is robust to various input size and output stride, making it
more general to deal with complex scenarios. SAR can also
generalize well to detect various types of keypoints, arbi-
trary number of keypoints, as well as 2D/3D keypoints.

2. Related Work
Heatmap-based Keypoint Localization encodes keypoint
location with a probability map, which is introduced
by [24]. This type of methods estimates heatmaps and re-
trieves keypoint coordinates with a post-processing opera-
tion. Heatmap-based methods dominate the field of key-
point localization because heatmap is easy to learn with
CNN. Pioneer works [16, 21, 29] design powerful CNN
models to estimate high resolution heatmaps for human
pose estimation and facial landmark detection, then the tar-
get keypoint can be simply obtained by a post-processing

shifting [16, 33]. Due to the limitation of feature map
size, some works [18] combine regression and add an off-
set branch to avoid quantization error. These methods im-
prove the performance of heatmap. However, they rely on
high resolution heatmap to locate keypoints, which results
in high computation and storage cost.

Regression-based Keypoint Localization directly
learns the mapping from input image to output coordinates
via a neural network, which is adopted by several classical
methods [1, 25]. Researchers have proposed many methods
to improve the performance of direct regression. The first
kind of methods changes the way of regression. Integral
pose regression [23] leverages the soft-argmax operation to
regress keypoint locations by integrating a latent heatmap,
which is proved to be superior to direct regression.
Sampling-argmax [11] further improves soft-argmax by
minimizing the error between samples drawing from a
distribution with groundtruth, avoiding unconstrained
probability map in previous method. Some work improves
regression by proposing new loss functions. RLE [10]
changes the predefined Gaussian or Laplace distribution in
commonly used regression loss with a learned distribution
via normalizing flow. Recently, researchers also try to
improve direct regression by proposing more powerful
backbones in Transformer architecture [31, 32], such as
TokenPose [12] and PETR [20].

Although many regression-based works have been pro-
posed, they ignore the spatial location prior, leading to in-
ferior performance and cannot be applied to multiple key-
points localization tasks. This work shows that embedding
the spatial prior into regression significantly improves its
performance and generalization capability on various hu-
man keypoint localization tasks. A more detailed com-
parison with heatmap-based and existing regression-based
methods is presented in the Sec. 3.3.

3. Method
3.1. Overview

The goal of keypoint localization is to estimate the coordi-
nates of target keypoints from input images, which can be
denoted as,

{Ks}ms=1 = locate(I), (1)

where Ks denotes the s-th keypoint coordinates and m is
the number of keypoints in this image, which is equal to 1
for single-keypoint localization and larger than 1 for multi-
keypoint localization.

Given an input image I ∈ R3×H×W , existing meth-
ods first adopt a backbone Φ(·), e.g., CNN-based [21] or
Transformer-based [31] network to extract feature map F ∈
Rc×h×w, i.e.,

F = {Fi,j ,Pi,j}j=1...w
i=1...h = Φ(I), (2)
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Figure 2. The pipeline of the proposed Spatial-Aware Regression (SAR) for keypoint localization. SAR first adopts a backbone to extract
a set of features, which are passed to spatial-aware regressor and selector to generate corresponding keypoint coordinates and confidence
scores. During training, SAR applies Laplacian kernel function and normalization to convert the outputs into corresponding score and
calculate the unified objective to train the whole model. During inference, SAR selects regressed outputs with large confidence score.

where f = Fi,j is a visual feature on the feature map F,
p = Pi,j is the spatial location of this grid, h,w denotes the
spatial size of F. P = {(i, j)}j=1...w

i=1...h is named as the spatial
location prior, which is crucial for keypoint localization.

Conventional regression will apply a pooling on F to get
a global feature fg , then adopt a regressor to obtain final
localization results,

K = R(fg). (3)

A ℓ1 or ℓ2 loss is applied on the regressed output to train
model, e.g., L = ℓ1(K,K∗).

The above paradigm has several drawbacks. First, pool-
ing only preserves visual information fg and discards the
spatial location prior P , making Eq. (3) hard to optimize.
This pooling operation also makes regression sensitive to
instance scale. Second, it is difficult to differentiate multi-
ple keypoints of the same category only with fg , because
those keypoints present similar visual appearances and dif-
ferent locations. Although extra operation such as box crop-
ping can remedy this issue, it involves extra object detection
process and can be sensitive to detection error.

We present the Spatial-Aware Regression (SAR) method
to integrate the spatial location prior P into regression to
pursue better localization performance. SAR adopts both
spatial location prior P and visual feature fg or F to per-
form localization, which can be denoted as,

K = SAR(P, fg|F). (4)

SAR shares all the merits of regression-based methods,
which are efficient and robust to quantization error. Bene-
fited by the spatial location prior, SAR is easier to optimize
and achieves superior keypoint localization performance. It

also works well in multi-keypoints localization tasks to de-
tect arbitrary number of keypoints from an input image. All
these make SAR a better and robust keypoint localization
method. In the following we will present the detailed im-
plementation of SAR.

3.2. Spatial-Aware Regression

Given the spatial location prior P and visual feature F or
fg , SAR aims to locate the target location K∗. We first con-
sider the single keypoint localization that only one target ex-
ists in I. Multiple keypoints localizations can be estimated
by repeating the same process for each target in the input
image. The core components of SAR are spatial-aware re-
gressor to generate multiple outputs and spatial-aware se-
lector to select the optimal output, respectively. Both com-
ponents are jointly optimized by a unified training objective.

Spatial-aware regressor aims to get the target location
by regressing the coordinates from each grid in P . To re-
lieve the difficulty of direct regression, we introduce the
spatial location prior in original F into regression process,
which can be denoted as,

Kt = R(ft) + pt, (5)

where ft denotes the visual feature of t-th grid and pt is its
location prior. Kt is the regressed output by t-th grid. ft can
be obtained by directly taking the feature at corresponding
location of Ft . It can also be generated from the pooled fea-
ture fg with a grid-wise FC layer, which produces a com-
parable performance as shown in our experiments.

Compared with Eq. (3), Eq. (5) involves more detailed
feature grids and each grid has different spatial location
prior pt to regress the target. Intuitively, for some grids
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near the target K∗, they will produce more reliable pre-
dictions, thus relieving the difficulty of direct regression in
Eq. (3). As each grid generates a prediction, we further pro-
pose spatial-aware selector to handle duplicate predictions
and select the accurate one.

Spatial-aware selector. It is not reasonable to optimize
every {Kt} w.r.t. the target, because not all grids are suited
to predict a specific keypoint. Equally optimizing all {Kt}
will cause the learning degenerate to conventional regres-
sion as the model tends to focus on learning hard samples
for localization. To reduce the influence of inaccurate pre-
dictions and improve the training efficiency, we introduce
a spatial-aware selector S(·) to automatically evaluate the
importance of each grid in locating target K∗. We predict
a confidence score for each regressed output based on the
feature ft, i.e.,

st = S(ft), (6)

where st denotes the score of selecting the t-th output as the
final result. Adopting a heuristic predefined strategy, e.g.,
selecting grids near the target, is unreasonable to optimize
S(·) and may introduce optimization conflict with regressor.
Instead, we jointly optimize the selector with regressor un-
der a unified objective, letting model to select proper points
by itself.

Unified objective. The goal of SAR is to optimize
{Kt, st} to accurately locate target K∗. We propose a uni-
fied objective to jointly optimize the regressor and selec-
tor to avoid optimization contradiction in naive multi-task
learning pipeline. We rely on regression to achieve the goal
of localization and regard selection as an auxiliary task to
reduce the difficulty of regression. This intuition leads to a
unified objective function that aims to maximize the overall
regression quality score weighted by the regression confi-
dence, i.e.,

L = − log
∑

wt · rt, (7)

where rt ∈ [0, 1] denotes the regression quality score of
the t-th output and wt denotes the corresponding regression
weight. During training, we measure the regression quality
score of each grid with the groundtruth K∗ by a Laplacian
kernel to convert the estimated location Kt into a score rt,
that is

rt = e−λ·|Kt−K∗|, (8)

where rt ∈ [0, 1] indicates the accuracy of the regressed
output and λ is the only hyperparameter of SAR. We set λ
to 16 for all experiments and normalize the coordinates by
the feature map size.

The weight wt generated by the t-th grid should be cor-
related with other grids. In other words, once some out-
puts are selected, the remaining should be suppressed. To
achieve this goal, we adopt a two-step normalization opera-

tion on the confidence score {st} to generate wt, i.e.,

ct = σ(st), wt =
ct∑
ct
, (9)

where σ(·) denotes the sigmoid function to convert score
into ct ∈ [0, 1]. Eq. (9) first normalizes each score into [0, 1]
individually then utilizes element-sum to correlate them.
Therefore, optimizing a high score st will decrease others.
One advantage of the two-step normalization is the intro-
duced extra score ct, which is not influenced by the target
number and can be used to select outputs by a fixed thresh-
old during inference. Another way to generate weight wt

is to apply softmax on st. However, this one-step nor-
malization cannot generate reliable high confidence score
in multiple keypoints localization task during inference, be-
cause the value of generated wt depends on the number of
targets in the image. Therefore, it is hard to select final out-
puts by a fixed threshold γ.

The unified objective weights each output by the confi-
dence score and is adopted to maximize the overall regres-
sion quality. We then give a detailed analysis on Eq. (7)
and show how it optimizes both coordinates and confidence
scores with a unified loss function. Specifically, the goal of
SAR is to minimize the following objective,

argmin
wt,rt

− log
∑

wt · rt, s.t.
∑

wt = 1. (10)

Due to the monotonic increase property of log(·) function,
the optimal wt, rt satisfy that

∑
wi · rt = 1. With the nor-

malization in selection process, we also can get
∑

wt = 1.
Therefore, optimizing Eq. (10) is equal to maximizing the
regression score rt and will result in two cases:
• ∀t ∈ [1, n], rt → 1. This means that all grids can accu-

rately regress the target, i.e., Kt = K∗. In this case, wt

is not important because we can select any output as fi-
nal result. However, this case rarely happens, especially
for multi-keypoints localization task where the same re-
gressed output Kt will be used to compute rt for different
groundtruth K∗.

• ∃t ∈ [1, n], rt → 1,∀s ∈ [1, n]\t, ws → 0. This means
that some grids can accurately regress the target location
(rt → 1). Meanwhile, the model tends to output low con-
fidence scores ws → 0 to relieve the influence of inac-
curate regression outputs. This case effectively leverages
spatial location priors at some grids to generate accurate
predictions, which are hence selected by the selector as
final results.

The above analysis shows that, our proposed training ob-
jective trains regressor and selector to boost the accuracy of
keypoint localization. It also relieves need of careful multi-
task design and hyperparameter tuning in different tasks.

Inference. Similar to regression-based methods, SAR
only needs a simple decoding process for inference. It first
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Figure 3. Visualization of heatmap [29] and confidence score map predicted by SAR in single/multi-keypoint localization. Target keypoints
are denoted by star. SAR can locate keypoints that are out of range of the image and effectively avoids missed detection in crowded scenes.

forwards input to get the regressed output {Kt} and confi-
dence score {ct}. It then selects the top m predictions with
scores larger than γ as the final result,

{K} = {Kt}t∈∆,∆ = top
t
(m, {ct ≥ γ}). (11)

The value m is decided by different tasks, e.g., in top-
down task we set m = 1 and in bottom-up task we set
m = 30. Compared with previous heatmap-based methods,
SAR does not require complex post-processing operation
like shifting [29] or DARK [33] and can be implemented on
GPU parallelly. It also works well on low-resolution feature
maps, thus is more efficient. SAR is also faster than previ-
ous detection-based methods that adopt a Hough voting [18]
or accumulation operation [8].

3.3. Discussions

Comparison to regression. SAR can be regarded as a
generalized regression to process feature map. It degener-
ates to conventional regression when the size of feature map
is 1 × 1. SAR extends the regression-based method by en-
hancing its performance and capability in handling multiple
keypoint localization by exploring the spatial prior. SAR
shares all merits of regression, e.g., low computation and
storage complexity and produces a continuous output to re-
lieve the quantization error.

Comparison to heatmap. SAR does not suffer from the
quantization error in heatmap and removes the necessity of
complex post-processing operation. SAR also differs from
methods that combines heatmap with offset regression in
both motivation and implementation. Those methods treat
heatmap generation and offset regression with equal impor-
tance, and their performance is limited by the quality of
heatmap. SAR does not assume fixed anchor point (e.g.,
person center) for regression, thus is general and robust to

occlusion and truncation. This property enables SAR to lo-
cate keypoints out of input image as shown in Fig. 3.

Visualization. In Fig. 3, we visualize the confi-
dence score map predicted by SAR and heatmap generated
by [29]. Compared with heatmap, SAR is more effective in
locating multiple keypoints and is more robust to crowded
scenes, e.g., keypoints missed by the heatmap can be reli-
ably detected by SAR. More extensive experiment and vi-
sualization results will be presented in following section.

4. Experiments
In this section we validate the effectiveness of the proposed
SAR on various keypoint localization tasks. We first test
SAR on the widely studied 2D human pose estimation task
to demonstrate its basic keypoint localization ability. More-
over, we further verify SAR is more general than conven-
tional regression in three aspects, i.e., generalization to var-
ious type of keypoints on whole-body pose estimation task,
generalization to arbitrary number of keypoints on multi-
person pose estimation task and generalization to 3D key-
point localization on 3D human pose estimation task. De-
scriptions of datasets, evaluation metrics, detailed imple-
mentation of experiments and qualitative results are pro-
vided in supplemental material.

4.1. 2D Human Pose Estimation

2D human pose estimation is a classical localization task
that aims to locate the human body keypoints such as knee
or shoulder and researchers have proposed many methods to
boost its performance. We first conduct experiments on this
task to verify the effectiveness of the proposed method, in-
cluding commonly used large-scale in-the-wild benchmarks
COCO Keypoint [14] and MPII [25]. Following previous
works, we report the OKS-based AP and PCKh@0.5/0.1
for COCO Keypoint and MPII evaluation respectively. Ex-
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Method GFLOPs Deconvs AP AP50 AP75 Kpt.Error(px)

Regression 4.0 53.8 82.4 57.7 8.5
RLE 4.0 69.6 89.3 76.0 7.8

Heatmap 9.7 ✓ 70.7 91.2 77.6 7.6
Heatmap+Offset 9.7 ✓ 70.9 91.3 77.8 7.6

SAR 4.0 71.3 91.5 79.1 7.3
SAR 9.7 ✓ 72.5 92.3 79.9 7.1

SAR (fg+FC) 5.3 71.1 91.4 78.6 7.3

Table 1. Comparison with baselines on COCO Keypoint val set
based on SimplePose [29]. Input size is 256×192.
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Figure 4. Comparison with baselines under different output stride.

periments on MPII are shown in supplemental material.
Comparison with baselines. We first evaluate the pro-

posed SAR with two types of commonly used baselines
under the same setting. Experiments are conducted based
on SimplePose [29], ResNet-50 [4] is adopted as the back-
bone. The results are summarized in Table 1. Compared
with conventional regression that adopts pooled feature to
regress target, SAR obtains superior performance without
carefully designed loss or modules. It improves the regres-
sion baseline from 53.8 to 72.5. SAR is also better than
heatmap-based methods that also utilize the spatial location
prior to locate target. We also compare a simple multi-task
method that also combine heatmap and regression, which is
denoted as heatmap+offset. It can be observed that simply
combining two tasks cannot get better performance because
it introduces contradiction and more hyperparameters into
training, and their performance is also limited by heatmap.
We also show that the improvement of SAR mainly comes
from the spatial location prior P , rather than the visual fea-
ture F . We keep the same input fg of SAR and conven-
tional regression, thus the only difference is the introduced
location prior P , which is denoted as fg+FC. fg+FC ex-
plicitly compensates the missed spatial information in fg

and obtains 71.1 AP, which is higher than most baselines.
Analysis on spatial size. SAR shares the merits of re-

gression that is free of quantization error, we conduct ex-
periments on various network output strides and input sizes
to demonstrate the superior merits of the proposed SAR.
In Fig. 4 we investigate the effect of different output stride
to localization performance. We can observe that heatmap-
based methods are affected by the output stride greatly due

Method Input size AP AP50 AP75 AR

Regression 64×64 22.7 55.0 14.6 37.5
Heatmap 64×64 33.2 70.6 26.8 40.2
SimCC [13] 64×64 37.5 71.9 34.7 43.1
SAR 64×64 39.2 74.9 36.3 45.6

Regression 128×128 43.1 75.2 45.2 57.9
Heatmap 128×128 60.0 87.8 68.1 65.0
SimCC [13] 128×128 61.9 87.8 68.7 66.3
SAR 128×128 62.5 87.8 70.4 67.4

Regression 256×192 53.8 82.4 57.7 67.6
Heatmap 256×192 70.7 91.2 77.6 74.3
SimCC [13] 256×192 71.2 91.2 78.7 74.9
SAR 256×192 72.5 92.3 79.9 76.1

Table 2. Comparison with baselines under different input size.

Figure 5. Illustration of sampled keypoint localization results of
(Top) 2D human pose estimation, (Middle) whole-body pose esti-
mation, and (Bottom) 3D human pose estimation.

to the quantization error in low resolution heatmap. How-
ever, SAR obtains stable performance on various output
strides and is constantly superior to heatmap-based meth-
ods. Therefore, SAR can be integrated to different back-
bone without any modification. We also test SAR with other
methods on different input size to show its robustness to dif-
ferent input resolution. The results are shown in Table 2.
SAR can handle different input size well and achieves su-
perior performance, e.g., higher than previous SimCC [13]
under the same setting.

Comparison with other methods. Finally, we give a
comprehensive comparison with other methods on COCO
Keypoint test-dev set. Results are shown in Table 3.
Equipped with different backbones, SAR outperforms pre-
vious methods and achieves superior performance.

4.2. Whole-Body Pose Estimation

We further verify the generalization of the proposed SAR to
other type of keypoints on whole-body pose estimation task,
which aims to locate keypoints of human body, foot, face
and hand. Compared with previous task that only focuses

629



Method Backbone Input size AP AP50 AP75 APM APL AR

Heatmap-based

SimplePose [29] ResNet-50 384×288 71.5 91.1 78.7 67.8 78.0 76.9
HRNet [21] HRNet-W48 384×288 75.5 92.5 83.3 71.9 81.5 80.5
SimCC [13] HRNet-W48 384×288 76.0 92.4 83.5 72.5 81.9 81.1

Regression-based

DeepPose [25] ResNet-152 256×192 59.3 87.6 66.7 56.8 64.9 -
Integral Pose [23] ResNet-101 256×256 67.8 88.2 74.8 63.9 74.0 -
RLE [10] HRNet-W48 384×288 75.7 92.3 82.9 72.3 81.3 -

Ours (SAR) ResNet-50 384×288 73.5 91.9 80.9 69.6 79.7 78.8
Ours (SAR) HRNet-W48 384×288 76.3 92.5 83.6 72.6 82.4 81.2

Table 3. Comparison with other methods on COCO Keypoint test-dev set.

Method Input size Backbone body foot face hand whole-body

AP AR AP AR AP AR AP AR AP AR

Baselines

Heatmap [29] 256×192 ResNet-50 65.2 73.8 61.5 74.9 60.6 71.5 46.0 58.4 52.1 63.3
Heatmap [29] 256×192 HRNet-W48 70.1 77.6 67.5 78.7 65.6 74.3 53.5 63.9 57.9 68.1
SAR 256×192 ResNet-50 67.3 74.9 61.5 75.2 83.2 88.7 48.3 60.8 59.1 68.0
SAR 256×192 HRNet-W48 71.0 78.9 69.1 81.8 88.1 92.3 58.4 69.2 65.1 74.0

SoTA methods

DeepPose [25] 384×288 ResNet-101 44.4 56.8 36.8 53.7 49.3 66.3 23.5 41.0 33.5 48.4
SimplePose [29] 384×288 ResNet-50 66.6 74.7 63.5 76.3 73.2 81.2 53.7 64.7 57.3 67.1
HRNet [21] 384×288 HRNet-W48 72.2 79.1 69.6 80.1 77.6 83.4 58.7 67.8 63.2 71.7
ZoomNet [7] 384×288 HR32+HR18 74.5 81.0 60.9 70.8 88.0 92.4 57.9 73.4 63.0 74.2
ZoomNAS [30] 384×288 - 74.0 80.7 61.7 71.8 88.9 93.0 62.5 74.0 65.4 74.4

Ours (SAR) 384×288 HRNet-W48 71.2 79.6 69.3 82.6 90.3 93.3 61.3 72.1 66.6 75.6

Table 4. Comparison with other methods on COCO Whole-Body benchmark.

on human body, whole-body pose estimation is more chal-
lenging due to the large scale variance of different type of
keypoints. Therefore, this task can be used to test the ability
of localization method on handling scale variance. Follow-
ing previous works, we conduct experiments on large-scale
in-the-wild benchmark COCO Whole-Body [7] and report
the OKS-based AP on each subset.

Table 4 shows results. We first compare SAR with
heatmap baseline using ResNet-50 and HRNet-W48 as
backbone. SAR outperforms heatmap by a large mar-
gin, especially on small scale keypoints of face and hand.
This demonstrates the benefit of continuous output of SAR,
which is free of quantization error in heatmap. We also
compare SAR with top-down based methods SimplePose,
HRNet, ZoomNet and ZoomNAS. We implement SAR with
top-down HRNet under the same setting, and Table 4 shows
that our method achieves the best performance on most
subsets, without carefully designed multi-branch model in
ZoomNet and ZoomNAS. It demonstrates that SAR can
generalize to locate various types of keypoints.

4.3. Multi-Person Pose Estimation
One advantage of SAR is that it can be applied to multiple
keypoints localization tasks, while most of previous meth-

ods, e.g., regression-based methods and SimCC [13] cannot
be used to locate multiple keypoints of the same type si-
multaneously. Multiple keypoints localization task such as
multi-person pose estimation (MPPE) is common because
it eliminates the assumption that only one instance exists in
the input image in single-keypoint localization. Benefited
by embedding spatial prior, the proposed method can be ap-
plied to MPPE tasks such as bottom-up MPPE and single-
stage MPPE. Following previous works, we conduct exper-
iments on COCO [14], OCHuman [34] and CrowdPose [9]
and report OKS-based AP metrics.

For bottom-up MPPE, we adapt SAR with AE [17] to
locate multiple keypoints simultaneously because it sepa-
rately implements localization and grouping. For single-
stage MPPE, we conduct experiments on two widely used
methods, i.e., CenterNet [35] and DEKR [3], to locate mul-
tiple person center points.

All experiments are conducted under the same setting.
As shown in Table 5, SAR can successfully detect arbi-
trary number of keypoints and produce more reliable results
than heatmap on all benchmarks. From Fig. 3 we can ob-
serve that SAR outputs higher confidence score for detected
keypoints, which is important in MPPE because it avoids
missed localization.

630



Method COCO OCHuman CrowdPose

AP APM APL AR AP APM APL AR AP APE APM APL

Bottom-up MPPE based on AE [17]

Heatmap 48.4 44.1 54.8 54.1 - - - - 46.7 59.9 46.6 36.7
SAR 50.0 45.0 56.9 56.2 - - - - 48.2 61.1 48.0 38.9

Single-stage Regression MPPE

CenterNet [35] 57.6 50.5 68.4 63.1 34.1 15.2 36.2 69.3 60.9 68.9 61.7 51.7
+SAR 60.3 52.6 71.1 64.7 39.6 15.5 40.5 71.5 62.2 69.8 63.0 53.7
DEKR [3] 61.8 54.7 72.8 67.5 35.6 9.6 37.5 71.3 65.2 73.0 66.0 55.9
+SAR 64.5 56.8 75.5 69.1 40.9 17.2 41.9 73.8 66.3 73.7 67.0 57.6

Table 5. Comparison with other methods on multi-person pose estimation benchmarks.

Methods Dir. Dis. Eat Gre. Phon. Pose Pur. Sit SitD. Smo. Phot. Wait Walk WalkD. WalkP. Avg

Baselines

Regression 46.5 53.5 47.9 46.9 53.3 46.4 48.9 64.3 64.6 53.1 54.2 47.5 40.9 53.4 45.2 51.7
RLE 47.1 51.3 50.4 48.0 53.0 45.8 47.4 65.0 69.0 53.7 52.0 46.7 40.9 51.2 44.7 51.6
Integral Pose 45.3 51.5 47.5 45.5 53.2 42.6 47.1 63.9 63.8 53.0 53.8 46.1 40.0 51.3 43.2 50.6
SAR-3D 46.5 51.1 46.9 45.3 49.7 45.1 46.9 58.7 63.2 50.0 51.1 46.1 40.5 51.3 44.1 49.4
SAR-decouple 42.2 49.5 46.8 44.8 52.2 42.5 43.8 60.7 65.1 50.7 52.6 44.7 37.8 50.0 41.6 48.9

SoTA methods

Sun [22] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7 86.7 61.5 67.2 53.4 47.1 61.6 63.4 59.1
PoseNet [15] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3
Sun [23] 47.5 47.7 49.5 50.2 51.4 43.8 46.4 58.9 65.7 49.4 55.8 47.8 38.9 49.0 43.8 49.6
RLE [10] 43.3 51.0 44.5 44.5 51.7 43.1 46.0 59.2 63.7 49.6 52.5 44.1 37.5 50.5 41.2 48.6

Ours (SAR) 40.9 47.8 44.8 43.4 50.3 41.0 42.6 58.2 61.2 48.9 50.0 42.9 36.2 48.3 40.2 47.1

Table 6. Comparison with other methods on Human3.6M benchmark.

4.4. Monocular 3D Human Pose Estimation

In this section we show that SAR can also generalize to per-
form 3D keypoint localization. We conduct experiments
on Human3.6M [6], a large-scale indoor benchmark for
3D human pose estimation. For evaluation, MPJPE is re-
ported to measure the error of the predicted keypoints and
groundtruth in 3D space. Following [10], we use (S1, S5,
S6, S7, S8) for training and (S9, S11) for evaluation.

SAR for 3D keypoint. We propose two variants of SAR
to locate 3D keypoint. The first is SAR-3D that generates
3D feature map F3D ∈ Rc×d×h×w from F to provide 3D
spatial location prior to locate target, which is similar to In-
tegral Pose [23] that also generates 3D heatmap. Benefited
by the continuous output of SAR, a small sized F3D can
already produce promising results, e.g., d = h = w = 16.
For the second variant, we decouple the depth dimension
from spatial dimension and estimate it with a separate lo-
calization branch, which is denoted as SAR-decouple. For
x, y coordinates, we directly adopt 2D estimation pipeline.
For z dimension, we convert the feature map F to a 1D fea-
ture map Fz ∈ Rc×d to locate z-dim of keypoint, d = 64.

Baselines. We first compare SAR with several 3D key-
point localization methods, including regression, RLE [10]
and Integral Pose [29]. All experiments are conducted un-
der the same setting. As shown in Table 6, both two variants

of SAR achieve superior 3D keypoint localization accuracy,
which is lower than Integral Pose by 1.2 and 1.7 MPJPE.
SAR-decouple achieves better performance than SAR-3D.
We think that it is because SAR-decouple with large spatial
size can generate more accurate localization results, which
is consistent with experiments in Sec. 4.1.

Comparison with other methods. In Table 6 we also
compare SAR with recent methods under the same setting,
e.g., with flip test. We can observe that SAR reduces the
MPJPE from 48.6 to 47.1, which is better than most image-
based 3D human pose estimation methods.

5. Conclusion

This work proposes a novel and effective regression method
by integrating spatial location prior to relieve the difficulty
of direct regression. We introduce spatial-aware regres-
sor and selector with a unified objective to achieve spatial-
aware regression. Comprehensive experiments on four dif-
ferent keypoint localization tasks and seven benchmarks
demonstrate the promising effectiveness and generalization
capability of the proposed method.
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jects as points. arXiv preprint arXiv:1904.07850, 2019. 7,
8

633


