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Abstract

Predicting human pose sequences via existing pose es-
timators often encounters various estimation errors. Mo-
tion refinement methods aim to optimize the predicted hu-
man pose sequences from pose estimators while ensuring
minimal computational overhead and latency. Prior inves-
tigations have primarily concentrated on striking a balance
between the two objectives, i.e., smoothness and precision,
while optimizing the predicted pose sequences. However,
it has come to our attention that the tension between these
two objectives can provide additional quality cues about the
predicted pose sequences. These cues, in turn, are able
to aid the network in optimizing lower-quality poses. To
leverage this quality information, we propose a motion re-
finement network, termed SynSP, to achieve a Synergy of
Smoothness and Precision in the sequence refinement tasks.
Moreover, SynSP can also address multi-view poses of
one person simultaneously, fixing inaccuracies in predicted
poses through heightened attention to similar poses from
other views, thereby amplifying the resultant quality cues
and overall performance. Compared with previous meth-
ods, SynSP benefits from both pose quality and multi-view
information with a much shorter input sequence length,
achieving state-of-the-art results among four challenging
datasets involving 2D, 3D, and SMPL pose representations
in both single-view and multi-view scenes. Github code:
https://github.com/InvertedForest/SynSP.

1. Introduction
Human pose estimation [4, 16, 21, 37] has been widely used
in automatic driving, human-computer interaction, motion
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sponding author.
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Figure 1. Illustration of our motivation. (a): The x-axis repre-
sents the ratio of weights for Precision and Smoothness loss in the
training process of SynSP, while the y-axis represents the value of
MPJPE (Precision) and Acceleration error (Smoothness). These
two errors exhibit a conflicting relationship. (b): Diff1 denotes the
difference between the predicted sequence (from pose estimator)
and the gound-truth sequence, and Diff2 denotes the difference be-
tween two output sequences from training SynSP with a loss ratio
of 0.5 and 5, respectively. We notice that the trends of Diff1 and
Diff2 are roughly the same in (b). (c): A larger value of Diff1 in-
dicates lower prediction quality for the predicted sequences. For
example, the left ankle of the person in the middle picture of (c) is
occluded, making it difficult for the pose estimator to infer.

analysis, etc. Although current methods have achieved out-
standing performance, both image-based and video-based
pose estimators still sometimes exhibit noticeable errors in
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predicting pose sequences. The pose sequences generated
by image-based pose estimators often show significant jit-
ters due to a lack of inter-frame correlation, while video-
based pose estimators alleviate jitters and improve accu-
racy by leveraging temporal information of input videos.
However, training video-based pose estimators requires
substantial amounts of video data and computational re-
sources [7, 38, 39].

Consequently, researchers propose motion refinement
methods [3, 42] as post-processing techniques to optimize
the predicted sequences from pose estimators to approxi-
mate the ground-truth sequences from human annotation,
with two primary objectives: precision and smoothness.
Precision objective aims to improve the position accuracy
of the predicted joints through the temporal and spatial
information, evaluated by Mean Per Joint Position Error
(MPJPE) [11, 29]. Smoothness objective does not strive
to make the output sequences as smooth as possible but
rather to align the acceleration of the output with that of
the ground-truth sequences. Both objectives aim to make
the output sequences close to the ground-truth sequences.
However, focusing on one of them will lead to errors in the
other greatly increased, as shown in Fig. 1.

Due to the inherent tension between Precision and
Smoothness objectives, previous methods attempt to
achieve a satisfactory balance between them. As shown in
Fig. 1(a), it can be observed that with an increase in the
ratio of weights for Precision and Smoothness loss dur-
ing SynSP training process, there is a noticeable rise in
Acceleration error (Smoothness) while MPJPE (Precision)
decreases, which is a common phenomenon in previous
methods [42]. However, we note that the quality of the
predicted sequences from estimator is related to the dif-
ference of outputs from SynSP biased towards the Pre-
cision and Smoothness objectives. Specifically, as illus-
trated in Fig. 1(b), the difference (Diff2) between the two
output sequences, which focus on precision and smooth-
ness respectively, is correlated with the quality of the pre-
dicted sequences, which is generated by the difference
(Diff1) between predicted sequences from pose estimators
and ground-truth sequences from human annotation. To fur-
ther verify this correlation, we calculate the Pearson Cor-
relation Coefficient between Diff1 and Diff2 on the Hu-
man3.6M and 3DPW datasets. Based on our experiment,
the mean Pearson correlation coefficient [9] is 0.48 (big-
ger than 0.3 is considered as relevant), indicating that the
dissimilarity (Diff2) between the two output sequences can
serve as an indicator for the quality of predicted sequences
without knowing the ground-truth.

In this paper, we propose SynSP to utilize this quality in-
formation. Specifically, we employ a transformer network
and encode the quality information by Pose Quality Encod-
ing (PQE) module to guide the network’s attention towards

low-quality poses in sequences. Additionally, with the sup-
port of multi-view dataset: Human3.6M, we further find
that multi-view information is effective to enhance the reli-
ability of PQE. Therefore, we introduce the Pose Similarity
Encoding (PSE) module to exploit the multi-view informa-
tion by guide the network’s attention towards similar poses
from multi-view.

The main contributions are summarized as follows:
• We translate the inherent tension between smoothness

and precision into the quality cue of predicted sequences
with the Pose Quality Encoding module in SynSP. Then
we utilize this cue as the weight to help regulate the net-
work’s attention on each frame in the sequences.

• We further observe that similar poses can effectively rec-
tify erroneous poses. Consequently, we propose Pose
Similarity Encoding to encode pose similarity informa-
tion and refine poses of multiple views simultaneously.

• We conduct sufficient experiments on four challenging
datasets among 2D, 3D, and SMPL representations with
image-based and video-based pose estimators. Notably,
compared with previous method SmoothNet, SynSP’s
MPJPE improves by 16.9% on Human3.6M dataset with
3D pose estimator FCN, while reducing input sequence
length to 25% and minimizing time delay to just 17%.

2. Related Work
Human Pose Estimation. Human pose estimation
task [14–16, 27] is to extract location of human joints from
the collected data. There are 2D, 3D, and SMPL represen-
tations for the human pose. 2D representation only contains
2D joint coordinates parallel to the camera plane. 3D rep-
resentation has one more dimension of depth information.
SMPL representation [23] is a skinned vertex based model
that represents a wide variety of body shapes in natural hu-
man poses, while needs more parameters to represent.

Human pose estimators can be divided into image-based
methods [27] and video-based methods [17]. Pose se-
quences from image-based methods often show a lot of jit-
ters when these methods are applied to videos, while video-
based methods require more data and computing resources
for training. 2D pose estimator, Hourglass [27] found a out-
standing stacked hourglass networks for human pose esti-
mation; SPIN [19] can learn to reconstruct 3D human pose
and SMPL pose via model-fitting in the loop; video-based
pose estimators, TCMR [6] and VIBE [17], can generate
smooth pose sequences with temporal information. We con-
duct the experiments based on pose estimators mentioned
above.
Motion Refinement Methods. The predicted human pose
sequences can be further refined by motion refinement
methods, making the position and acceleration of each joint
in these sequences are closer to those of the ground-truth se-
quences. The motion refinement methods can be divided to
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Figure 2. The architecture of SynSP. FCN represents fully-connected network. In the base stage, with pose sequences of multiple views
as input, SynSP first encodes these sequences individually in the Local Correlation Encoder, and merge multiple view’s information in the
Global Correlation Encoder with the Pose Similarity Encoding as their weight. After obtaining the individual embedding as the query,
and incorporating the biased global information as the key and value, we get two outputs through the decoder module. In the refinement
stage, we utilize these two detached outputs to generate Pose Quality Encoding and more precise Pose Similarity Encoding. By reusing
embedding generated earlier, we achieve superior results using only one decoder with these encodings.

low-pass filters and deep learning based methods. The tra-
ditional low-pass filters, e.g., Savitzky-Golay [30], Gaus-
sian1d [40], and One-Euro [3], are generally adapted to
smooth the predicted pose sequences, and perform well for
those abrupt jitters, such as confusion in left and right hips.
Although the processed sequences from low-pass filter does
look smoother, it is difficult to ensure precision at the same
time. Deep learning based method, i.e., SmoothNet [42],
takes the two objectives into account and aims to improve
both precision and smoothness. Our SynSP is also based
on deep learning and can achieve better results by consid-
ering the pose sequence quality and multi-view correlation
information.

Additionally, there are also several human pose prior
methods [2, 22, 28, 32], which try to learn a prior distri-
bution of valid human poses. Although time-consuming
for their sampling steps, these methods can be applied to
the task of pose generation/completion/refinement. Hu-
MoR [31] introduces a novel conditional VAE which en-
ables expressive and general motion reconstruction and
generation; GAN-based method [10] proposes a simple yet
effective prior for SMPL model to bound it to realistic hu-
man poses; GFPose [8] employs a novel score-based gener-
ative framework to model plausible 3D human poses.

3. Method

3.1. Overview

Task Description. Given predicted pose sequences gen-
erated by human pose estimators [16], motion refinement
methods aim to fit these predicted sequences to the ground-

truth sequences, making these prediction more precise and
smooth. Usually, the predicted pose sequence P has a shape
of RV ×T×(J×D), where V stands for the number of views
for one individual; T refers to the frame number of these
predicted pose sequences; J is the number of joints asso-
ciated with datasets; D denotes the spatial dimensions of
these joints. We use P(v,t,j) to represent the jth joint’s po-
sition at tth frame from vth view throughout the paper. The
spatial dimension is included in the joint dimension, ignor-
ing the spatial dimensions to simplify it.
Overall Architecture. We proposed SynSP to use this
quality information from the certain tension relationship be-
tween the two objectives, i.e., smoothness and precision.
We also introduce multi-view information fusion as an op-
tional enhancement for SynSP. As illustrated in Fig. 2,
SynSP is mainly based on the transformer structure [34]
and composed of two stages. Firstly, under the guidance of
Pose Similarity Encoding I, Base Decoder can utilize both
individual and global information to generate two branches,
which are respectively biased towards smoothness and pre-
cision. Next, these two branches can generate Pose Quality
Encoding, and a more precise Pose Similarity Encoding II,
which further helps Refinement Decoder generate refined
results.

3.2. Base Stage

In the base stage, SynSP takes predicted sequences from
pose estimators as input and generates two sequences that
focus on smoothness and precision, respectively.
Pose Similarity Encoding. Similarity for poses from multi-
view is effective in enhancing the performance of SynSP.
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On one hand, similar poses from different views can com-
plement each other and improve the robustness of joint po-
sition. On the other hand, this encoding minimizes the net-
work’s attention on poses with significant distortions to re-
duce their impact for the refinement task.

Pose Similarity Encoding (PSE) is calculated as follows:

P rel
(v,t,j) = P̂(v,t,j) − P(v,t,c),

PSE(v1,v2,t) = exp(−
J∑

j=1

(P rel
(v1,t,j) − P rel

(v2,t,j))
2 ),

(1)

where c represents the index of the “pelvis” keypoint in the
joint list. v1 and v2 are used only for distinction, and both
have the same domain as v. Overall, PSE has a shape of
RV ×V ×T , and we present a visualization example of PSE
for one frame in Fig. 3.
Global Correlation Encoder. In multi-view scenes, the
correlation information between multiple views can help
SynSP to deduce the location of the joint with jitters glob-
ally. Global Correlation Encoder (GCE) module is intro-
duced to produce the keys and values required by the Base
Decoder with the global correlation information between
multiple views. First, the predicted sequences P are pro-
jected to embedding E through a full connected layer along
the joint dimension.

Here, we use E(v,t,e) to denote an item of projected em-
bedding E, where e refers to the index of the embedding di-
mension. Then, the view (v) and the frame (t) dimensions of
E are merged, so that pose information from multiple views
and temporal information can be sensed by the encoder si-
multaneously. Afterwards, E((v,t),e) is sent to a encoder
module of transformer [34] to interact pose sequences from
multiple views and get the global information Eg

((v,t),e).
Then this information is added with PSE(v1,v2,t) to ad-
just v1 th view’s attention to other views’ information by
broadcast operation: Eg

((v2,t),e)
+ PSE(v1,v2,t) = Eg

(1,(v2,t),e)

+ PSE(v1,(v2,t),1) = Eg
(v1,(v2,t),e)

, which is the final global
information from GCE module.
Local Correlation Encoder. Local Correlation Encoder
(LCE) module focuses on the temporal dimension with
single-view and produces the query required by the Base
Decoder. LCE reuses the projected embedding E from the
full connected layer mentioned in GCE as input, and di-
rectly sends it to another standard encoder module of trans-
former [34] to obtain local information in the frame (t) di-
mension (take the view (v) dimension as input batch). Fi-
nally, for v1 th view, tth frame, eth item, LCE produces the
local information El

(v1,t,e)
with exploring the correlation of

the time dimension.
Base Decoder. At the end of base stage, we stack 5 stan-
dard decoding layers of transformer [34] into Base Decoder.
The Base Decoder takes the local information El

(v1,t,e)
as

the query, to interact with global information Eg
(v1,(v2,t),e)

,
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Figure 3. Visualization of the two encodings of one frame. PSE:
the diagonal has a constant value of 1. PQE: the value outside
the diagonal is constant 0. In this way, the addition of the two
encodings cannot affect each other.

which serves as keys and values for the Base Decoder. At
the last layer of Base Decoder, we use two decoder layers
to generate two branches biased towards smoothness and
precision respectively at the same time.

K,V = Eg
(v1,(v2,t),e)

, Q0 = El
(v1,t,e),

Q
dth
(v1,t,e)

= DLayerdth (Q(d−1)th ,K, V ), d ∈ {1, 2, 3},

P pos
(v1,t,j)

= FCN(DLayer4th (Q3th ,K,V)),

P acc
(v1,t,j) = FCN(DLayer5th (Q3th ,K,V)),

(2)

where Q, K, and V denote the query, key, and value for
Base Decoder respectively, DLayerdth denotes the dth de-
coder layer, FCN(·) is fully connected network. In this
way, SynSP can generate two pose squences P pos and P acc

from its Acceleration Branch and Position Branch, which
are biased towards the precision and smoothness objectives
in the final loss function Equ. (4), respectively. Next, we
can also further optimize these sequences in the refinement
stage, with a small amount of calculation and parameters as
the cost.

3.3. Refinement Stage

In the refinement stage, we aim to seek a better way to fuse
Acceleration Branch and Position Branch, which concen-
trate on different objectives.
Acceleration and Position Branches. The output se-
quences from Acceleration Branch and Position Branch are
detached from computation graph for a stabler training pro-
cess as the predictions from base stage are independent of
the refinement stage. These outputs can not only generate
more accurate Pose Similarity Encoding, but also provide
the quality information about these pose sequences.
Pose Quality Encoding. We have empirically observed that
when outputs from the two branches show a greater dis-
crepancy, the prediction quality is poorer. Specifically, we
computed the Pearson Correlation Coefficient between the
prediction quality and the difference between two outputs
is about 0.48 (more details in the supplementary materials),

1827



which shows that the two have a strong correlation. Hence,
we propose the Pose Quality Encoding (PQE) to utilize this
correlation to improve the final prediction. Each item of
PQE is calculated as follows:

P dis
(v1,v2,t,j) = |P acc

(v1,t,j) − P pos
(v2,t,j)

|,

PQE′
(v1,v2,t)

=
1

J

J∑
j=1

exp(−
P dis
(v1,v2,t,j)

max
j∈J

P dis
(v1,v2,t,j)

+ σ
),

PQE(v1,v2,t)
=

{
PQE′

(v1,v2,t)
, v1 = v2;

0, v1 ̸= v2.

(3)

Here, we calculate PQE by the distance P dis between
the outputs P acc and P pos, which are generated by Acceler-
ation Branch and Position Branch, respectively. To ensure
that extreme values do not interfere with PQE, P dis is is nor-
malized by dividing the maximum value in the individual’s
sequence. We introduce a small constant σ (set to 1×10−6)
to avoid division by zero.

Unlike PSE, which is calculated based on correlations
among multiple views on one person, PQE is computed
by P dis for a single view across multiple frames. Since
PQE and PSE have distinct considerations regarding multi-
ple views versus single view, they can be combined through
addition rather than concatenation without mutual influence
as illustrated in Fig. 3, thereby enhancing the computational
efficiency of SynSP.
Refinement Decoder. The output sequences of the two
branches exhibit enhanced accuracy and smoothness com-
pared to the input sequences. A straightforward approach
would involve averaging these outputs and replicating the
base stage pipeline once again. However, our experimental
findings indicate that this approach does not yield signif-
icant benefits but doubles the computational cost. Please
refer to supplementary material for details. This may be at-
tributed to the fact that while the optimized output is indeed
smooth and precise, it lacks crucial positional information
from the original jitter input, rendering optimization of an
already optimized output meaningless.

To circumvent this issue and maintain a lightweight
model, we reuse the embedding from the Global Correlation
Encoder and Base Decoder. The former embedding retains
the original position information, while the latter embed-
ding contains optimization information about the output. In
this way, we can produce superior outcomes by using just
one additional decoder. We stack 4 standard decoding lay-
ers of transformer [34] in Refinement Decoder, and the in-
ner calculation of Refinement Decoder is similar with Base
Decoder. As shown in Tab. 5, this approach effectively im-
proves the positional accuracy of pose sequences.
Analysis on the Refinement Stage. In the refinement
stage, the difference between the position and accelera-
tion branches serves as a guiding factor for the quality of
predicted sequence. Next, within the refinement decoder,

…Computation: 8x

Delay: 8 frames
1 2 3 4 5 6 70

1 2 3 4 5 6 7 8

7 8 9 10 11 12 13 14

6 7 8 9 10 11 12 13

Figure 4. Illustration of Sliding Window Average Algorithm
(SWAA), which is widely used by motion refinement works. This
figure proves that the amount of computation and latency is pro-
portional to the window length.

greater emphasis is placed on frames with lower pose qual-
ity to facilitate improvements in the final performance. Re-
garding why this difference is associated with pose quality,
we posit that the two branches are easy to remain consistent
under the normal circumstances, nevertheless, in challeng-
ing scenarios such as occlusion or sudden movement, it is
more likely for the two branches to exhibit dissimilar behav-
ior. Whether in pose estimator or motion refinement model,
pose quality is is obviously related with scenarios.

3.4. Training and Inference

Different from previous work, we only use the window
length T=8 for training and inference. Compared with the
window length of 32, this setting reduces the time delay of
(32 − 8)/12 = 2s while the inference speed of pose esti-
mator is 12fps, and have 8/32 = 0.25 times the previous
amount of computation as shown in Fig. 4.
Training. The losses of the three outputs, i.e., Accelera-
tion Branch output, Position Branch output, and final out-
put, share the same calculation method. We have two losses,
Lacc and Lpos, for each one of the three outputs:

A(v,t,j) = (P(v,t+2,j) − P(v,t+1,j))− (P(v,t+1,j) − P(v,t,j)),

Lpos =
1

V · T · J

V∑
v=1

T∑
t=1

J∑
j=1

|P(v,t,j) − P̂(v,t,j)|,

Lacc =
1

V · T · J

V∑
v=1

T∑
t=1

J∑
j=1

|A(v,t,j) − Â(v,t,j)|,

Ltotal = Lpos + λLacc.
(4)

In our experiments, λ is set as 0, 1, and 0.5 for Position
Branch, Acceleration Branch, and the final output, respec-
tively, which is a trade-off between smoothness and preci-
sion. For all branches, Lpos is crucial to ensuring training
stability. Furthermore, to balance Lpos and Lacc, the param-
eter λ should be set as 0.5, determined by the absolute value
of each element. Thus, for the final output, we have set λ to
0.5, whereas in the Acceleration branch, λ is assigned as 1
to prioritize smoothness.
Inference. During inference, we obtain outputs from
the refinement stage. Then the outputs go through a

1828



Table 1. Comparison with related works on Human3.6M, AIST++ datasets with 2D, 3D, and SMPL human pose estimator Hourglass [27],
FCN [26], and SPIN [19], respectively. WS denotes the windows size in training, inference, and post-process. * indicates that SynSP is
trained and tested in multi-view scenes.

Method WS
Human3.6M / 2D Human3.6M / 3D AIST++ / SMPL

MPJPE↓ PA-MPJPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓ MPJPE↓ PA-MPJPE↓ Accel↓
Input N/A 9.42 7.64 1.54 54.55 42.2 19.17 107.72 74.40 33.20
One-Euro [3] 1 10.69 7.98 0.34 55.20 42.73 3.80 108.97 75.27 14.70
Gaussian1d [40] 32 9.37 7.56 0.51 53.67 41.60 2.43 104.84 72.18 10.05
Savitzky-Golay [30] 32 9.35 7.55 0.17 53.48 41.19 1.34 104.58 72.30 6.07
SmoothNet [42] 32 9.25 7.57 0.15 52.72 40.92 1.03 103.00 71.19 5.72
SynSP 8 8.13 6.09 0.15 51.36 40.13 1.02 84.63 59.02 6.08
SynSP∗ 8 7.62 5.64 0.15 41.78 33.32 0.98 - - -

post-processing called sliding window average algorithm
adopted by most works as shown in Fig. 4 (we have ac-
celerated it by parallel computing to 1% of the original la-
tency, refer to supplementary material for more details). It
can be seen that the delay and computation needs for model
and post-processing becomes smaller with shorter window
length.
Single-View Scenes. While V = 1 in the equations above,
SynSP can be directly applied to adapt single-view scenes.
In single-view scenes, PSE module is no longer needed.
Since multi-view scenes are not considered by current re-
lated works and not our main motivation for the proposed
SynSP, we conduct sufficient single-view experiments for a
comprehensive comparison.

4. Experiments
4.1. Experiment Settings

Dataset. To demonstrate the generalizability and efficiency
of our method, we conduct experiments of SynSP in three
human pose representations of 2D, 3D, and SMPL for
single-view and multi-view scenes on Human3.6M [12],
AIST++ [20], 3DPW [35], and CMU-Mocap [33] datasets.
For the fairness of the comparison, we use these datasets
made by SmoothNet [42] with kinds of pose estimators in
the experiments. To compare with pose prior models, we
also follow GFPose [8] to add the same degree of Gaussian
noise or uniformly distributed noise to Human3.6M and
CMU-Mocap datasets as input for the pose denoise task.
Metrics. Following the related works [42], we use
Accel error, MPJPE, and PA-MPJPE (Procrustes-aligned
MPJPE) [1, 5] to evaluate the acceleration and position
proximity between the predicted sequence and the ground-
truth sequence, and the lower metrics the smaller error of
the predicted sequence.
Implementation Details. SynSP consists of two 4-layer
encoder modules (GCE, LCE), a 5-layer decoder module
(Base Decoder), and a 4-layer decoder module (Refinement
Decoder). We initialize the learning rate as 0.001 and decay

it by a factor of 0.95 per epoch. SynSP is trained for 70
epochs with Adam optimizer, requiring approximately two
hours and 7GB of GPU memory with a batch size of 4096.
The computational setup consists of an Intel(R) Xeon(R)
Gold 6271C CPU @ 2.60GHz for the CPU and a Tesla
V100 SXM2 32GB for the GPU.

4.2. Comparsion with State-Of-The-Arts.

In our experiments, we first demonstrate that SynSP con-
sistently outperforms previous methods in both single-view
and multi-view scenes with several pose estimators. Then
we compare with pose prior models on the pose denoise
task by smoothing the pose sequences with artificial noisy.
(There are also some methods[13, 41] with a super-long
window length, and the comparison with them is shown in
the supplementary materials.)

Table 2. Comparison of various video-based pose estimators. +
represents the combination of estimators and motion refinement
methods. * indicates multi-view inputs.

Dataset Method WS MPJPE↓ Accel↓

3DPW

MAED [36] 16 79.00 -
MPS-Net [38] 16 84.30 -
TCMR [6] 16 86.46 6.75
TCMR+SmoothNet [42] 16+32 86.50 6.00
TCMR+SynSP 16+8 86.10 5.90
PARE [18] 1 79.00 25.60
PARE+SmoothNet [42] 1+32 78.10 5.91
PARE+SynSP 1+8 76.20 6.16

AIST++
VIBE [17] 16 106.9 31.60
VIBE+SmoothNet [42] 16+32 97.47 4.15
VIBE+SynSP 16+8 77.00 4.32

H36M
TransFusion∗ [24] 1 25.52 -
PPT∗ [25] 1 25.16 11.60
PPT∗+SmoothNet [42] 1+32 23.97 1.31
PPT∗+SynSP 1+8 21.51 1.10
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Table 3. Comparison on Human3.6M dataset for the denoise task.
N(0, σ) represents a Gaussian distribution with a mean of 0 and a
variance of σ, and U(k) represents a uniform distribution at [0,k].
M↓ and A↓ denote MPJPE↓ and Accel↓ respectively.

Method
N(0, 100) N(0, 400) U(50) U(100)

M↓ A↓ M↓ A↓ M↓ A↓ M↓ A↓
Noisy input 65.6 160.3 131.1 320.5 94.8 231.3 189.5 462.7
GFPose [8] 42.8 - 64.6 - 50.9 - 89.4 -
SmoothNet [42] 42.4 10.7 57.9 14.2 49.4 10.2 74.3 16.3
SynSP 37.6 8.8 56.1 13.0 45.6 10.9 69.4 15.7

Table 4. Comparison on CMU-Mocap dataset for the denoise
task. N(0, σ) represents a Gaussian distribution with a mean of
0 and a variance of σ, and U(k) represents a uniform distribution
at [0,k]. M↓ and A↓ denote MPJPE↓ and Accel↓ respectively.

Method
N(0, 100) N(0, 400) U(50) U(100)

M↓ A↓ M↓ A↓ M↓ A↓ M↓ A↓
Noisy input 61.2 143.8 122.5 287.6 88.7 207.9 177.4 415.8
GFPose [8] 40.4 - 60.0 - 45.6 - 84.4 -
SmoothNet [42] 35.1 4.3 41.5 4.9 37.7 4.2 44.9 5.1
SynSP 20.6 3.7 28.0 4.4 24.4 4.1 32.4 4.6

2D Representation. In Tab. 1, we compare SynSP with
other motion refinement methods in Human3.6M dataset
with 2D pose estimator Hourglass [27]. With the setting
of 8 window length, our SynSP outperforms all the meth-
ods while it is about 2 seconds faster (except the One-Euro)
according to Fig. 4. Compared with SmoothNet, which is
trained on multiple datasets, i.e., AIST-VIBE-3D, 3DPW-
SPIN-3D, and Human3.6M-FCN-3D, SynSP can still out-
performs it by 16.9% for MPJPE and 25.2% for PA-MPJPE
with smaller window size. According to the ablation exper-
iment results in Sec. 4.3, the significant accuracy improve-
ment of SynSP is attributed to the mutual patching between
the pose quality information (PQE) and multi-view infor-
mation (PSE).
3D Representation. In Tab. 1, we also compare SynSP with
other motion refinement methods in Human3.6M dataset
with 3D pose estimator FCN [26]. Similar with the com-
parison in 2D Representation, we can still outperforms
SmoothNet by 20.8% for MPJPE and 18.6% for PA-MPJPE
in Human3.6M dataset. There is also a decrease of 4.9% for
the Accel error. Furthermore, SynSP obtains these results
only with 8 window size, while SmoothNet and most filters
need 32 frames.
SMPL Representation. Then we compare SynSP with
other motion refinement methods in AIST++ dataset with
SMPL pose estimator SPIN as shown in Tab. 1. SynSP
shows superior performance in SMPL representation.
Comparison with Video-based Pose Estimators. The
video-based estimators already include temporal informa-

tion. Compared with the image-based estimators, motion
refinement methods have difficult to optimize the sequences
from video-based estimators. In Tab. 2, we compare SynSP
with SOTA methods and SmoothNet in AIST++ and 3DPW
datasets with 3D pose video-based estimator VIBE [17] and
TCMR [6], respectively. We can find that the high per-
formance video-based estimators, TCMR, is hard to be re-
fined. SmoothNet improves the smoothness by process-
ing a longer window length than the video-based estima-
tors. SynSP greatly increases precision and smoothness in
a shorter window length with its outstanding architecture as
shown in Fig. 2. The image-based estimator, PARE [18],
has excellent performance in precision, SynSP can also
make up for its shortcomings in smoothness and outperform
some video-based estimators.
Comparison with Multi-view Pose Estimators. We fur-
ther verify the performance of SynSP with the multi-view
pose estimator, i.e., PPT [25]. As shown in Tab. 2, we can
notice that SynSP can further improve the precision of PPT,
which has superiority performance by considering multi-
view connections. We also present the result of other multi-
view methods such as TransFusion for comparison. This
experiment results further proves the multi-view refinement
ability of PSE for video-based estimators.
Comparison with Pose Priors Methods. To ensure a fair
comparison with human pose prior models, we also con-
ducted denoise experiments following the methodology of
the SOTA work [8] among pose priors methods. Here, win-
dow size of GFPose, SmoothNet, and SynSP are 1, 32, and
8 respectively, while GFPose, as a generative model for hu-
man pose prior task, has 1000 sampling steps, i.e., 1000
times of model inference. GFPose has not presented its Ac-
cel errors since it does not take temporal information into
account. As presented in Tab. 3 and Tab. 4, SynSP can effec-
tively solve MPJPE (Precision) problems. Across noisy Hu-
man3.6M and CMU-Mocap datasets, SynSP can improve
the pose quality by about 54.5% in terms of MPJPE and
96.0% in terms of Accel errors for Gaussian noise with a
variance of 100. For Gaussian noise with a large variance
of 400, SynSP can improve the pose quality by about 67.2%
in terms of MPJPE and 97.2% int terms of Accel errors. We
also observe consistent improvement in uniform noise as
shown in Tab. 4.

4.3. Ablation Study.

To ensure representativeness of ablation experiments, all
experiments were performed on the largest dataset, Hu-
man3.6M, with 3D estimator FCN.
Modules of SynSP. In order to verify the rationality of the
structure of SynSP, we conducted ablation experiments on
each module in SynSP. In Tab. 5, the line without a tick rep-
resents the results of baseline, which is the network of base
stage without PSE I. And this network surpasses Smooth-
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Table 5. Ablation study on PSE I, RS (Refinement Stage), PSE II,
and PQE modules. * denotes directly using the output from base
stage as input of refinement stage to re-optimize these sequnence.

PSE I RS PSE II PQE MPJPE Accel

51.2 1.09
√

48.7 1.07
√

* 51.4 1.08
√

49.6 1.07
√ √

46.7 1.05
√ √ √

46.4 1.04
√ √ √

42.5 0.99
√ √ √ √

41.8 0.98

Net in precision by 2.8%. PSE I, RS, PSE II, and PQE all
have gains in results, and the combination of PSE I, RS,
and PQE has brought greater benefits. We believe that this
benefit mainly comes from the combination of SynSP with
global information PSE I, which can help generate more
accurate quality information according to the poses from
other views. Besides, utilizing the difference between ac-
celeration and Position Branch improves both smoothness
and precision of final prediction. It is worth noting that us-
ing the average value of the two branches as the input RS
does not bring reasonable gains. We suspect that the output
of base stage loses the original predicted position informa-
tion, which affects the accuracy and makes the refinement
stage useless compared with the baseline.
Time Efficiency Analysis. We conducted latency experi-
ments on the Human3.6M dataset using FCN [26] as the 3D
pose estimator with a batch size of 1416, as shown in Tab. 6.
Considering the practical application environment, we re-
port not only the inference latency of the model, as shown
in the 3rd column of Tab. 6, but also the latency associ-
ated with the Sliding Window Average Algorithm (SWAA),
which includes the delay in waiting for pose estimators and
the computation cost of SWAA (we have optimized SWAA
specifically for parallel computation on GPUs). The bold
cell in each row of Tab. 6 represents the primary factor
contributing to latency. For video processing speed of 12
frames per second for the pose estimator (based on the gen-
eral inference speed of various pose estimators), a window
size of 8 would require a waiting time of 8/12 = 667ms; sim-
ilarly, a window size of 32 would require a waiting time of
32/12 = 2667ms. Furthermore, the model inference time for
SynSP is only about 10ms. Overall, the main time cost pri-
marily arises from the internal waiting latency for Smooth-
Net and SynSP. For the pose priors method GFPose, the
main time delay is its 1000 sampling steps. Hence, SynSP
is more suitable for near real-time pose refinement task.
Analysis on Number of Views. As shown in Tab. 7, as
more poses from different views are input at the same time

Table 6. Time efficiency analysis on SynSP including model infer-
ence time and time cost for sliding window. Besides, we assume
that FPS (Frame Per Second) for pose estimator is 12.

Methods WS Model
SWAA

Total
(ms) Wait (ms) Execution (ms) (ms)

GFPose 1 3772 - - 3772

SmoothNet 32 1.21 2667 802 3470

SynSP 8 11.0 667 0.3 678

SynSP* 8 12.3 667 0.3 680

Table 7. Contrast experiments on the number of input views. †
means that we randomly combine several people together for input
during the training process, instead of using multiple views for one
person. * means that in the case of †, several people with similar
poses are input at the same time during the inference process.

View Number MPJPE PA-MPJPE Accel

1 51.4 40.1 1.02
2 47.2 37.6 1.02
3 46.5 37.1 1.00
4 41.8 33.3 0.98
4† 50.4 39.5 1.01
4* 49.7 39.1 1.01

during the training process and inference process, the per-
formance of SynSP is more efficient. It is justifiable due
to the introduction of more global information. If number
of views is larger than 4, we believe that the performance
of our model can be further promoted with only a marginal
increase in model complexity.

5. Conclusion
This paper proposes SynSP, a motion refinement method
that utilize the tension relationship between smoothness and
precision through synergistic optimization. Specifically,
SynSP outputs Position Branch and Acceleration Branch bi-
ased towards precision and smoothness, respectively. Then
we employ the discrepancy between the two branches as a
quality cue for the predicted sequence, which can be utilized
in subsequent stages to further refine the pose sequence. In
addition, we introduce Pose Similarity Encoding, achiev-
ing simultaneous refinement of multi-view poses and per-
formance enhancement.
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