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Abstract

Despite the remarkable performance of score distillation
in text-to-3D generation, such techniques notoriously suf-
fer from view inconsistency issues, also known as “Janus”
artifact, where the generated objects fake each view with
multiple front faces. Although empirically effective meth-
ods have approached this problem via score debiasing or
prompt engineering, a more rigorous perspective to explain
and tackle this problem remains elusive. In this paper, we
reveal that the existing score distillation-based text-to-3D
generation frameworks degenerate to maximal likelihood
seeking on each view independently and thus suffer from the
mode collapse problem, manifesting as the Janus artifact in
practice. To tame mode collapse, we improve score distilla-
tion by re-establishing the entropy term in the corresponding
variational objective, which is applied to the distribution of
rendered images. Maximizing the entropy encourages diver-
sity among different views in generated 3D assets, thereby
mitigating the Janus problem. Based on this new objec-
tive, we derive a new update rule for 3D score distillation,
dubbed Entropic Score Distillation (ESD). We theoretically
reveal that ESD can be simplified and implemented by just
adopting the classifier-free guidance trick upon variational
score distillation. Although embarrassingly straightforward,
our extensive experiments demonstrate that ESD can be an
effective treatment for Janus artifacts in score distillation.

1. Introduction

Recent advancements in text-to-3D technology have at-
tracted considerable attention, particularly for its pivotal role
in automating high-quality 3D content. This is especially
crucial in fields such as virtual reality and gaming, where
3D content forms the bedrock. While numerous techniques
are available, the prevailing text-to-3D approach is based on
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score distillation [31], popularized by DreamFusion and its
follow-up works [4, 19, 26, 50, 54, 56].

Score distillation leverages a pre-trained 2D diffusion
model to sample over the 3D parameter space (i.e. Neural
Radiance Fields (NeRF) [27]) such that views rendered from
a random angle satisfy the statistics of the image distribu-
tion. This algorithm is implemented by backpropagating
the estimated score of each view via the chain rule. Despite
the notable progress achieved with score distillation-based
approaches, it is widely observed that 3D content generated
using score distillation suffers from the Janus problem [12],
referring to the artifacts that generated 3D objects contain
multiple canonical views (see Fig. 1).

To understand this drawback of score distillation, we draw
the theoretical connection between the Janus problem and
mode collapse, a statistical term describing a distribution con-
centrating on the high-density area while losing information
about the probability tail. We first uncover that the optimiza-
tion of existing score distillation-based text-to-3D generation
degenerates to a maximum likelihood objective, making it
susceptible to model collapse. As pre-trained diffusion mod-
els are biased to frequently encountered views [12]', this
oversight leads all views opt to convergence toward the point
with the highest likelihood, manifesting as the Janus arti-
fact in practical applications. The main limitation of current
methods is that their distillation objectives solely maximize
the likelihood of each view independently, without consider-
ing the diversity between different views.

To address the aforementioned issue, we propose a princi-
pled approach Entropic Score Distillation (ESD), which reg-
ularizes the score distillation process by entropy maximiza-
tion of the rendered image distribution, thereby enhancing
the diversity of views in generated 3D assets and alleviating
the Janus problem. Our derived ESD update admits a simple
form as a weighted combination of scores for pre-trained
image distribution and rendered image distribution. Com-

IFor example, it is common that a frontal view of a cat is more likely to
be sampled from latent diffusion models than the back view.
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Our results

A cat with tiger stripes

A bald eagle carved out of wood

A chimpanzee dressed like Henry VIII king of England

"Janus" results

Front View Back View

Figure 1. A Preview of Qualitative Results. We present the front and back views of objects synthesized by VSD (ProlificDreamer) on the
right two columns, and four views of our generated results on the left. VSD suffers from “Janus” problem, where both front and back views
contain a frontal face of the targeted object, while our method effectively mitigates this artifact. Please refer to more results in Appendix D.

pared with Score Distillation Sampling (SDS) [31], our ESD
involves the score of the rendered image distribution, serving
to maximize the entropy of the rendered image distribution.
Unlike Variational Score Distillation (VSD) [56], the learned
score function of the rendered image distribution does not
depend on the camera pose. This subtle difference has a
more profound impact, as we show the score function of
rendered images modeled by VSD corresponds to an objec-
tive with fixed entropy, thereby having no influence on view
variety. In contrast, ESD optimizes for a Kullback-Leibler di-
vergence with a non-constant entropy term parameterized by
the 3D model, leading to an effect that encourages diversity
among different views.

In practice, we find it challenging to optimize the score
of the rendered image distribution without conditioning on
the camera pose. To facilitate training, we discover that the
gradient from the entropy can be decomposed into a com-
bination of scores: one depends on the camera pose, and
the other independent of it, with a coefficient interacting
between these two terms. Through this theoretical estab-
lishment, we are able to adopt a handy implementation of
ESD by Classifier Free Guidance (CFG) trick [10] where
conditional and unconditional scores are trained alternatively
and mixed during inference.

Through extensive experiments with our proposed ESD,
we demonstrate its efficacy in alleviating the Janus problem

and its significant advantages in improving 3D generation
quality when compared to the baseline methods [31, 56] and
other remedy techniques [2, 12]. As a side contribution, we
also borrow two inception scores [36] to evaluate text-to-
3D results and numerically probe model collapse in score
distillation. We show these two metrics can effectively char-
acterize the quality and diversity of views, highly matching
our qualitative observations.

2. Background
2.1. Diffusion Models

Diffusion models, as demonstrated by various works [11,
44, 46, 48], have shown to be highly effective in text-to-
image generation. Technically, a diffusion model learns
to gradually transform a normal distribution A (0, I) to
the target distribution pgq: (|y) where y denotes the text
prompt embeddings. The sampling trajectory is deter-
mined by a forward process with the conditional proba-
bility pi(x¢|zo) = N(x¢|owxo,02I), where ¢, € RP
represents the sample at time ¢ € [0,7], and o, 0¢ > 0
are time-dependent diffusion coefficients. Consequently,
the distribution at time ¢ can be formulated as p:(z:|y) =
[ Paata(xo|y) N (z¢|cyx, 02 I)dao.  Diffusion models
generate samples through a reverse process starting from
Gaussian noises, which can be described by the ODE:

9038



Views rendered
from 3D scene

Juis! J D Images from
MLE / diffusion model
/
i F Image
. <~ Hl(eh) —> Space

Maximal Likelihood Seeking Jyrg

>

Our Objective Jgnt

Figure 2. Illustration of the effect of entropy regularization. Learned image distributions often exhibit a higher probability mass for
objects’ frontal faces. Pure maximal likelihood seeking is opt to mode collapse (Sec. 3). Adding entropy regularization can expand the
support of fitted distribution ¢? (2|y) with mode-covering behavior (Sec. 4).

da;/dt = —Vlogp:(x;) with the boundary condition
xp ~ N(0,I) [22, 45, 48]. Such a process requires the
computation of score function V 5 log p;(a;) which is of-
ten obtained by fitting a time-conditioned noise estimator
€4 : RP — RP using score matching loss [15, 47, 52].

2.2. Text-to-3D Score Distillation

Score distillation based 3D asset generation requires repre-
senting 3D scenes as learnable parameters @ € R™ equipped
with a differentiable renderer g(68,c) : RY — RP that
projects 3D scene 6 into images with respect to the camera
pose c. Here N, D are the dimensions of the 3D parameter
space and rendered images, respectively. Neural radiance
fields (NeRF) [27] are often employed as the underlying 3D
representation for its capability of modeling complex scenes.

Recent works [4, 14, 19, 26, 31, 50, 54-56] demonstrate
the feasibility of using a pretrained 2D diffusion model
to guide 3D object creation. Below, we elaborate on two
score distillation schemes, adopted therein: Score Distilla-
tion Sampling (SDS) [31] and Variational Score Distillation
(VSD) [56].

Score Distillation Sampling (SDS).
parameter 8 as follows *:

SDS updates the 3D

Vg.]sps(e) =—FE w(t)%

(1)

where the expectation is taken over timestep ¢ ~ U[0, T,
Gaussian noises € ~ N(0, I'), and camera pose ¢ ~ p.(c).
Here is Vlog p is a pre-trained diffusion model €g(x, ¢, y)
and x; is a noisy version of the rendering given by camera
pose ¢. ¢y = ag(0, ¢) + ore. Updating 0 as in Eq. (1) has
been shown to minimize the evidence lower bound (ELBO)
for the rendered images, see Wang et al. [54], Xu et al. [59].

2Without special specification, expectations are taken over all relevant
random variables and Jacobian matrices are transposed by default.

(0:Vlogpi(xi|y) —€) |,

Variational Score Distillation (VSD). VSD [56] is in-
troduced in ProlificDreamer, VSD improves upon SDS by
deriving the following Wasserstein gradient flow [51]:

0g(0,c)

VQJVSD(G) =—E w(t) 90

(¢ Vlog pi(xt|y)
—o;Vlogqi(x¢|c)) | . )

Similarly, x; = a;g(0, ¢) 4 o€ is the noisy observation of
the rendered image. In contrast to SDS, VSD introduces a
new score function of the noisy rendered images conditioned
on the camera pose c. To obtain this score, Wang et al. [56]
fine-tunes a diffusion model using images rendered from the
3D scene as follows:

minE [w(t)ley(aeg(0,¢) + are,tcy) —el3], (3

where €4 (x, ¢, ¢, y) is the noise estimator of V log ¢, (x;|c)
as in diffusion models. As proposed in ProlificDreamer,
1) is parameterized by LoRA [13] and initialized from a
pre-trained diffusion model same as V log p;.

3. Revealing Mode Collapse in Score Distillation

Despite the remarkable performance of SDS and VSD in 3D
asset generation, it is widely observed that the synthesized
objects suffer from “Janus” artifacts. Janus artifacts refer
to the generated 3D scene containing multiple canonical
views (the most representative perspective of the object such
as the frontal face). In earlier works, Hong et al. [12] and
Huang et al. [14] attribute this problem to unimodality of the
learned 2D image distribution since the training data for the
diffusion models are naturally biased to the most commonly
seen views per each category. In this section, we examine
extant distillation schemes from a statistical view, which has
been overlooked in previous literature.

In principle, natural 2D images can be seen as random
projections of 3D scenes. Score distillation matches the im-
age distribution generated by randomly sampled views with a
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text-conditioned image distribution to recover the underlying
3D representation. Hence, Janus artifact, in which each view
becomes uniform and identical to the most commonly seen
views, can be interpreted as a manifestation of distribution
collapse to samples within the high-density region. Such
distribution degeneration essentially corresponds to the sta-
tistical phenomenon mode collapse, which happens when an
optimized distribution fails to characterize the data diversity
and concentrates on a single type of output [1, 7, 25, 36, 49].

Below we theoretically reveal why SDS and VSD are
prone to mode collapse. As shown in Poole et al. [31], Wang
et al. [56], SDS and VSD equals to the gradient of the fol-
lowing Kullback-Leibler (KL) divergence, i.e., Jsps(6) =
Jvsp(0) = Jr1(0) up to an additive constant:

Jr1(0) = E [Q(t) Dxu(a) (mcle, y)Ipe(ely)] . )

where Q(t) = w(t)o:/o; and the expectation is taken
over t ~ U[0,T] and ¢ ~ p.(c). Here pi(x:|y) =
J po(zo|ly) N (x¢|owo, 07 I)dxg is the image distribu-
tion perturbed by Gaussian noises, while ¢?(z;|c,y) =
[ 48 (zo|e) N (zi|cwzo, o2 T)dzo models the image distri-
bution generated by 3D parameter 8 with respect to camera
pose c and diffused by Gaussian distribution. As shown by
Wang et al. [56], Jx1.(0) = 0 implies ¢§ (xo|c) = p(xo|y),
i.e., the distribution of synthesized views satisfy the text-
conditioned image distribution.

However, it has not escaped from our notice that
a8 (xo|c) = d(zo — g(0, ¢)) is a Dirac distribution for both
SDS and VSD. This causes the original KL divergence mini-
mization (Eq. 4) degenerate to a Maximal Likelihood Esti-
mation (MLE) problem:

JKL(O) =-E [Q(t) ]Eztwqf(mt\c,y) logpt(mt|y):|

JnmLe(0) 5)
—E[Q(t)H[q] (z]c,y)]],
const.
where H[Q? (mtly)] = = Emtwq?(mt|c,y) [10g qf (CCt|C, y)}

denotes the entropy of ¢? (x;|y), which turns out to be a con-
stant because ¢? (z|c,y) = N (x| g(0, ¢),02I) which
has fixed entropy once ¢, € and ¢ have been specified. See
full derivation in Appendix A.l.

Note that Eq. 5 signifies Jx1.(0) = Jyre(0) up to
an additive constant, hence J 1, (0) shares all minima with
Jrre(0). Tt is known that likelihood maximization is more
prone to mode collapse. Intuitively, minimizing Jsr, 5 (0)
seeks each view independently to have the maximum log-
likelihood on the image distribution p(xg|y). Since p(xo|y)
is usually unimodal and peaks at the canonical view, each
view of the scene will collapse to the same local minimum,
resulting in Janus artifact (see Fig. 2). We postulate that
the existing distillation strategies may be inherently limited

VSD (A =0.0) ESD (A =0.25)

ESD (A =0.50)

Figure 3. Gaussian Example. To illustrate the effects of entropy
regularization, we leverage SDS, VSD and ESD to fit a 2D Gaussian
distribution. The blue points are sampled from the ground-truth
distribution while the points are from the fitted distribution.

by their log-likelihood seeking behaviors, which are more
susceptible to mode collapse, especially with biased image
distributions.

4. Entropy Regularized Score Distillation

4.1. Entropic Score Distillation

In this section, we highlight the importance of the entropy in
score distillation. It is known that higher entropy implies the
corresponding distribution could cover a larger support of
the ambient space and thus increase the sample diversity. In
Eq. 5, the entropy term is shown to diminish in the training
objective, which causes each generated view to lack diversity
and collapse to a single image with the highest likelihood.

To this end, we propose to bring in an entropy regular-
ization to Jys 1, (@) for boosting the view diversity. Since
q? (z¢|c, y) has constant entropy, we regularize entropy for
the distribution ¢? (z:|y) = [ ¢?(z:|c, y)p.(c)de, which
can be simulated by randomly sampling views from the 3D
parameter 6. Consider the following objective:

JEnt (0’ )‘) =—-E [Q(t) Ewtwqf(wﬂc,y) Ingt (wt‘y)}
—AE [Q(t) H[qf (z]y)]] ,

)

where A is a hyper-parameter controlling the regularization
strength. We note that without H[¢?(x;|y)], each view
is optimized independently and implicitly regularized by
the underlying parameterization. However, upon impos-
ing H[q? (x¢|y)], all views become explicitly correlated
with each other, as they collectively contribute to the en-
tropy computation. Intuitively, Jg,+(0, ) = Jyre(0) —
AE[Q(t)H[qP (z¢|y)]] seeks the maximal log-likelihood for
each view while simultaneously enlarging the entropy for dis-
tribution ¢? (z¢|y), which spans the support and encourages
diversity across the rendered views. To gain more insights,
we present the following theoretical results:

Theorem 1. For any A € R and 8 € RP, we have
JEnt(0,A) = AE([Q(t) D (qf (x:|y) ||pe (2 ]y))] + (1 —
A) Bt o[Q(t) Dkr (¢f (x4 ]e, y) ||pi (2 |y))] + const.
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Algorithm 1 ESD: Entropic score distillation for text-to-3D generation

Input: A diffusion model €4 (,

t,y); learnable 3D parameter @; coefficient \; text prompt y.

Initialize 4y for another diffusion model €, (x, t, y) with the parameter ¢ specified in diffusion model €4 (x, ¢, y), parame-

terized with LoRA.
while not converged do

Randomly sample a camera pose ¢ ~ p. and render a view xo = ¢(6, ¢) from 6.
Sample a t ~ U[0, T] and add Gaussian noise € ~ N (0,I): x; = ayxg + os€.

00 + m OJ(t) 8956976) (64;((13,3, ta y) - )‘e’lp (mta t) 07 y) - (1 - /\)Gd, (:Bta ta C, y):| (6)
With probability 1 — py, ¥ < 1 — 12V [w(t)”e,/,(:ct, t,e,y) — e||§]

Otherwise, ¥ < 9 — 12V [w(t)||€y (z¢,t,0,y) — €3]

end while
Return 6

We prove Theorem 1 in Appendix A.3. Theorem 1 im-
plies that Jg,:(0, ) essentially equal to a combination
of two types of KL divergences, where the former one
minimizes the distribution discrepancy between ¢? (z;|y)
and p% (x;|y) which marginalizes the camera pose within
q?, while the latter is the original KL divergence Jx.(6)
adopted by SDS and VSD which takes expectation over ¢
out of KL divergence.

Next, we derive the gradient of Jg,:+(0, \) that will be
backpropagated to update the 3D representation. It can be
obtained by path derivative and reparameterization trick:

0
o) 289 (0,108 pu(aly)
®)

— Ao Viegg? (z:ly)) | -

VoJeni(0,\) = —E

The full derivation is deferred to Appendix A.2. We name
this update rule as Entropic Score Distillation (ESD). Note
that ESD differs from VSD as its second score function does
not depend on the camera pose.

4.2. Classifier-Free Guidance Trick

Similar to SDS and VSD, we approximate V log p:(x:|y)
via a pre-trained diffusion model €4 (x;,t,y). However,
Vlog ¢ (z|y) is not readily available. We found that di-
rectly fine-tuning a pre-trained diffusion model using ren-
dered images to approximate V log ¢? (z|y), akin to Prolific-
Dreamer, does not yield robust performance. We postulate
this difficulty arises from the removal of the camera con-
dition, increasing the complexity of the distribution to be
fitted.

To tackle this problem, we recall the result in Theorem
1 that Jg,,:(0, \) can be written in terms of two KL diver-
gence losses. Therefore, its gradient can be decomposed as a
weighted combination of their gradients, which correspond
to unconditional and conditional score functions in terms of

the camera pose c, respectively:

0g(0
VoJent(0,\) = —E w(t)%(UtVIngt(mt\y)
)

— Ao Viog ¢f (wiy) — (1 — Mo Viogqf (me]c, y))| -

We formally prove Eq. 9 in Appendix A.3. With the above
formulation, ESD can be implemented via the Classifier-Free
Guidance (CFG) trick, which was initially proposed to bal-
ance the variety and quality of text-conditionally generated
images from diffusion models [10]. Algorithm 1 outlines the
computation paradigm of ESD, in which we surrogate score
functions in Eq. 9 with pre-trained and fine-tuned diffusion
models (see Eq. 6), and takes random turns with a probability
pyp to balance the training of conditional and unconditional
score functions, as suggested by Ho and Salimans [10].

4.3. Discussion

In VSD, the camera-conditioned score is believed to play
a significant role in facilitating visual quality. Intuitively,
such conditioning can equip the tuned diffusion model with
multi-view priors [20]. Also, Hertz et al. [8] suggests such
a method can be useful to stabilize the update of the im-
plicit parameters. However, ESD counters this argument
by suggesting that the camera condition might not always
be advantageous, particularly when the particle size is re-
duced to one. In such cases, the resulting KL divergence
provably degenerates to a likelihood maximization algorithm
vulnerable to mode collapse.

It is noteworthy that, even though their subtle differences
in implementation, the optimization objectives of ESD and
VSD are fundamentally different (see Sec. 4.1). ESD sets it-
self apart from VSD by incorporating entropy regularization,
a crucial feature absent in VSD, aiming to augment diversity
across views. Despite originating from distinct objectives,
our theoretical establishment allows for a straightforward
implementation of ESD based on VSD using the CFG trick.
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SDS (DreamFusion) VSD (ProlificDreamer)

Debiased-SDS Perp-Neg

ESD (Ours)

Michelangelo style statue of dog reading news on a cellphone

A rabbit, animated movie character, high detail 3d model

A rotary telephone carved out of wood

A plush dragon toy

Figure 4. Qualitative Results. Our proposed outperforms all baselines in terms of better geometry and well-constructed texture details. Our
results deliver photo-realistic and diverse rendered views, while baseline methods more or less suffer from the Janus problem. Best view in

an electronic copy.

We provide an illustrative example by leveraging SDS,
VSD and ESD (with different \’s) to fit a 2D Gaussian
distribution in Fig. 3. With SDS and VSD, all samples are
converged to the high-density area while ESD recovers the
entire support of the distribution. We provide more details
and examples in Appendix B.

5. Other Related Work

Text-to-Image Diffusion Model. Text-to-image diffusion
models [32, 33] are cornerstone components of text-to-3D
generation. It involves text embedding conditioning into
the iterative denoising process. Equipped with large-scale
image-text paired datasets, many works [29, 33, 35] scale
up to tackle text-to-image generation. Among them, latent
diffusion models attracted great interest in the open-source
community since they reduced the computation cost by dif-
fusing in the low-resolution latent space instead of directly
in the pixel space. In addition, text-to-image diffusion mod-
els have also found applications in various computer vision
tasks, including text-to-3D [31, 43], image-to-3D [59], text-
to-svg [17], text-to-video [18, 42], etc.

3D Generation with 2D Priors. Well-annotated 3D data
requires immense effort to collect. Instead, a line of research
studies on how to learn 3D generative models using 2D su-

pervision. Early attempts, including pi-GAN [34], EG3D [3],
GRAF [37], GIRAFFE [30], adopt adversarial loss between
the rendered images and natural images. DreamField [16]
leverages CLIP to align NeRF with text prompts. More
recently, with the rapid development of text-to-image dif-
fusion models, diffusion-based image priors have attracted
increasing interest, and score distillation has then become
the dominant technique. Pioneer works DreamFusion [31]
and ProlificDreamer [56] have been introduced in detail in
Sec. 2. Their concurrent work SJC [54] derives the score Ja-
cobian chaining method from another theoretical viewpoint
of Perturb and Average Scoring. Even though diffusion
models directly trained with 3D data nowadays demonstrate
largely improved results [21, 41], score distillation still plays
a pivotal role in ensuring view consistency.

Techniques to Improve Score Distillation. Providing the
empirical promise of score distillation, there have been nu-
merous techniques proposed to improve its effectiveness.
Magic3D [19] and Fantasia3D [4] utilize mesh and DMTet
[40] to disentangle the optimization of geometry and texture.
TextMesh [50] and 3DFuse [38] use depth-conditioned text-
to-image diffusion priors that support geometry-aware tex-
turing. Score debiasing[12] and Perp-Neg [2] study to refine
the text prompts for a better 3D generation. DreamTime [14]
and RED-Diff [24] investigate the timestep scheduling in the
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VSD + Time Scheduling VSD (ProlificDreamer) SDS (DreamFusion)

ESD + Time Scheduling

Figure 5. Qualitative Results. We combine our proposed ESD
with timestep scheduling in DreamTime [14] and compare it against
baseline methods. Prompt: A caramic lion.

score distillation process. HIFA [60] adopts multiple diffu-
sion steps for distillation. Score distillation also works with
auxiliary losses, including CLIP loss [59] and adversarial
loss [5, 39].

6. Evaluation Metrics

In this section, we introduce four information-theoretic met-
rics to numerically evaluate the generated 3D results with a
particular focus on identifying Janus artifacts or mode col-
lapse. The metrics we propose comprehensively cover four
aspects: 1) the relevance with the text prompts, 2) distribu-
tion fitness, 3) rendering quality, and 4) view diversity.

CLIP Distance. We compute the average distance be-
tween rendered images and the text embedding to reflect the
relevance between generated results and the specified text
prompt. Specifically, we render N views from the generated
3D representations, and for each view, we obtain an embed-
ding vector through the image encoder of a CLIP model [53].
In the meantime, we compute the text embedding utilizing
the text encoder. The CLIP distance is computed as the one
minus cosine similarity between the image embeddings and
text embeddings averaged over all views.

Fréchet inception distance (FID). As shown in Sec. 3
and 4, score distillation essentially matches distributions via
KL divergence. Hence, it becomes reasonable to employ
FID to measure the distance between the image distribution
q%(x|y) generated by randomly rendering 3D represen-
tation and the text-conditioned image distribution p(xo|y)
modeled by a diffusion model. We sample [V images using
pre-trained latent diffusion model given text prompts as the
ground truth image dataset, and render N views uniformly
distributed over a unit sphere from the optimized 3D scene
as the generated image dataset. Then standard FID [9] is
computed between these two sets of images. Note that FID
is known to be effective in quantitatively identifying mode
collapse.

Inception Quality and Variety. Thanks to our established
connection with mode collapse, we know that Janus problem
is due to a lack of sample diversity. Inspired by Inception
Score (IS) [36], we utilize entropy-related metrics to reflect
the generated image quality and diversity. We propose In-
ception Quality (IQ) and Inception Variety (IV), formulated
as below:

IQ(B) =E. [H@cls(ylg(07 C))H ’ (10)
1V (0) = H[Ec[pas(ylg(6, c)]], (11)

where p.s(y|x) is a pre-trained classifier. IQ computes the
average entropy of the label logits predicted for all rendered
views, while IV computes the entropy of the averaged label
logits of all rendered views. Intuitively, the smaller IQ means
highly confident classification results on rendered views,
which also indicates better visual quality of generated 3D
assets. In the meanwhile, the higher IV signifies that each
rendered view is likely to have a distinct label prediction,
meaning the 3D creation has higher view diversity. Note
that IV upper bounds IQ due to Jensen inequality. So we
can define Inception Gain IG = (IV — IQ)/IQ, which
characterizes the information gain brought by knowing
where the camera pose is, namely the improvement of
distinguishability among different views.

7. Experiments

Settings. In this section, we empirically validate the effec-
tiveness of our proposal. The chosen prompts are targeted at
objects with clearly defined canonical views, posing a chal-
lenge for existing methods. Our baseline approaches include
SDS (DreamFusion) [31] and VSD (ProlificDreamer) [56],
as well as two methods dedicated to solving Janus problem:
Debiased-SDS [12] and Perp-Neg [2]. For fair compari-
son, all experiments are benchmarked under the open-source
threestudio framework. Geometry refinement [56] is adopted
for all distillation schemes. Please refer to Appendix C for
more implementation details.
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Figure 6. Ablation Studies on A. We investigate the choice of different entropy regularization strength A\. Prompt: Michelangelo-style

statue of dog reading news on a cellphone.

Table 1. Quantitative Comparisons. () means the lower the
better, and (1) means the higher the better.

|CLIP() FID() IQd) IV IG(M) SR
SDS | 0737  291.860 4295 4.8552 0.123 15.00%
VSD | 0725 265141 3.149 35712 0.137 19.17%
ESD | 0714 235915 3.135 4.0314 0327 55.83%

Qualitative Comparison. We present qualitative compar-
isons in Fig. 4. We encourage interested readers to Appendix
D for more results and our project page for videos. It is
clearly shown that our proposed ESD delivers more precise
geometry with the Janus problem alleviated. In compar-
ison, the results presented by SDS and VSD all contain
more or less corrupted geometry with multi-face structures.
Debiased-SDS and Perp-Neg are shown to be effective for
some text prompts, while not so consistent as ESD. Addi-
tionally, we find that ESD can work particularly well when
combined with the time-prioritized scheduling proposed in
DreamTime [14], as shown in Fig. 5. This means ESD is
orthogonal to many other methods and can cooperate with
them to further reduce Janus artifacts.

Quantitative Comparison. With metrics proposed in Sec.
6, we numerically evaluate our method and baselines across
120 text prompts provided in [58]. We additionally involve
Successful generation Rate (SR) based on human evaluation.
The results are presented in Tab. 1. We observe that among
all metrics, ESD reaches the best CLIP score, FID, and
IG. More importantly, ESD achieves the optimal balance
between view quality and diversity as shown by IQ and IV.
Whereas, SDS suffers from low image quality with high IQ
and VSD is limited by insufficient view variety with low
IV. The superior IG of ESD indicates that views inside the
generated scene are distinguishable rather than collapsing to
be the same. We defer the breakdown table for numerical
evaluation on examples in Fig. 4, human evaluation criteria,
and the standard deviation of metrics to Appendix E.

Ablation Studies We conduct ablation studies on the
choice of X (i.e. CFG weights) in Fig. 6. We demonstrate
that A can adjust ESD’s preference toward view- quality or
diversity. When set to one, the produced Janus-free result
albeits with fewer realistic details in the textures. Conversely,

ESD w/ CFG ESD w/ fine-tuned unconditional LoORA

Step = 25k Step = 18k Step = 20k Step = 22k Step = 25k

Figure 7. Ablation on Implementations. The successfully gen-
erated result is obtained via our suggested CFG trick while the
diverged result is yielded by fitting the unconditioned score func-
tion in Eq. 8 via LoORA. Prompt: an elephant skull.

when set to zero, ESD equates to VSD, and the Janus prob-
lem emerges again. We empirically find that choosing A
around 0.5 yields the best result, balancing fine-grained tex-
tures and well-constructed geometry. We also implement
ESD by directly fitting the score function V log ¢? (x;|y)
without camera pose conditioning to validate the suggested
implementation by CFG trick. We show in Fig. 7 that this
optimization scheme is unstable. As training proceeds, the
gradient explodes, and the optimized texture overflows.

8. Conclusion

In this paper, we reveal that existing score distillation meth-
ods degenerate to maximal likelihood seeking on each view
independently, leading to the mode collapse problem. We
identify that re-establishing the entropy term in the varia-
tional objective brings a new update rule, called Entropic
Score Distillation (ESD), which is theoretically equivalent to
adopting classifier-free guidance trick upon variational score
distillation. ESD maximizes the entropy of the rendered
image distribution, encouraging diversity across views and
mitigating the Janus problem.
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