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Abstract

In this paper, we propose an accurate post-training quan-
tization framework of diffusion models (APQ-DM) for effi-
cient image generation. Conventional quantization frame-
works learn shared quantization functions for tensor dis-
cretization regardless of the generation timesteps in diffusion
models, while the activation distribution differs significantly
across various timesteps. Meanwhile, the calibration im-
ages are acquired in random timesteps which fail to provide
sufficient information for generalizable quantization func-
tion learning. Both issues cause sizable quantization errors
with obvious image generation performance degradation.
On the contrary, we design distribution-aware quantization
functions for activation discretization in different timesteps
and search the optimal timesteps for informative calibra-
tion image generation, so that our quantized diffusion model
can reduce the discretization errors with negligible computa-
tional overhead. Specifically, we partition various timestep
quantization functions into different groups according to the
importance weights, which are optimized by differentiable
search algorithms. We also extend structural risk minimiza-
tion principle for informative calibration image generation
to enhance the generalization ability in the deployment of
quantized diffusion model. Extensive experimental results
show that our method outperforms the state-of-the-art post-
training quantization of diffusion model by a sizable margin
with similar computational cost1.

1. Introduction
Denoising diffusion generative models [11, 32] have
achieved outstanding performance in a wide variety of com-
puter vision tasks such as image edition [2, 28], style transfor-
mation [34, 38], image super-resolution [18, 30] and many

*Corresponding author.
1Code is available at https://github.com/ChangyuanWang17/APQ-DM

Figure 1. (a) Existing methods leverage shared quantization for
activation discretization across different timesteps with significant
quantization errors, while we divide timesteps into groups with
specific rounding functions for each partition. (b) Conventional
methods construct calibration set by randomly image selecting with
ineffective supervision, while we actively sample timesteps based
on the structural risk minimization (SRM) principle.

others. Compared with the generative adversarial networks
(GAN), diffusion models obtained recovered contents with
better quality and diversity on most downstream tasks. How-
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ever, diffusion models usually require hundreds of noise
evaluation steps to generate high-quality images from Gaus-
sian noises by neural networks with millions of parameters,
and the numerous forward passes in network inference re-
sult in heavy computation burden. Therefore, designing
lightweight denoising process for diffusion models is highly
demanded for flexible deployment in practical applications
with limited resources such as mobile phones and robots.

To accelerate the generation process of diffusion mod-
els, recent studies made significant efforts in decreasing the
sampling times of image denoising process [3, 14, 33] and
reducing the network complexity in noise estimation of each
step [19, 20, 31]. The former removes redundant steps in
the reverse process of diffusion, and the latter extends the
network compression techniques to noise estimation such as
pruning [12, 40] and quantization [13, 17] for acceleration.
We focus on the latter by quantizing the noise estimation
networks with integer arithmetic inference. Due to the in-
tractability of the training data and the unbearable training
cost of diffusion models to fully optimize quantized net-
work parameters, the post-training quantization framework
for the pre-trained full-precision decoders is leveraged that
only learns the rounding function parameters. Nevertheless,
conventional data-free post-training quantization methods
[5, 42] learn a shared layer-wise rounding function for all
generation timesteps where the activation distribution varies
obviously in diffusion models, and the calibration images
are generated in random timesteps which fails to provide
sufficient information to acquire generalizable quantization
function. Consequently, both the inaccurate quantization
functions and uninformative calibration images lead to signif-
icant quantization errors in noise estimation process, which
degrades the synthesis performance by a sizable margin.

In this paper, we present an accurate post-training quanti-
zation framework for diffusion models in order to achieve
efficient image generation. Different from existing methods
that leverage shared layer-wise quantization functions for
all timesteps and synthesizing calibration images in random
timesteps for training, we partition timesteps into different
groups to impose specific rounding functions for each group
and sampling the optimal timesteps to generate informative
calibrate images for quantization parameter learning. There-
fore, the significant quantization errors of noise estimation in
diffusion model deployment can be reduced with only negli-
gible computation overhead. More specifically, we employ a
differentiable search strategy to acquire the optimal group
assignment for different generation timesteps, and learns in-
dividual rounding functions for each group with minimized
discretization errors. For the differentiable search, the ac-
tivations quantized by discretization functions in different
groups are summed with learnable importance weights. We
also generalize the structural risk minimization (SRM) princi-
ple for timestep selection to generate informative calibration

images, where the entropy of rounding function weights in
differentiable search and the sampling times of the timestep
are considered as the criteria based on our formulation. Fig-
ure 1 demonstrates the comparison between our method and
conventional data-free post-training quantization framework
for diffusion models. Extensive experimental results on
unconditioned synthesis and conditional image generation
across various network architectures clearly demonstrate that
our method sizably increases the quality of the generated
images with only negligible computational complexity. Our
contributions can be summarized as follows:
• We propose an accurate and efficient post-training quan-

tization framework for pre-trained diffusion models that
preserve the generation performance in image generation
with 6-bit weights and activations.

• We present the distribution-aware quantization and activate
timestep selection function to significantly reduce quanti-
zation errors across generation timesteps and search the
representative calibration images according to structural
risk minimization principle, so that the rounding functions
can be optimized with more informative supervision.

• We conduct extensive experiments on a wide variety of
datasets for image generation, and the results clearly
demonstrate the superiority of the presented method.

2. Related Work
Efficient diffusion models: Diffusion models achieve more
satisfying quality and diversity in image generation com-
pared with GANs, while the generation efficiency is signifi-
cantly decreased due to the iterative noise evaluation process
with long timesteps. The denoising diffusion probabilistic
model (DDPM) [11] leverages a forward pass for noise per-
turbation and a reverse process for image denoising. Existing
methods mainly focus on leveraging a shorter sampling path
without sizable performance degradation, which can be di-
vided into two categories including convergence speedup
and sampling path selection. Convergence speedup methods
aim to discretize the stochastic differential equations (SDE)
or the ordinary differential equations (ODE) with minimized
discretization errors. Song et al. [32] modeled the diffusion
model with a non-Markov process that considers the original
images for noise perturbation, where the convergence for im-
age generation speeds up sizably. Bao et al. [3] formulated
an analytic form of variance and KL divergence based on a
pre-trained score-based model that simultaneously enhanced
the log-likelihood and the generation speed. Sampling path
selection usually chooses partial timesteps in the denoising
process regarding the learning objectives. Watson et al. [35]
searched the best K sampling timesteps for noise evaluation
via dynamic programming, where the goal was to maximize
the evidence lower bound (ELBO) in the reverse process.
Due to the inconsistent performance between the training
ELBO and the generation quality, they further presented
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Figure 2. The overall pipeline of our method. The calibration images are generated according to the selected timesteps, and activations
in the pre-trained diffusion models are parallelly quantized by rounding functions of all groups. The output feature maps are acquired by
adding the quantized value with the importance weights, where the quantization parameters and the importance weights are jointly optimized.
The importance weight entropy and the sampling times are considered in the timestep selection criteria to decide the optimal timestep for
calibration image generation in the next round.

Kernel Inception Distance (KID) [36] as the optimization
objective to differentiably search the sampling timesteps. In
this paper, we aim to reduce the complexity of single-step
denoising process by quantization, which is orthogonal to
the acceleration techniques of sampling path shortening.

Network quantization: Network quantization has
aroused extensive interest in computer vision due to the
significant reduction in storage and computational cost, as
the full-precision variables are substituted by quantized val-
ues and the multiply-add (MAC) operations are replaced
by integer arithmetics. Quantization-aware training (QAT)
[6, 24] finetunes the quantized network with training dataset
of full-precision models. Due to the inaccessibility of the
full training set and the extremely high training cost, post-
training quantization (PTQ) [10, 21, 25, 26] that optimizes
the rounding functions with a small calibration set is more
practical in realistic applications. Choukroun et al. [7]
minimized the l2 distance between the quantized and full-
precision tensors to avoid obvious task performance degra-
dation, and Zhao et al. [41] duplicated the channels with
outliers and halved the value so that the clipping loss could
be reduced without increasing the rounding errors. Liu et
al. [25] preserved the relative ranking orders of the self-
attention in vision transformers to prevent information loss
in post-training quantization, and explored mixed-precision
quantization strategy according to the nuclear norm of atten-
tion map and features. Zero-shot PTQ further extends the
limits that efficiently quantize neural networks without any
real image data. Cai et al. [5] optimized the pixel values
of the generated images to enforce the statistics of sample
batches to mimic the batch normalization (BN) layers in
the full-precision networks. Li et al. [22] further extended
PTQ framework to transformer architectures by diversifying
the self-attention of different patches with patch similarity

metrics. As Shang et al. [31] and Li et al. [20] observed,
different activation distribution across timesteps and the ef-
fectiveness change of calibration images acquired in various
timesteps amplify the quantization errors in existing methods.
To avoid the overfitting of the step-wise quantization caused
by limited calibration samples, we present the distribution-
aware quantization for diffusion models across timesteps
with significantly reduced learnable parameters. Meanwhile,
different from [31] that manually assigned the timestep index
for calibration generation, we generalize the structural risk
minimization principle to discover the optimal timesteps.

3. Approach

In this section, we first introduce the preliminaries of post-
training quantization for diffusion models and then detail the
distribution-aware quantization across generation timesteps
with the differentiable search framework. Finally, we demon-
strate the timestep selection for calibration image generation
according to the structural risk minimization principle.

3.1. Network Quantization

Diffusion models leverage a forward pass to impose noise
on images and a reverse pass to transform Gaussian noise
into an image for generation. Denoting the real data as x0

and the latent image at the tth step as xt, the probability of
the forward process can be represented as follows:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI), (1)

where βt means the variance schedule at the tth step that
indicates imposed Gaussian noise to the latent image. When
the total number of forward steps denoted as T becomes
large enough, the latent image xT can be regarded as the
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standard Gaussian noise. We leverage an approximated con-
dition distribution pθ(xt−1|xt) to generate the latent image
in reverse process due to the intractability of true distribution
q(xt−1|xt), where the approximated distribution is parame-
terized by neural networks with weight θ:

pθ(xt−1|xt) = N (xt−1|µθ,t(xt),Σθ,t(xt)). (2)

The training process of diffusion model aims to minimize
the negative log-likelihood with the evidence lower bound
optimization in variational inference:

LV LB = Eq(x0:T )[log
q(x1:T |x0)

pθ(x0:T )
] ⩾ −Eq(x0) log pθ(x0).

(3)
In the practical applications, iterative noise estimation pro-
cess is implemented with the diffusion model for content
generation, and the heavy computational cost of the reverse
phase disables the deployment in resource-constrained de-
vices such as mobile phones and robots. To accelerate the
denoising process for each reverse step, post-training quanti-
zation leverages a small calibration set to learn the rounding
function parameters for weights and activations of the de-
coder, where the quantization function can be represented as
follows:

x̂ = s · Φ([x/s] , zmin, zmax), (4)

where x and x̂ represent real-valued and quantized matrix
respectively. [·] means the rounding function to the nearest
integer and Φ is the clipping operation that regularizes the
element into the range from zmin to zmax. The quantization
scaling parameter s indicates the interval between adjacent
rounding points. As empirically demonstrated in [31], the
activation distribution varies significantly across different
timesteps during the reverse process, and the shared rounding
functions usually cause severe quantization errors for image
generation. Moreover, randomly selecting the timestep to
generate latent images for calibration set construction fails to
provide sufficient information for generalizable quantization
function learning.

3.2. Distribution-aware Quantization for Diverse
Activation Distribution

Since the activation distribution changes significantly across
timesteps, discretizing the full-precision intermediate fea-
tures in similar data distribution with the same quantization
functions can reduce the quantization errors. We first de-
scribe the distribution-aware quantization scheme and then
illustrate the differentiable group assignment of timesteps.

Shared quantization functions may cause large clipping
errors for widely distributed activations and rounding errors
for narrowly distributed ones. Directly assigning specific
rounding functions for network activations in each timestep
leads to overfitting in optimization because of the limited cal-
ibration samples, and quantizing activations in the timestep

where optimal quantization range is similar with the same
rounding functions can achieve better trade-off between the
quantization accuracy and rounding function generalizability.
Assuming partitioning all T timesteps into C groups, the
quantization strategy can be written in the following:

x̂ = sg(i) · Φ(
[
x/sg(i)

]
, z

g(i)
min, z

g(i)
max), (5)

where g(i) represents the assigned group for activations in
the ith timestep. Meanwhile, sg(i), z

g(i)
min and z

g(i)
max respec-

tively stand for scale parameters, the lower bound and the up-
per bound of quantization for activations in the ith timestep.
Assigning the optimal group indexes for different timesteps
is critical in distribution-aware quantization to reduce the
quantization errors without obvious computation overhead.
Since enumerating assignment permutation is NP-hard to
find the optimal solution, we extend the differentiable search
framework to efficiently partition timesteps with minimal
quantization errors. In the differentiable search, the latent
images are quantized by all quantization functions, whose
output values are summed with learnable importance weights
to form the input for the next layer in the diffusion model:

x̂ =

G∑
g=1

σgsg · Φ([x/sg] , zgmin, z
g
max), (6)

where σg means the importance weight of the quantiza-
tion function for the cth group with the normalization∑G

g=1 σg = 1. When the training process completes, the
rounding function with the largest importance weight is se-
lected to be the search results for group-wise quantization.
Despite the noise estimation loss of diffusion models, we
also enforce the importance weights to approach zero or
one by minimizing the entropy to avoid discretization er-
rors in rounding function selection. The overall optimiza-
tion objective J is written as follows, where we denote
ϵθ(

√
αtx0 +

√
1− αtϵ, t) as ϵθ for simplicity:

min
t,x0,ϵ

J = Jd + λJe = ||ϵ− ϵθ||22 + λ

G∑
g=1

−σt
g log σ

t
g, (7)

where Jd and Je respectively represent the simplified
variational lower bound of diffusion model objective and the
discretization minimization loss in differentiable search, and
the hyperparameter λ balances the importance of different
terms. σt

g demonstrates the importance weights of the quan-
tization function for the gth group in the tth timestep. The
noise ϵ from standard Gaussian distribution is approximated
by the predicted noise ϵθ in the optimization objective. The
diffusion parameter αt =

∏t
i−1 1− βi controls the strength

of noise in diffusion. We jointly update the parameters in
quantization functions and the importance weights until con-
vergence or achieving the maximal iteration steps, and the
discretized hypernetwork is directly employed to generate
images efficiently.
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3.3. TimeStep Selection for Calibration Generation

The pipeline of post-training quantization for iterative re-
verse process in diffusion models differs significantly from
that in conventional vision models. Leveraging latent im-
ages in all timesteps leads to unbearable training cost for
quantization function learning, and latent images in adjacent
timesteps can only offer redundant information for param-
eter optimization. On the contrary, randomly select part of
the timesteps usually fails to provide sufficient supervision
that is representative to demonstrate the real distribution of
the latent images. Therefore, it is desirable to actively sam-
ple the timesteps to generate latent images for quantization
parameter learning with effective guidance. We generate rep-
resentative samples by structural risk minimization, which
minimize the distance between selected and real distribution.
We first introduce the extension of SRM principle to active
timestep selection, and then formulate the selection criteria
that can be feasibly computed.

Structural risk minimization principle minimizes the up-
per bound of the true risk on unseen data distribution, where
the bound can be written as follows for a dataset containing
n samples with the probability at least 1− δ[4]:

E(J(x)) ⩽ E(J(x)) + 2Rn(F) +

√
ln 1/δ

n
, (8)

where E(J(x)) and E(J(x)) respectively illustrate the true
expectation of the risk J for real data distribution x and
the empirical expectation of that for sampled data from x,
and Rn(F) is the Rademacher complexity over the function
class F . The SRM principle requires the data to be sampled
from i.i.d. distribution, while the latent images in selected
timesteps should be more informative and representative.
Therefore, we rewrite the SRM principle in the following
way, where the detailed formulation is in the supplementary:

E(J) ⩽ ES(J) +MMD(p(X), p(Xs)) +R0, (9)

where we omit the data distribution x for simplicity. ES(J)
denotes the empirical risk of the latent images of selected
timesteps for noise estimation, and R0 demonstrates the
complexity of the diffusion model in the reverse process. X
and Xs stand for the distribution of latent images generated
in all timesteps and the selected ones. The maximal mean
discrepancy between two distributions p(X) and p(Xs) is
represented as MMD(p(X), p(Xs)), which demonstrates
the generalization ability of the calibration sets for quan-
tization learning. The first criteria acquired by worst-case
empirical risk of sampled latent images is formulated as
follows for timesteps selection :

min
t,xt

ES(J) =
∑
xt∈S

Jd + λJe, (10)

where S represents the images selected in the calibration set,
and J is the optimization objective defined in (7). This for-

mula aims to train the highly quantified diffusion model with
the constructed calibration sets. Since the original latent xT

can be regarded as the standard Gaussian noise without bias,
the objective Jd does not affect the worst-case empirical risk
with different timesteps. The variance of Je influences the
worst-case empirical risk across timesteps, because the en-
tropy of the importance weights of distribution-aware quan-
tization functions changes with the timesteps. Therefore, the
criteria s1 from the empirical risk minimization can be trans-
formed to selecting the timestep with the highest entropy of
importance weights as s1 =

∑G
g=1 −σt

g log σ
t
g .

Meanwhile, The definition of maximal mean dis-
crepancy can be written as follows, where we denote
MMD(p(X), p(Xs)) as M for simplicity:

min
t

M = sup || 1

|U |
∑
xt∈U

ϵθ −
1

|S|
∑
xt∈S

ϵθ||

=
φ

Nt + 1
∝ 1

Nt + 1
,

(11)

where U means the full set containing all original latent and
timesteps for calibrating image selection, and | · | represents
the number of elements in the set. φ is a constant in timestep
sampling and Nt denotes the number of sampling times for
the tth timestep in calibration set construction. Because the
estimated noise of the samples in the full set is intractable,
we utilize the number of sampling times to optimize the max-
imal mean discrepancy based on upper confidence bound
(UCB) principle [1] which achieves exploitation-exploration
trade-off when sampling. A detailed derivation of the for-
mula (11) can be found in the supplementary material. For
the timestep when we sample a large number of latent images
for calibration set construction, the maximal mean discrep-
ancy becomes low as we acquire sufficient information of the
latent image distribution in this timestep. Therefore, we ex-
plore latent images in the timestep with few sampling times
to further minimize the maximal mean discrepancy with high
marginal benefits. The criteria s2 from the maximal mean
discrepancy is designed as s2 = 1/(Nt + 1). The overall
timestep selection criteria can be written as follows:

max
t

s = s1 + ηs2 =

G∑
g=1

−σt
g log σ

t
g +

η

Nt + 1
, (12)

where η is a hyperparameter to balance the importance of
empirical risk and maximal mean discrepancy. The overall
pipeline of our method is depicted in Figure 2. With the op-
timally selected timesteps, the generated calibration images
can provide effective supervision for quantization function
learning, which can be well generalized in deployment.

4. Experiments

In this section, we first introduce the implementation details
of our method. We then conduct ablation studies to evaluate
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Bitwidth Group C-Error G-Error IS↑ FID↓

W8A8

1 1.16 1.22 8.93 5.32
4 0.87 0.93 8.97 4.73
8 0.79 0.82 9.07 4.24

16 0.75 0.86 8.98 4.29

W6A6

1 1.92 2.03 8.82 9.73
4 1.88 1.76 8.92 7.10
8 1.57 1.68 9.06 6.57

16 1.52 1.74 9.24 6.77

Table 1. Effects of the number of timestep partitions in the
distribution-aware quantization. C-Error and G-Error depict the
quantization errors of activations in calibration and generation re-
spectively.

the effectiveness of the distribution-aware quantization and
the optimal timestep selection for calibration image gener-
ation. Meanwhile, we visualize the importance evolution
during the differentiable search and analyze the influence of
hyperparameters on generation quality. Finally, we compare
our method with the state-of-the-art post-training quantiza-
tion frameworks in diffusion models to show our superiority.

4.1. Implementation Details

We utilize the diffusion frameworks for post-training quan-
tization including DDIM [32] and LDMs [29] with their
pre-trained weights, which require 100 iterative denoising
timesteps for image generation in most experiments. We set
the bitwidth of quantized weight and activation to 6 and 8
to evaluate our method in different quality-efficiency trade-
offs and utilized the uniform quantization scheme where the
interval between adjacent rounding points was equal. For
distribution-aware quantization across different timesteps,
we partitioned all timesteps into eight groups in most exper-
iments. We followed the initialization of the quantization
function parameters in [20] for the baseline methods and
our APQ-DM, where we minimized the lp distance [27, 37]
between the full-precision and quantized activations to opti-
mize the value range for clipping. The hyperparameters λ in
the objective of differentiable search and η in the timestep
selection criteria were set to 0.8 and 1.5 respectively.

For the parameter learning in differentiable search, we
generated 1024 images for hyper-network learning where
the batchsize was assigned with 64 for calibration set con-
struction. The learning rate was initialized to 3e−3 and 5e−3

for 6 and 8-bit diffusion models and ended up with 1e−5 for
all bitwidth settings with 0.05 decaying strategy. The quanti-
zation function parameters and the importance weights were
jointly updated for 10 epochs in the differentiable search,
and the acquired distribution-aware quantization function
was directly employed for image generation.

4.2. Ablation Study

In order to investigate the influence of the distribution-
aware quantization for network activations across different

Method Bitwidth
Size of Calibration Set

128 256 512 1024

Random
W8A8 5.72 5.64 5.34 5.41

W6A6 11.65 10.12 9.18 8.92

Heuristic
W8A8 5.75 5.56 5.27 5.21

W6A6 12.26 10.19 9.03 8.83

Active
W8A8 5.99 4.46 4.49 4.24

W6A6 12.61 11.73 7.83 6.57

Table 2. Different timestep sampling strategies for calibration set
construction across various sizes of calibration images. WBAB
depicts the weights and activations are quantized to B-bit.
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Figure 3. (a) The evolution of branch importance weights during
the differentiable search. (b) The generation quality w.r.t. different
hyperparameters λ and η.

timesteps, we vary the number of groups with different trade-
offs between quantization accuracy and rounding function
generalizability. To show the effectiveness of our active
timestep selection for calibration set generation, we compare
our strategy with various sampling techniques. Meanwhile,
we modified the hyperparameter λ and η to demonstrate the
effect of the discretization loss in rounding function selection
and the maximal mean discrepancy in timestep selection cri-
teria. All experiments in the ablation study were conducted
with the 32 × 32 cifar-10 dataset and the DDIM diffusion
framework.

Performance w.r.t. the number of timestep groups:
Dividing the timesteps into more groups can significantly
reduce the clipping and rounding errors for differently dis-
tributed activations in quantization function learning, while
may resulting in the rounding function overfitting due to the
limited calibration samples and large-scale learnable param-
eters. Table 1 illustrates the quantization errors, Inception
Score (IS) and FID score for our method that partitions the
timesteps into different numbers of groups. Observing the
FID and IS for different group partition settings, we conclude
that dividing the timesteps into several groups outperforms
both the shared quantization policy and the step-wise round-
ing functions. Therefore, we assign the number of groups
for the timestep partition to 8 in the rest of experiments
to achieve the optimal trade-off between the quantization
accuracy and rounding function generalizability.
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Method Bitwidth
Cifar-10 CelebA LSUN-Bedroom LSUN-Church

IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓
Baseline FP 9.07 4.23 4.37 2.61 6.49 13.82 2.45 6.39 9.45 2.76 10.98 16.16

LSQ

W8A8

8.74 13.78 6.93 2.29 15.02 15.99 2.13 16.95 18.85 2.58 28.49 30.95

PTQ4DM 8.82 5.69 4.42 2.43 6.44 14.15 2.23 7.48 12.42 2.76 10.98 17.28

Q-Diffusion 8.87 4.78 4.49 2.41 6.60 14.19 2.27 7.04 12.24 2.72 12.72 16.96

APQ-DM 9.07 4.24 4.37 2.58 6.07 13.09 2.55 6.46 11.82 2.84 9.04 16.74
LSQ

W6A6

8.34 35.96 37.04 1.94 78.37 85.04 1.68 122.45 126.24 1.87 131.78 140.39

PTQ4DM 8.72 11.28 6.92 2.13 24.96 20.95 2.11 16.85 19.65 2.48 32.85 36.74

Q-Diffusion 8.76 9.19 5.80 2.16 23.37 19.83 2.09 17.57 18.74 2.52 33.77 35.27

APQ-DM 9.06 6.57 4.71 2.30 16.86 17.85 2.30 15.72 17.24 2.63 24.75 29.24

Table 3. Comparisons with the state-of-the-arts data-free post-training quantization methods on unconditional image generation for DDIM
diffusion models across various datasets and bitwidth setting.

Performance w.r.t. different timestep sampling strate-
gies for calibration set construction: We compare our
active timestep sampling strategy for calibration set gen-
eration with random and heuristic sampling policies [31].
Random sampling assigns an integer number drawn from
uniform distribution from zero to the maximal time steps T ,
and heuristic sampling determines the timestep from a Gaus-
sian distribution N (µ, T

2 ) where µ is less than T
2 . Table 2

shows the generation quality for different timestep sampling
methods across various sizes of the calibration set. Our ac-
tive sampling strategy outperforms the random and heuristic
sampling policies by a large margin, and the advantage is
more obvious for calibration sets with small sizes because in-
formative samples are extremely important for post-training
quantization in the scenario without sufficient images.

Visualization of importance weight in differentiable
search: Figure 3a depicts the evolution of importance
weights during the differentiable search for group assign-
ment, where different colors represent disparate groups. At
the early stage of the differentiable search, the differences
between importance weights are not obvious because of in-
sufficient calibration images. When the network gradually
converges, the principal impacts on the performance result
from the quantization functions with different rounding and
clipping errors and differentiate group assignments between
different data distributions.

Performance w.r.t. hyperparameters λ and η: The hy-
perparameter λ controls the importance of the discretization
loss in distribution-aware quantization function in the objec-
tive of differentiable search, and η balances the empirical risk
and the maximal mean discrepancy in the timestep selection.
Figure 3b depicts the FID for different hyperparameter set-
tings, where the medium value for both parameters achieves
the highest generation quality. The model performance is
more sensitive to the hyperparameter λ because the impor-
tance weights of quantization functions in different groups
usually have similar distribution as one-hot vector, and slight
change to λ leads to large perturbation to the overall objec-
tive in differentiable search due to the logarithm.

4.3. Comparison with the State-of-the-art Methods

In this section, we compare our proposed method with the
state-of-the-art data-free post-training quantization frame-
works including LSQ [9] and those specifically designed for
diffusion models including PTQ4DM [31] and Q-diffusion
[20]. The IS, FID, and sFID scores of the baseline methods
are acquired by implementing the officially released code
or our re-implementation. For fair comparison of all listed
methods, we leverage the rounding function in LSQ for quan-
tization and de-quantization, and generate latent images with
100 iterative timesteps.

Results on unconditional generation: Unconditional
generation samples a random variable for diffusion models to
yield images with similar distribution of the training datasets.
We evaluate our data-free post-training quantization methods
on 32× 32 Cifar-10 [15], 64× 64 CelebA [23], 256× 256
LSUN-Church Outdoor and LSUN-Bedroom datasets [39]
for DDIM frameworks, and evaluate for LDMs diffusion
frameworks on 256× 256 CelebA-HQ [16], LSUN-Church
Outdoor and LSUN-Bedroom datasets, where the general-
ization quality and efficiency are reported in Table 3 and
Table 4 respectively. LSQ learns the optimal quantization
step sizes with minimized discretization errors, while the
shared quantization policy across timesteps and randomly
constructed calibration set in diffusion models leads to sig-
nificant quantization loss. PTQ4DM and Q-diffusion employ
the step-wise quantization functions to minimize the quanti-
zation errors of the diversely distributed activations across
timesteps, and presents heuristic timesteps selection criteria
for calibration image generation. However, the optimization
of large-scale learnable parameters faces the challenges of
overfitting due to the very limited quantity of calibration sam-
ples, and the data-independent calibration set construction
cannot guarantee the optimality of the calibration images.
As a result, our method outperforms PTQ4DM by 0.32 (2.55
vs. 2.23) and 1.02 (6.46 vs. 7.48) for IS and FID in LSUN-
Bedroom respectively. The computational cost remains the
same for baseline methods and our APQ-DM due to the
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Method Bitwidth
CelebA-HQ (U) Bedroom (U) Church (U) ImageNet (C)

IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓ IS↑ FID↓ sFID↓
Baseline FP 3.27 6.08 9.36 2.29 3.43 7.68 2.70 4.08 10.99 180.84 11.89 6.86

LSQ

W8A8

3.01 9.75 11.04 2.13 8.11 11.40 2.50 7.10 11.21 154.06 13.26 22.87

PTQ4DM 3.11 8.57 10.36 2.21 4.75 10.76 2.52 5.29 12.49 161.75 12.59 13.53

Q-Diffusion 3.08 8.61 10.43 2.19 4.67 10.51 2.53 4.87 12.95 166.05 12.78 12.21

APQ-DM 3.22 6.30 9.25 2.35 3.88 8.55 2.69 4.02 10.70 179.13 11.58 6.31
LSQ

W6A6

2.09 129.84 135.85 1.34 122.45 148.19 1.82 135.61 77.77 115.71 40.77 48.73

PTQ4DM 2.80 19.53 21.00 2.08 11.10 14.83 2.46 11.05 20.92 140.86 13.68 23.40

Q-Diffusion 2.87 18.39 20.56 2.11 10.10 14.50 2.47 10.90 21.54 146.41 13.94 22.73

APQ-DM 3.09 16.73 18.75 2.27 9.88 13.29 2.67 6.90 13.53 178.64 11.58 7.40

Table 4. The generation quality on unconditional (U) and class-conditional (C) image synthesis for LDMs diffusion models across different
datasets and bitwidths.

(a) Full Precision (b) PTQ4DM(6-bit) (c) APQ-DM(6-bit)
Figure 4. The images generated by quantized Stable Diffusion models and the corresponding text prompts, where different post-training
quantization methods are employed.

stored rounding parameters. The advantage of our method
becomes more obvious for 6-bit diffusion models because
quantization errors and calibration sample informativeness
are more important for networks with low capacity.

Results on conditioned image generation: Condi-
tioned image generation synthesizes samples according
to text including class names or descriptions. For class-
conditional image generation, we discretize the LDMs model
that is pre-trained on the 256 × 256 class-conditional Im-
ageNet [8] dataset, where the guidance strength is set to
3.0 to balance the generation quality and diversity. Table 4
shows the quantitative experimental results for different post-
training quantization methods, while our method increases
the FID and IS by 1.01 (11.58 vs.12.59) and 17.38 (179.13
vs. 161.75) respectively compared with the state-of-the-art
method PTQ4DM. For description-conditional image gen-
eration, Figure 4 demonstrates some examples of the text
prompts images that are generated by different quantized
Stable Diffusion models, where our method can still acquire
plausible images with high-quality details with weights and
activations in low bitwidths. Since conditioned image gener-
ation is widely adopted in many realistic multimedia applica-
tions, our method brings potential to deploy large pre-trained

diffusion models on mobile devices or robots under limited
resource constraints with satisfying generation quality.

5. Conclusion
In this paper, we have presented a novel post-training quan-
tization framework of diffusion model for efficient image
generation. We design a differentiable search framework
that assigns the optimal partition for each timestep, where
network activations are discretized with distribution-aware
quantization functions for rounding error minimization. By
generalizing the structural risk minimization principle, we se-
lect the optimal timesteps for calibration image construction
to provide effective supervision in quantization parameter
learning. Extensive experiments demonstrate that our meth-
ods outperform the state-of-the-art post-training quantization
methods across various diffusion architectures.
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