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Abstract

The increasing prevalence of video clips has sparked
growing interest in text-video retrieval. Recent advances
focus on establishing a joint embedding space for text and
video, relying on consistent embedding representations to
compute similarity. However, the text content in existing
datasets is generally short and concise, making it hard to
fully describe the redundant semantics of a video. Corre-
spondingly, a single text embedding may be less expressive
to capture the video embedding and empower the retrieval.
In this study, we propose a new stochastic text modeling
method T-MASS, i.e., text is modeled as a stochastic em-
bedding, to enrich text embedding with a flexible and re-
silient semantic range, yielding a text mass. To be specific,
we introduce a similarity-aware radius module to adapt the
scale of the text mass upon the given text-video pairs. Plus,
we design and develop a support text regularization to fur-
ther control the text mass during the training. The infer-
ence pipeline is also tailored to fully exploit the text mass
for accurate retrieval. Empirical evidence suggests that T-
MASS not only effectively attracts relevant text-video pairs
while distancing irrelevant ones, but also enables the de-
termination of precise text embeddings for relevant pairs.
Our experimental results show a substantial improvement
of T-MASS over baseline (3% ~ 6.3% by R@1). Also, T-
MASS achieves state-of-the-art performance on five bench-
mark datasets, including MSRVTT, LSMDC, DiDeMo, VA-
TEX, and Charades. Code and models are available here.

1. Introduction

Text-video retrieval is to find the most semantically rele-
vant video clip (text) from a candidate pool referring to the
text (video clip) query [3, 5, 7, 39, 43, 57]. Performing an
accurate retrieval is non-trivial due to the divergent char-
acteristics of video and text: videos tend to offer redundant
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Figure 1. Text inside a relevant video is hard to fully describe
the redundant semantics of the video. Correspondingly, single text
embedding may be less expressive to handle the video information
in joint space. We propose a new embedding of text mass with a
resilient semantic range, to better capture rich video clues.

semantic clues [13, 17, 60], inevitably posing challenges for
the feature extraction, while the text, commonly appearing
as short captions, subtitles, and even hashtags, seems to be
semantically limited by comparison to videos [32].

Recognizing the nature of video and text, some prior
works [39, 57] adapt powerful vision-language models
(e.g., CLIP [44]) to the multimodal domain [4] of text and
video. Others learn enhanced video representation through
video-text interaction [17, 32, 48] or temporal modeling [3,
36]. Besides, bridging video and text at a fine granularity
also forms a promising direction [18, 24, 25, 49, 51, 61].
In summary, prevailing text-video retrieval methods are
mainly dedicated to extracting accurate video or text em-
bedding, such as text/video points, for retrieval.

Despite the success of video/text embedding methods,
it is hard to learn a single text embedding to fully cover
all the semantics and visual variations inside a video, since
the text content is usually short and concise, which contains
limited semantics compared with its paired relevant video
(see Fig. 1 rop). This fact exacerbates alignment difficulties,
where text may not adequately express the richness of video
information. Drawing inspiration, we provide a more flex-
ible text modeling approach to capture rich video seman-
tic clues, thus enabling a better alignment between video
and text semantics. We introduce T-MASS, i.e., Text is
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Modeled As a StochStic embedding. Unlike existing meth-
ods, the proposed method no longer treats text as a single
point in the embedding space, but projects it as a “mass”
(see Fig. 1 bottom) to enable a resilient semantic range to
account for the potential misalignment between video and
text embeddings. A straightforward way to implement text
mass can adopt the reprametrization [27] upon the deter-
ministic text embedding given by CLIP. However, learning
such a text mass imposes the following challenges.

First, it is non-trivial to determine the scale of the text
mass. The underlying scale is text-dependent and can even
be dynamic relative to different videos. To this end, we de-
velop a similarity-aware radius module to enable a learnable
scale adaptive to text-video pairs. Second, how to further
regularize and shift the text mass in the joint embedding
space is an open question. Without jointly processing the
whole text mass, we find that solely performing contrastive
learning between sampled stochastic text points and video
points during training brings promising performance. Be-
sides, we locate a support text vector upon the text mass,
taking it as a proxy to simultaneously control the position
and scale of the text mass relative to the query video. We
also reformulate the inference process to fully exploit the
text mass for more effective text-video retrieval. For each
video candidate, we first sample a batch of stochastic text
embedding for the query text and choose the closest one to
the video embedding for the evaluation. Interestingly, we
find that the proposed T-MASS not only bridges the rele-
vant pairs and pushes the irrelevant ones (Fig. 5), compared
with the single-point text representation, but also empowers
a precise text semantics mapping (Fig. 3). We summarize
the contributions of this work as follows.

* This work rethinks the design of text embedding for text-
video retrieval. We propose T-MASS as a new stochastic
modeling approach to enable expressive and flexible text
embedding to better capture video clues and align text and
video semantics in joint space.

» This work provides a representative design of similarity-
aware radius network to encourage the text semantics
alignment, facilitating a resilient and flexible text embed-
ding that can adapt to the video variations.

* This work develops an effective learning strategy upon
stochastic text embedding, specifically, a stochastic sym-
metric cross-entropy learning objective to learn an effec-
tive text mass. Besides, a support text vector as a regular-
ization to further scale and shift the text mass.

* The proposed method improves the baseline by a large
margin (+3% ~ 6.3% at R@1), setting the new state-of-
the-art on five benchmark datasets, including MSRVTT,
LSMDC, DiDeMo, Charades, and VATEX. Extensive
analyses find that T-MASS not only better distances irrel-
evant pairs and attracts relevant pairs, but also enables a
more promising text semantics learning for relevant pairs.

2. Related Work

Text-video Retrieval. JSFusion [58] pioneered the explo-
ration of hierarchical similarities between video and text us-
ing a convolutional decoder, establishing a benchmark for
the task. Transformer [11, 47]-based methods [9, 12, 15,
16, 20, 22, 29] abstract multi-modal data clues via cross at-
tention, resulting in significant performance gains. Recent
advancements leverage CLIP [44] for the semantics extrac-
tion [17, 28, 39, 53, 54, 57, 60], e.g., CLIPAClip [39] dis-
cusses the transferability of pre-trained CLIP model to text-
video retrieval. To solve the domain gap, CLIP-ViP [57]
exploits the video post-pretraining, achieving state-of-the-
art results. Alternatively, Cap4Video [53] harnesses the
power of a pre-trained large model by introducing addi-
tional captions, bringing insight on fully taking advantage
of augmented data. TEACHTEXT [8] empowers the re-
trieval by leveraging multiple text encoders. Besides, Dif-
fusionRet [26] advances by integrating diffusion model into
the text-video retrieval. Additionally, introducing additional
modality, e.g., audio [1, 21, 33, 35, 40], draws increasing at-
tention. The proposed method opts to learn a expressive and
powerful text embedding, achieving substantial improve-
ments without post-pretrain the CLIP with additional video
data. The proposed method can even outperform previous
methods enhanced by post-processing techniques [5, 7].
Text and Video Representation Learning. This work
builds upon CLIP [44] model, attributing to its promis-
ing semantics extraction. Based on CLIP, existing meth-
ods predominantly focus on enhanced video and text repre-
sentations for retrieval [10, 14, 17-19, 23, 30, 34, 42, 59].
TS2-Net [36] models fine-grained temporal visual clues,
showcasing promising performance. X-Pool [17] exploits
text-conditioned feature fusion across frames, delivering
more semantically similar embedding. PIDRo [18] and
ProST [30] model the informative semantic clues of video
and text in a fine-grained manner, achieving encouraging
performances. UATVR [13] innovatively recognizes and
models uncertainties in both modalities. In contrast to
these methods representing text and video embedding with
a common form, T-MASS implements a stochastic text em-
bedding, jointly learning a text mass and a video point in
embedding space. Notably, the proposed method achieves
remarkable performance boost without requiring sophisti-
cated designs on video feature extraction, such as temporal
modeling [3, 31, 36], fine-grained alignment [6, 51, 52], etc.

3. Method
3.1. Preliminaries

We denote the text as ¢ and the raw video clip as v. The
task of text-video retrieval firstly involves learning embed-
ding for text and video in a joint space, yielding t,v € R,
where d represents the feature dimension. A similarity mea-
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Figure 2. Illustration of the proposed text-video retrieval method T-MASS, which adopts dual-branch CLIP [44] (¢, and ¢;) to extract

frame features [f1, ...,

7] and text embedding t. Then a feature fusion module ¢ is employed to produce video embedding v. We develop

a similarity-aware module R to facilitate the reparameterization [27] of the stochastic text embedding t, yielding a text mass in the joint
space. During training, we compute the loss upon v and random sampled t. During evaluation, we collect a group of t and select the one
exhibiting the highest similarity with v. We visualize the learned radius R for relevant/irrelevant pairs. More details are in Section 3.3.

suring function s(t,v), such as cosine similarity, is then
employed to compute relevancy. Given a training dataset
with K different text-video pairs, D = {(tg,v)}F=K, a
widely-used loss function for this task can be a symmetric
cross entropy [41], which minimizes the distance of rele-
vant text-video pairs while maximizes distance of irrelevant
pairs. Both text-to-video (¢ — v) and video-to-text (v — t)
are considered in this approach by

N s(tzyvl) A
£t—)u - N Z 465 T,V )N
=1 1
N s(ti,vi)-A ( )
E'U_)t = N Z es(tj Vi) A

where [V is a collection of text-video pairs, typically rep-
resenting the batch size, and X is a learnable scaling factor.
Text and video embedding, t; and v;/v;, are produced by
delicate feature extractors with learnable parameters. The
overall loss function L is

1
£ce = §(£t4v + ‘Cv%t)- (2)

The loss function reaches zero when all text-video pairs in a
batch is entirely relevant, i.e., s(t;, v;) = 1, and s(t;, v;) =
0, i # j, for all irrelevant pairs. This is non-trivial and
highly depends on the quality of text and video embedding
(t and v). As shown in Fig. 1, in practice, even text-video
pairs that are identified as “relevant” could be not entirely
consistent — video v provides redundant clues, while text ¢
may contain limited semantics. This poses challenges to the
semantics extraction for both modalities.

3.2. Text-Video Representations

Feature Extraction. The extraction of multi-modal seman-
tic embedding has gained much attention [15, 58]. Re-
cent advancement of CLIP [44] in recent text-video retrieval
methods [17, 57], and thus we primarily focus on CLIP-
based methods in this work. Given a video comprising T’
frames, denoted as v = [f1, ..., fr], the widely-used proto-
col is to sample 7" frames and feed them into CLIP, pro-
ducing T” different frame embedding f;, ¢ = 1,...,7". Let
¢, and ¢, denote the CLIP’s image and text encoders. The
feature extraction is given by

fz:(bv(fz)aZ: 17~'~7T/3 t:¢t(t)7 3

where f; € RY. Based on the frame embedding [fi, ..., f7/],
previous works develop various strategies to compute the
final video embedding v for the similarity measurement

:w([flamafT’]at)a 4

where t(-) is the feature fusion module that abstracts the
video semantics through frame-text interaction under dif-
ferent granularities, or relies on temporal modeling, etc.
Despite the promising performance, it seems that finding
a close alignment between t and v is still challenging since
this requires an effective ¢, (-) and v (-) for the video em-
bedding learning, also calls for a powerful ¢ (-) for text em-
bedding determination. This motivates us to re-examine the
text and video embedding as follows.

Motivation.  Existing methods emphasize more on
learning video embedding v, including frame sampling pro-
tocol, feature extraction ¢, (-), and fusion ¢ (-) designs, but
pay less attention to text embedding t. As shown in Sec-
tion 1 and Fig. 1, text ¢ is hard to fully describe the seman-
tics of a video v, which yields t with less expressiveness and
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semantic clues to align with v in joint space. We are mo-
tivated to enhance the text embedding with more resilience
and flexibility. Specifically, rather than using a single point,
text embedding can be associated with a specific semantics
range that is resilient enough to incorporate (or be close to)
the relevant video embedding. This leads us to introduce a
new embedding called text mass, setting it apart from exist-
ing methodologies.

3.3. Proposed Method: T-MASS

Stochastic Text Modeling. In this work, we introduce
T-MASS, i.e., Text is Modeled As a StochaStic representa-
tion. In contrast to prevalent treatments, T-MASS projects
text as a “mass” to encourage expressive and resilient rep-
resentations, jointly learning upon text-video embedding
with distinct forms. Fig. 2 provides the framework of the
proposed T-MASS. Specifically, we adopt reparameteriza-
tion [27] to enable stochastic gradient calculations during
the training. Based on the text embedding t given in Eq. (3),
we introduce stochastic text embedding t, € R? as

ts=t+R-ec,e~P, 5

where € is an auxiliary variable sampled from a prior dis-
tribution, e.g., P = N(0,1). R € R? models the scale
of the text mass and defines its underlying “radius”. Un-
like previous embedding that aims to appropriately adjust
the distance between two points, i.e., t and v, any point that
falls into the text mass is considered as a valid representa-
tion corresponding to the content of text ¢ and can be used
for the similarity calculation, e.g., s(ts, v). By this means,
existing powerful text encoders can be naturally adopted,
and minimum adjustments in implementation is required.

Similarity-Aware Radius Modeling. Directly incorpo-
rating stochastic text embedding in Eq. (5) into the loss L.
in Eq. (2) is challenging. On the one hand, an oversized text
mass (R is too large) might improperly encompass (or im-
properly be close to) less relevant or even irrelevant video
embedding points in the joint space, thus misleading the re-
trieval, On the other hand, too small text mass (R — 0) may
lacks expressiveness to bridge the video. Thereby, it is non-
trivial to manually determine an optimal value for R; rather,
the underlying radius R should adapt to different text-video
pairs. We propose a similarity-aware radius module to learn
proper text mass scaling by jointly taking text t and video
frames [f1, ..., f7] before feature fusion as inputs.

The key idea is to first compute the cosine similarity of
a text-video pair and leverage it as an indicator of the text-
video relationship. For instance, if the text-video pair ex-
hibits relevance, we expect a well-aligned text mass with a
proper radius and position that potentially allows an accu-
rate retrieval, as shown by the red curve in Fig. 3. Reversely,
it is less likely to learn a meaningful mass when they are ir-
relevant, e.g., imprecise text mass (blue curves in Fig. 3).

Ly-norm of R

Irrelevant Text-video Pair
— Relevant Text-video Pair

0 1 2 3 4 5
Training Epochs

Figure 3. Dynamics of R. We plot |R|: for a relevant t-v pair
(130-th in MSRVTT-1K, video on the right) and the query text
with 999 irrelevant videos. T-MASS learns a precise text seman-
tics for the relevant pair (smallest | R |1). This is typically observed
on correctly retrieved pairs. More examples are in supplementary.

Given the embedding t and frame embedding [fy, ..., f7/]
by Eq. (3), we compute the text-video similarity as

Si :5(t7f7)77’: 17"'7Tl7 (6)

based on which we propose a learnable scalar 6 to compute

the radius R = exp(% ZIT:Il S;) where 0 is broadcast to fit
the dimension d. We use an exponential function to scale
the radius further. We observe that such an implementation
has brought an encouraging performance boost, compared
with the unlearnable strategy, i.e., defining R purely upon
similarities values given by Eq. (6). Besides, solely using a
scalar to adjust the radius in a high-dimensional space might
be less flexible. As shown in Fig. 2, we also explore a linear
layer to compute R by

R:exp(SW),S = [Sla"'aST/]v (7)

where W € R”"*4 denotes the learnable weights in the lin-
ear layer. The resulting R will take effect in the stochastic
text embedding calculation as shown in Eq. (5). In Sec-
tion 4.3, we provide the corresponding discussion toward
the design principles of R. See more details in Table 5.
Learning Text Mass in Joint Space. The original loss
function in Eq. (1) between t and v may only take effect
on shifting the text mass without controlling its scale. Since
the text mass is implemented by stochastic text embedding,
we randomly sample a stochastic text embedding ts and use
it to replace the text embedding t in Eq. (1) during train-
ing, so that different points in text mass participate into the
learning. Distinguished from the original symmetric cross-
entropy loss L, we denote this stochastic loss £;. The
overall loss function becomes Ly = Lee + Ls. We show
that such a learning schedule brings notable benefits (e.g.,
> 1.5%+ at R@1). Moreover, we find that specifically reg-
ularizing over t (i.e., using L) during the learning is un-
necessary and can even be harmful. As, compared to tg, t
cannot reflect the context and position of the text mass, thus
focusing on t can lead to a biased text mass learning. In ad-
dition, given that the text mass presents as an irregular vol-
ume in a complex and high-dimensional embedding space,
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learning a limited amount of ts points seems insufficient to
regularize the whole text mass. A straightforward solution
is to introduce KL-divergence to further control the scale.
However, it is challenging to determine an optimal prior.
We propose to identify a support text embedding vector
located at the border of the text mass as a proxy to help
adjust the scale and the shift of the text mass, termed as
support text vector tg,. As shown in Fig. 4, ty,, serves
as a stochastic text embedding sample locating along the
direction from v to t and being placed at the surface of the
text mass. Therefore, pulling v and t,, together or pushing
them away to a large extent can help manipulate the text
mass. We compute tg,, based on t given in Eq. (3), video
embedding v upon Eq. (4), and the radius modeling R as
v—t

top =t
w = T T

R, ®)
based on which we introduce another contrastive loss term
with the same formulation as Eq. (2) but only exchange t
with tep. We denote this regularization as Ly,,. During
training, we not only sample a stochastic text embedding to
compute the contrastive loss with the video, but also con-
stantly pay attention to the support text vector. Our experi-
ment in Section 4.3 shows that such a regularization brings a
remarkable performance boost. The resulting loss function
of the proposed method is given by

Lot = L + aLsupa )]

where « is the support text regularization weight. In Sec-
tion 4.3 and Table 6a, we provide a complete compari-
son of different learning strategies. Besides, the proposed
learning strategy encourages a better alignment for rele-
vant/irrelevant text-video pairs'. See Fig. 5 for more details.

Inference pipeline.  Building upon the proposed
stochastic text representation, we modify the inference
pipeline to take advantage of text mass. For any given
text-video pairs {t,v}, we first extract text and frame fea-
tures, t and [fy, ..., f7/] using Eq. (3). Subsequently, we
conduct M times stochastic sampling upon Eq. (5), produc-
ing {t!,...,t}}. We then select an optimal text embedding
that gives the highest similarity with the video by

t, = arg max s(th,v), i=1,.
ts

M, (10)

where v is computed by the feature fusion module ¢ (-) ac-
cording to Eq. (4). t, is the final text embedding selected
from the text mass for the metric computation. This strat-
egy ensures that text embedding linked to the input text ¢ is
no longer fixed and adaptive to videos, which holds bene-
fits for retrieval by exploring more possibilities of the text

I'See supplementary material for more discussions about stochastic text
embedding and KL-divergence .
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Figure 4. Support text regularization. Besides computing the loss
between the video embedding v and stochastic text embedding ts,
we identify a support text embedding locating along the direction
from v to t and being placed at the surface of the text mass, which
serves as a proxy to enable text mass shifting and scaling.

embedding (especially, the ones that are closer to the video
than the original t). Note that this strategy is applicable for
both text-to-video and video-to-text retrievals.

In summary, we introduce T-MASS, a stochastic text
modeling method for for text-video retrieval. Diverging
from existing methods, T-MASS advances the retrieval by
empowering text embedding with more expressiveness and
flexibility. Besides the encouraging performance, T-MASS
enables a better text-video alignment and text semantics
adaptation. See detailed illustrations and analysis below.

4. Experiment
4.1. Experimental Settings

Datasets and Metrics. We adopt five benchmark datasets
for the evaluation, including (1) MSRVTT [55] that con-
tains 10K video clips, where each has 20 captions. We fol-
low the 1K-A testing split [34]. (2) LSMDC [45] incor-
porating 118081 clips from 202 movies, where each one is
paired with a text description. Following [15, 17], we adopt
the testing data with 1000 videos. (3) DiDeMo [2] con-
sists of 10642 clips and 40543 captions in total. We use the
training/testing data following [26, 39]. (4) Charades [46]
contains 9848 video clips, where each corresponds to a text
description. We adopt the same split protocol as in [33].
(5) VATEX [50] consists of 34,991 video clips, where each
corresponds to multiple text descriptions. We follow the
train-test split of [6]. Recall at rank {1, 5,10} (R@1, R@5,
and R@10), Median Rank (MdR), and Mean Rank (MnR)
are adopted to evaluate the retrieval performance.
Implementation Details. We employ X-Pool [17] as
baseline. Both backbone models of CLIP [44] (both ViT-
B/32 and ViT-B/16) are leveraged for the feature extraction,
following previous methods [17, 57]. We keep the config-
urations the same as X-Pool, such that setting dimension
d = 512, weight decay as 0.2, and dropout as 0.3. For
the training, we set the batch size as 32 for both backbones
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Method MSRVTT Retrieval

LSMDC Retrieval

R@I1T R@51 R@I0F MdR] MnR

R@IT R@51 R@I0f MdR] MnR

CLIP-ViT-B/32

X-Pool [17] 46.9 72.8 82.2 2.0 14.3 25.2 43.7 53.5 8.0 532
DiffusionRet [26] 49.0 75.2 82.7 2.0 12.1 24.4 43.1 543 8.0 40.7
UATVR [13] 47.5 73.9 83.5 2.0 12.3 - - - - -

TEFAL [21] 49.4 75.9 83.9 2.0 12.0 26.8 46.1 56.5 7.0 44.4
CLIP-ViP [57] 50.1 74.8 84.6 1.0 - 25.6 453 54.4 8.0 -
T-MASS (Ours) 50.2 75.3 85.1 1.0 11.9 28.9 48.2 57.6 6.0 433

CLIP-VIT-B/16

X-Pool [17] 48.2 73.7 82.6 2.0 12.7 26.1 46.8 56.7 7.0 473

UATVR [13] 50.8 76.3 85.5 1.0 12.4 - - - - -
CLIP-ViP [57] 54.2 77.2 84.8 1.0 - 29.4 50.6 59.0 5.0 -
T-MASS (Ours) 52.7 77.1 85.6 1.0 10.5 30.3 52.2 61.3 5.0 40.1

Table 1. Text-to-video comparisons on MSRVTT [55] and LSMDC [45]. Bold denotes the best performance. “—": result is unavailable.

DiDeMo Retrieval

VATEX Retrieval

Method

R@l1+ R@51 R@10t MdR| MnR|

R@l1+ R@51% R@10t MdR| MnR|

CLIP-ViT-B/32

X-Pool [17] 44.6 73.2 82.0 2.0 15.4 60.0 90.0 95.0 1.0 3.8
DiffusionRet [26] 46.7 74.7 82.7 2.0 14.3 - - - - -
UATVR [13] 43.1 71.8 82.3 2.0 15.1 61.3 91.0 95.6 1.0 3.3
CLIP-ViP [57] 48.6 77.1 84.4 2.0 - - - - - -
T-MASS (Ours) 50.9 77.2 85.3 1.0 12.1 63.0 92.3 96.4 1.0 3.2
CLIP-ViT-B/16
X-Pool [17] 47.3 74.8 82.8 2.0 14.2 62.6 91.7 96.0 1.0 3.4
UATVR [13] 45.8 73.7 83.3 2.0 13.5 64.5 92.6 96.8 1.0 2.8
CLIP-ViP [57] 50.5 78.4 87.1 1.0 - - - - - -
T-MASS (Ours) 53.3 80.1 87.7 1.0 9.8 65.6 93.9 97.2 1.0 2.7
Table 2. Text-to-video comparisons on DiDeMo [2] and VATEX [50]. Bold denotes the best performance. “—": result is unavailable.
Method R@1 R@5 R@10 MdR MnR Method R@l R@5 R@10 MdR MnR

CLIP-ViT-B/32
CLIP4Clip [39] 427 709 80.6 2.0 11.6
CenterCLIP [60] | 42.8 71.7 82.2 2.0 10.9
X-Pool [17] 444 733 84.0 2.0 9.0
TS2-Net [36] 453  74.1 83.7 2.0 9.2
DiffusionRet [26] | 47.7 73.8 84.5 2.0 8.8
UATVR [13] 46.9 73.8 83.8 2.0 8.6
T-MASS (Ours) | 47.7 78.0 86.3 2.0 8.0
CLIP-ViT-B/16
X-Pool [17] 464 739 84.1 2.0 8.4
TS2-Net [36] 466 759 84.9 2.0 8.9
CenterCLIP [60] | 47.7 75.0 83.3 2.0 10.2
UATVR [13] 48.1 76.3 854 2.0 8.0
T-MASS (Ours) | 509 80.2 88.0 1.0 7.4

Table 3. Video-to-text comparisons on MSRVTT.

and different datasets. We keep the same initial learning
rate of le — 5 to train the feature fusion module (-) and
the proposed similarity-aware radius module R (3e — 5 for
MSRVTT). The CLIP model is fine-tuned with a learning
rate of le — 6. We train the models for 5 epochs with the
AdamW [38] optimizer. Following CLIP, we employ a co-
sine schedule [37] with a warm-up proportion of 0.1. We

CLIP-ViT-B/32
ClipBERT [28] 6.7 17.3 252 320 149.7
CLIPACIip [39] | 99  27.1 36.8 21.0 854

X-Pool [17] 112 283 38.8 20.0 827
T-MASS (Ours) | 142  36.2 483 120 548
CLIP-ViT-B/16
CLIPACIip [39] | 16.0 38.2 485 12.0  54.1

X-Pool [17] 20.7 425 53.5 9.0 47.4
T-MASS (Ours) | 26.7 51.7  63.9 5.0 30.0

Table 4. Text-to-video comparisons on Charades [46].

uniformly sample 12 frames from the video clips upon dif-
ferent datasets. All the frames are resized to 224 x 224. We
perform experiments on an A6000 GPU. We set sampling
trials 7" = 20 during inference. Some methods use larger
batch size and larger frames numbers for different datasets.
We keep it consistent for our method by using batch size as
32 and frame number as 12 for all datasets. More results
and discussions are provided in supplementary.

4.2. Performance Comparison

We compare the text-to-video retrieval performance of T-
MASS with previous methods on five benchmark datasets.
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Radius R MSRVTT Retrieval DiDeMo Retrieval
R@11 R@517 R@I101t MdR] MnR| | R@lT R@57 R@10T MdR| MnR|
w/o R 46.9 72.8 82.2 2.0 14.3 44.6 73.2 82.0 2.0 15.4
exp(% >8) 48.7 74.7 83.7 2.0 12.7 48.0 75.4 85.0 2.0 13.0
exp(% >°8i) 49.2 75.7 84.7 2.0 11.7 49.7 75.8 85.3 2.0 12.6
exp(SW) 49.1 75.7 85.7 2.0 11.9 49.8 78.1 86.0 2.0 11.8

Table 5. Model discussion on similarity-aware radius module design. We perform experiments on MSRVTT and DiDeMo. CLIP-ViT-B/32
is adopted. Notebaly, “w/o R” denotes the baseline of X-Pool [17]. We choose exp(SW) for the final performance comparison.

ts L. L, Ly | R@1 R@5 R@I0 MdR MnR #Trials (M) | R@l R@5 R@10 MdR MnR
X v X X 469 728 82.2 2.0 14.3 w/o sampling | 44.4 724 81.9 2.0 13.1
v/ X 485 748 843 20 123 5 46.8 747  84.0 20 125
A S X 49.1 757 857 20 119 10 50.0 752 @ 84.1 20 123
v X v v/ |52 753 851 1.0 119 20 50.2 753 851 1.0 119

(a) Ablation study of losses and text embedding on MSRVTT [55].

(b) Discussion of stochastic sampling trails on MSRVTT-1K.

Table 6. Discussion of the text representation, learning objectives, and number of trials. ts denotes stochastic embedding, relative to text
embedding t. L. denotes symmetric cross entropy loss upon Eq. (2). £, computes upon t, and v. L, denotes support text regularization.

We find that T-MASS not only improves the baseline X-
Pool by a large margin on all metrics, but also achieves
state-of-the-art performance compared with most recent
methods. As shown in Table 1, T-MASS improves improves
CLIP-ViP 3.3% at R@1 on LSMDC ViT-B/32 model. In
Table 2, T-MASS improves X-Pool by 6.0% at R@1 on
DiDeMo upon ViT-b/16. By observation, the proposed
method shows a consistent performance boost on versa-
tile datasets and different scales of model size. There ex-
ists one scenario under MSRVTT and ViT-B/16 that CLIP-
ViT works better than T-MASS. Note that besides the
retrieval data, CLIP-ViP also adopts additional datasets,
e.g., WebVid-2.5M [3] and HD-VILA-100M [56] to further
empower the post-pretraining, potentially better adapt the
CLIP. Employing more data especially benefits the larger
model of ViT-B/16. T-MASS outperforms CLIP-ViP on
other datasets and backbones. To save the computational
cost, this work does not include the additional multi-modal
data. As shown Table 3, T-MASS also enables the best per-
formance for video-to-text retrieval. CLIP-ViP is skipped
as the result is unavailable. In summary, since T-MASS em-
powers text embedding with more flexibility, it potentially
explores more possibilities in text-video alignment. We pro-
vide a more in-depth analysis in the following.

4.3. Model Discussion

Similarity-Aware Radius. In Table 5, we provide three op-
tions to implement the similarity-aware radius module, as
introduced in Section 3.3. Specifically, exp(= > S;) de-
notes only using cosine similarity to implement the radius,
which is unlearnable. We further incorporate a learnable
scalar 6, resulting exp(% > S;), or using a linear layer,
yielding exp(SW). Note that “w/o R” denotes the base-
line of X-Pool [17]. The design of the R brings a clear per-
formance boost compared with the baseline, i.e., > 1.5%+
at R@1 on MSRVTT and > 3%+ at R@1 on DiDeMo.
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This indicates that representing text as a semantics range
can indeed further benefit the retrieval on these two datasets,
compared with t. Besides, using a learnable module to
can further boost the performance as the expressiveness and
flexibility of the mass improve. The design of exp(SW)
works best in most cases (especially on DiDeMo), owning
to a stronger modeling capacity. Interestingly, only using a
learnable scalar also enables strong performance, indicating
that our approach is not sensitive to the network design of
R. We adopt exp(SW) in our final model.

Ablation Study. We provide an ablation study on
MSRVTT in terms of text representation and learning ob-
jectives in Table 6a. Firstly, we show the baseline of X-
Pool (top row). Based on X-Pool, we substitute text em-
bedding t with t, and correspondingly add a L, obtaining
1.6% boost at R@ 1. This shows the superiority of t, over t.
We further evaluate the effect of the original loss L., under
the regime of the stochastic embedding ts. By comparison,
highlighting the text embedding t with L., undermines the
performance (2nd and 3rd rows of Table 6a). This is be-
cause further regularizing t can lead to a biased text mass
learning, misleading the retrieval. Rather, we adopt a sup-
port text vector t,, as a proxy to control the scale and shift
of the text mass. Since tg,, locates at the surface of the text
mass upon Eq. (8), as shown in Fig. 4, controlling support
text embedding can affect the whole text mass. We adopt
the last setting (the 4th row in Table 6a) in our final model.

Inference Discussion. We discuss the number of sam-
pling trials for inference in Table 6b. For “w/o sampling”,
we still use the original t during the metric computation.
This gives a sub-optimal performance as there is no ex-
ploitation of the text mass. As the number of trails M in-
creases from 5 to 20, the proposed method enables better
performance by exploiting more possibilities of the stochas-
tic embedding t corresponding to the semantics of the raw
text t. The number of 5 may not be enough to explore the
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Figure 5. Analysis of stochastic text embedding ts, text embedding t, and video embedding v in a joint space. Left: Cosine similarities
of irrelevant text-video pairs in embedding space. Right: Cross entropy values of relevant text-video pairs in embedding space. The
proposed stochastic text embedding allows a lower similarity for irrelevant pairs and enables lower cross entropy loss for relevant pairs.
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Figure 6. Discussion of support text regularization weight a. We
compare T-MASS with baseline X-Pool [17] on MSRVTT [55].

text mass, leading to a sub-optimal result. Note that the per-
formance tends to be stable from M = 10 to M = 20.
We choose 20 in our final model, considering the trade-off
between the performance and computational cost.

Further Analysis on T-MASS. We further analyze the
behavior of the T-MASS by observing the stochastic text
embedding t,, text embedding t, and video embedding v
in the same joint space. As shown in Fig. 5 left, we col-
lect the text-video cosine similarity values for all irrelevant
pairs in MSRVTT-1K, comparing between {t¢ v.s. v/} and
{t% v.s. v7}, where i # j. For each query text, we plot sim-
ilarity values to all irrelevant videos (i.e., 999) and highlight
the maximum value (red and blue curves). The smaller sim-
ilarity values are, the better irrelevant text-video pairs are
aligned and thus potentially benefits the retrieval. By obser-
vation, using stochastic embedding ts gives a better result
than t (red curve is lower). This indicates that the irrelevant
t and v can be close to each other, which may impose more
risks for mismatching. We also visualize the cross-entropy
loss values of relevant text-video pairs in Fig. 5 right. By
average, the proposed t4 enables lower entropy, which re-
flects higher similarities for relevant ¢-v pairs, ensuring a
more promising and accurate retrieval. In summary, both
comparisons (Fig. 5 left and right) show that T-MASS in-
deed enables a better text-video embedding alignment.

Hyperparameter Discussion. Fig. 6 discusses the
effect of the support text regularization. Retrieval
performance under different penalties, such as a =
{0.5,0.8,1.0,1.2,1.5} are presented. The performance of

@1 R@1 4. R@5 . R@10
g X-Pool T-MASS (Ours)
D, 35° 45-
x 14
(—>‘S 30- 40-
12-
2 25- 35-
=
i
10 12 15 18 21 24 20 12 15 18 21 24 30 12 15 18 21 24

#Frames #Frames #Frames

Figure 7. Performance boost under different #frames (7”). We
compare T-MASS with the baseline X-Pool [17] on Charades [46].

X-Pool is provided as a reference. We achieve the best
performance at « = 1.2. We also discuss the effect of
the #frames on Charades in Fig. 7. Specifically, we report
performance with 77 = {12,15,18,21,24}. T-MASS en-
ables a notable performance boost under different 7" values.
Owning to the text mass learning, this method demonstrates
robustness to different configurations of input videos.

5. Conclusions

This work studied the text-video retrieval task by drawing
attention to the text side — text is hard to fully describe the
semantics of a video, implying that text embedding may
not be expressive enough to capture or align to the video —
based on which we opted to enrich the text embedding with
more flexibility and resilience. We introduced T-MASS,
where text is modeled as a stochastic embedding, facilitat-
ing joint learning of the text mass and video points. Our
method incorporated similarity-aware radius modeling and
a support text vector as regularization to better align rele-
vant/irrelevant text-video pairs and encourage text seman-
tics determination. Experiments on five datasets demon-
strated that T-MASS achieved state-of-the-art performance.
We hope this work will inspire future endeavors from the
perspective of text in advancing text-video retrieval.
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