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Abstract

Deep unfolding networks (DUNs), renowned for their in-
terpretability and superior performance, have invigorated
the realm of compressive sensing (CS). Nonetheless, exist-
ing DUNs frequently suffer from issues related to insuffi-
cient feature extraction and feature attrition during the it-
erative steps. In this paper, we propose Unrolling Fixed-
point Continuous Network (UFC-Net), a novel deep CS
framework motivated by the traditional fixed-point contin-
uous optimization algorithm. Specifically, we introduce
Convolution-guided Attention Module (CAM) to serve as a
critical constituent within the reconstruction phase, encom-
passing tailored components such as Multi-head Attention
Residual Block (MARB), Auxiliary Iterative Reconstruction
Block (AIRB), etc. MARB effectively integrates multi-head
attention mechanisms with convolution to reinforce fea-
ture extraction, transcending the confinement of localized
attributes and facilitating the apprehension of long-range
correlations. Meanwhile, AIRB introduces auxiliary vari-
ables, significantly bolstering the preservation of features
within each iterative stage. Extensive experiments demon-
strate that our proposed UFC-Net achieves remarkable per-
formance both on image CS and CS-magnetic resonance
imaging (CS-MRI) in contrast to state-of-the-art methods.

1. Introduction

Compressive sensing (CS) represents an innovative tech-
nique that facilitates efficient signal acquisition and trans-
mission [17]. It can acquire signals at significantly lower
sampling rates than those prescribed by conventional algo-
rithms while simultaneously achieving superior reconstruc-
tion quality [2], resulting in substantial savings in storage
and transmission costs. Consequently, CS has emerged as
a potent tool for addressing practical challenges across nu-
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Figure 1. The PSNR performance comparison of our UFC-Net
and fourteen SOTA methods on the CIFAR10 [29] dataset at a
sampling rate δ = 0.01.

merous domains, including snapshot compressive imaging
[10, 31], hyperspectral compressive imaging [24, 49], im-
age restoration [27, 56, 61], magnetic resonance imaging
(MRI) [11, 12, 26, 32], among others [15, 33, 45].

Mathematically, the sampling phase of CS can be for-
mulated as y = Ax, where x ∈ RN denotes the original
signal, A ∈ RM×N (M ≪ N) represents the sampling ma-
trix, and y ∈ RM is the measurements. The sampling rate
is δ = M

N . The intractable ill-posed issue of reconstructing
x is reformulated into an optimization problem, exemplified
by ℓ1-regularized least squares problem as follows:

min
x∈RN

∥x∥ℓ1 +
µ

2
∥Ax− y∥2ℓ2 , (1)

where µ serves as a penalty coefficient, striking a balance
between the data fitting term and the ℓ1-norm regulariza-
tion term. In order to effectively apply CS theory to prac-
tical scenarios, researchers have proposed various recon-
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struction algorithms [1, 3, 6, 8, 22, 23, 34] to address the
ill-posed problem described by Eq. (1). Traditional image
CS recovery can be broadly categorized into three major
classes: iterative sparse reconstruction algorithms, match-
ing pursuit algorithms, and other convex optimization meth-
ods. Among these, iterative sparse reconstruction algo-
rithms have garnered significant popularity, for instance,
iterative shrinkage/thresholding algorithm (ISTA) [3], and
two accelerated ISTA algorithms, i.e., FISTA [3] and TwIST
[6]. However, these aforementioned methods usually utilize
fixed constraints of soft thresholds. In contrast, fixed-point
continuation method (FPC) [22, 23] introduces an expan-
sive strategy regarding soft thresholds, which can enhance
the balance between modeling the sparsity of signals and
adapting to the complexity of signal structures. Refer to the
Sect. 1 of Supplementary for the principles of FPC.

Recently, amidst the flourishing landscape of deep learn-
ing (DL), some researchers have developed a series of DL-
based image CS reconstruction algorithms, which typically
can be categorized into two distinct paradigms. One ap-
proach involves pure model-based CS architectures, which
model the signal reconstruction problem as an end-to-end
learning task, such as MAC-Net [7], AutoBCS [18], TCS-
Net [19]. While these approaches achieve high-quality re-
constructions, pure model-based image CS methods are of-
ten regarded as black-box models, posing challenges in elu-
cidating their internal operational principles.

In contrast, inspired by classical iterative thresholding al-
gorithms, deep unfolding image CS methods such as ISTA-
Net [57], DPC-DUN [40], OCTUF [42], generally utilize
convolutional neural networks (CNNs) or Transformer ar-
chitectures to decompose iterative threshold problems into
multiple iterative steps mapped into deep networks. Al-
though these deep unfolding image CS networks can offer
a degree of interpretability while achieving high-quality re-
constructions, there still exists the problem of insufficient
feature extraction due to the feature representation structure
based on CNNs or Transformer architectures. Furthermore,
the intrinsic necessity for the output of reconstructed im-
ages at each iteration stage in the reconstruction process in-
troduces inherent information loss.

To address the aforementioned challenges, we introduce
a deep unfolding CS method based on the well-known FPC
algorithm, denoted as UFC-Net. It unfurls the iterative re-
covery steps into a fixed number of concatenated blocks,
with customized Gradient Descent Update (GDU) module
and Convolution-guided Attention Module (CAM) to en-
hance feature extraction and minimize feature loss in the
inter-reconstruction stages. As depicted in Fig. 2, CAM
comprises two specialized sub-modules, i.e., Multi-head
Attention Residual Block (MARB) and Auxiliary Iterative
Reconstruction Block (AIRB). MARB synergizes convo-
lution with multi-head attention mechanisms to obtain lo-

cal features and contextual relationships within the image
in each iterative reconstruction stage, and AIRB harnesses
auxiliary variables to amplify information exchange be-
tween iterative stages. In summary, our main contributions
are as follows:
• We propose UFC-Net for CS, which effectively harness

the advantages of FPC and deep neural networks, thereby
manifesting commendable performance and interpretabil-
ity both on image CS and CS-MRI.
• We introduce MARB for UFC-Net, which integrates at-

tention mechanisms and convolutional neural networks,
excelling in capturing local attributes while simultane-
ously introducing long-range dependencies of images in-
side each iteration stage.
• We customize AIRB for UFC-Net, which incorporates

auxiliary variables to further amplify inter-stage informa-
tion interaction between each iteration stage, thereby pre-
serving a greater abundance of features.

Extensive experiments underscore that our proposed UFC-
Net exhibits formidable performance, surpassing state-of-
the-art CS algorithms.

2. Related Works
Pure Model-based Image CS Methods. This category
of methods represents a paradigm that formulates the im-
age reconstruction problem as an end-to-end learning task,
mapping features between measurement data and the orig-
inal signal without explicitly establishing a mathematical
model. Using feature processing units as classification cri-
teria, researchers have delved into three distinct categories
of model-based CS architectures, one of the types roots in
CNNs, such as CSNet [39], MAC-Net [7], NL-CSNet [13],
BNN [36], ASGLD [46] and AutoBCS [18]. An alterna-
tive CS paradigm is built upon the foundation of Trans-
former/Attention mechanisms, such as TCS-Net [19]. Fur-
thermore, hybrid CS architectures combining both CNNs
and Transformer/Attention approaches have garnered sig-
nificant popularity, such as DPA-Net [44] and CSformer
[52]. These two CS methods employ a dual-path architec-
ture: the former uses two paths to respectively deal with
texture and structure, while the latter introduces separate
CNN and Transformer pathways. In comparison to unfold-
ing DL-based image CS techniques, these pure model-based
CS models are often regarded as black-box models, render-
ing it challenging to expound their internal operational prin-
ciples.

Deep unfolding Image CS Methods. Deep unfold-
ing networks (DUNs) typically transforms the classical
iterative CS recovery algorithms into deep neural net-
works using feature architectures such as CNNs or Trans-
former/Attention. A quintessential illustration is ISTA-Net
[57], which adeptly tackles the proximal mapping prob-
lem of sparse signals in CS by embedding a limited num-
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Figure 2. The proposed UFC-Net architecture. The topmost row represents the holistic structure, where the reconstruction module is
comprised of n iterative recovery stages. Each stage corresponds to an iteration of the FPC algorithm and is constituted by GDU and
CAM. The second row provides an in-depth delineation of each iterative stage, along with the details of the customized MARB and AIRB.

ber of predetermined CNN blocks. Moreover, Zhang et
al. introduced AMP-Net [62], which leverages the deep
iterative CNN denoising paradigm into the Approximate
Message Passing algorithm (AMP) for image CS. Song et
al. introduced OCTUF [42], a lightweight DUN method,
which incorporates ISTA algorithm and leverages cross-
attention Transformers to enable efficient image reconstruc-
tion. Other classical examples include OPINE-Net+ [58],
COAST [53], FSOINET [9], TransCS [38], DGUNet [35],
DPC-DUN [40], LTwIST [20], among others [14, 21, 41].

These DUNs can enhance the interpretability of neural
network methods, facilitating the understanding of signal
recovery process. Due to the local inductive bias of CNNs
or the limited local modeling capability of Transformers,
these CS networks may inadequately extract and capture
image features. As a result, they usually face certain chal-
lenges, including diminished image quality and block arti-
facts occurring in specific regions of the reconstructed im-
ages, particularly at low sampling rates. Furthermore, hin-
dered by the image output requirements at each iterative
stage, inadequate information exchange between recovery
stages has impacted the representational capacity of DUNs
methods.

3. The Proposed UFC-Net
3.1. Overall Architecture

The framework of our proposed UFC-Net is illustrated in
Fig. 2, which encompasses sampling module and recon-
struction module.

In the sampling module, we use block-based function
FB(·) and vectorization function Fvec(·) to expedite image
acquisition. Subsequently, the sampling matrix A is adopted
to obtain the measurements y from the segmented and vec-
torized images. Mathematically, the CS sampling can be
modeled as y = A · Fvec(FB(x)).

Following this, we first use AT (the transpose of A) to
achieve the initial estimation x0 from y, i.e., x0 = AT · y.
Afterward, x0 undergoes iterative updates through n re-
peated recovery stages within the reconstruction module to
result in the estimate xn. Ultimately, by means of the in-
verse operations of FB(·) and Fvec(·), that is, F−1

B (·) and
F−1

vec(·), the final reconstructed image x̂ is obtained, i.e.,

x̂ = F−1
B (F−1

vec(x
n)). (2)

Particularly, each stage in the reconstruction module en-
compasses both a Gradient Descent Update (GDU) module
and a Convolution-guided Attention Module (CAM), corre-
sponding to the iterative procedures of gradient descent and
proximal mapping in the FPC algorithm, respectively. Con-
cisely, the CAM in the kth stage can be outlined as follows:

(xk, zk) = CAM(rk, zk−1, νk), (3)

where rk, zk−1 and νk are inputs, while xk and zk represent
outputs of kth stage. Specifically, νk = τk

µk , τk and µk are
parameters related to soft threshold operator νk. Detailed
explanations of these two sub-modules are provided in sub-
sections 3.2 and 3.3. Overall, the proposed UFC-Net can be
referenced in Algorithm 1.
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Algorithm 1 Overall Process of UFC-Net

Input: Original image x, sampling matrix A, initial recon-
struction matrix AT , the number of iteration stage n,
gradient update step size λ1∼n, FPC parameters µ1∼n,
τ1∼n, β1∼n, γ.

Output: Reconstructed image x̂
1: Learnable parameters: A, AT , λ1∼n, µ1∼n, τ1∼n,

β1∼n, ζ
2: Sampling module:

y = A · Fvec(FB(x))
3: Initial reconstruction:

x0 = AT · y
4: Iterative reconstruction:
5: while 1 ≤ k ≤ n do
6: xk−1 = Fvec(xk−1)
7: rk = F−1

vec(xk−1 − λkAT (Axk−1 − y))
8: µk = min(µk−1 · βk, µ)
9: νk = τk/µk

10: (xk, zk) = CAM(rk, zk−1, νk)
11: k ← k + 1
12: end while
13: x̂ = F−1

B (F−1
vec(xn))

3.2. Gradient Descent Update Module

During each stage of reconstruction module, we initiate
the procedure with a GDU approach, which involves the
computation of gradients pertaining to data fidelity terms
1
2 ||Ax−y||22, aimed at reducing the disparities between mea-
surements and the reconstructed image. Mathematically,
GDU in the kth stage can be formalized as follows:

rk = F−1
vec(x

k−1 − λkAT (Axk−1 − y)), (4)

where
xk−1 = Fvec(xk−1), (5)

where xk−1 corresponds to the output of the (k−1)th stage,
notably, when k = 1, it represents the initial reconstruc-
tion value, x0. AT designates the transposition of sampling
matrix A. λk denotes the step size for gradient descent
updates, serving as a learnable parameter that iteratively
changes during backpropagation. rk signifies the outcome
of gradient computations for xk−1. In other words, rk is the
generated preliminary reconstruction result.

3.3. Convolution-guided Attention Module

The Convolution-guided Attention Module (CAM) seam-
lessly succeeds the GDU. In the kth stage, CAM takes the
output rk from GDU and the auxiliary varible zk−1 as its
inputs, yielding xk and zk as outputs. Notably, it is no ne-
cessity for computing zn in the nth stage.

The entire CAM, with the soft threshold at its core,
elucidates a non-linear solution for the proximal mapping

of sparsity-related problems with intricate variations. It
commences with a Preliminary Feature Extraction Block
(PFEB), followed by the CNV2 block (a ConvNext V2
block [47]), which contributes to the deepening of feature
extraction.

Subsequently, we introduce Multi-head Attention Resid-
ual Block (MARB) to facilitate the capture of both local
attributes and long-range dependencies. Following this,
we customize the Auxiliary Iterative Reconstruction Block
(AIRB) to preserve a more extensive range of multi-channel
information. The residual connection is thoughtfully ap-
plied both preceding and succeeding the AIRB, enhancing
the network’ s capacity to model complex data. Next, spar-
sity is elevated through the application of soft thresholding.
Afterwards, we execute a process that entirely reverses the
actions taken before soft thresholding. Ultimately, a resid-
ual connection is established with the input rk to yield the
output xk for the kth stage. Furthermore, the intermediate
values zk1 and zk2 generated by the two AIRB before and
after soft thresholding are cascaded and processed through
a convolutional operation to yield zk, which then serves as
input for the subsequent stage, as depicted in Fig. 2.

Hence, our proposed UFC-Net is not only proficient in
acquiring local features but also adept at establishing dis-
tant dependencies, all while meticulously preserving fea-
tures between each iterative stage. Certainly, we sequen-
tially delve into the inner workings of PFEB, MARB, AIRB
and soft threshold.

Preliminary Feature Extraction Block. As shown in
Fig. 2(a), in the pursuit of representing intricate image fea-
tures, we first perform a convolutional operation Conv(·)
to transform the initial single-channel image input into a
multi-channel format containing 32 channels. Then, we ap-
ply a leaky ReLU activation function LReLU(·). Subse-
quently, we integrate a channel attention mechanism C(·) to
finely calibrate the significance of various dimensions. This
calibration process serves a dual purpose, both improving
feature representation and reducing redundant information.
These procedures can be mathematically formalized as fol-
lows:

xkp = P(rk) = C(LReLU(Conv(rk))), (6)

where P(·) represents the PFEB operation, while xkp signi-
fies the output of this module.

Multi-head Attention Residual Block. In order to tran-
scend the local intrinsic properties inherent in pure convo-
lutions and capture long-distance dependencies and spatial
relationships within images, we design a Multi-head Atten-
tion Residual Block (MARB), as visualized in Fig. 2(b).
Before embarking on a detailed exposition, it is imperative
to clarify the introduction of a structure denoted as Aconv,
which represents the sequence of 3×3 convolution kernels
and 1×1 convolution kernels. We designate xk

c as the output
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Table 1. PSNR (dB) and SSIM comparisons of UFC-Net and several state-of-the-art methods on large datasets CIFAR10 and CIFAR100
[29] at various sampling rates δ ∈ {0.01, 0.04, 0.05, 0.10}.

Datasets δ
CSGAN [28] CSNet+ [39] OPINE-Net+ [58] NL-CSNet [13] FSOINET [9] DGUNet+ [35] AutoBCS [18] CSformer [52] OCTUF [42] UFC-Net

δ (AAAI2018) (TIP2020) (JSTSP2020) (TMM2021) (ICASSP2022) (CVPR2022) (TCYB2023) (TIP2023) (CVPR2023) (our method)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CIFAR10

0.01 13.91 0.2993 17.59 0.2913 13.03 0.1147 16.55 0.3012 17.86 0.3202 15.24 0.2718 17.55 0.3094 16.32 0.2850 17.61 0.3075 18.29 (0.43↑) 0.3561 (0.0359↑)
0.04 16.54 0.4364 20.75 0.5853 19.24 0.5630 20.11 0.5731 21.48 0.6301 19.41 0.5563 21.08 0.6260 20.15 0.5727 21.41 0.6306 21.73 (0.25↑) 0.6415 (0.0109↑)
0.05 / / 21.69 0.6581 19.80 0.6212 20.99 0.6298 22.22 0.6876 20.22 0.5922 22.19 0.6818 21.06 0.6294 22.27 0.6890 22.48 (0.21↑) 0.6930 (0.0040↑)
0.10 18.35 0.5788 23.98 0.8027 22.33 0.7626 23.64 0.7833 25.21 0.8283 22.68 0.7629 24.47 0.8207 23.68 0.7814 25.26 0.8289 25.39 (0.13↑) 0.8308 (0.0019↑)

CIFAR100

0.01 13.87 0.3058 17.72 0.3066 12.70 0.1172 16.68 0.3256 18.18 0.3410 15.51 0.2918 17.73 0.3232 16.48 0.3010 17.80 0.3218 18.64 (0.46↑) 0.3729 (0.0319↑)
0.04 16.56 0.4410 21.01 0.5946 19.50 0.5745 20.67 0.834 22.01 0.6403 19.74 0.5647 21.50 0.6337 20.52 0.5820 21.90 0.6411 22.23 (0.22↑) 0.6515 (0.0104↑)
0.05 / / 21.99 0.6643 20.09 0.6301 21.27 0.6389 22.76 0.6958 20.67 0.6059 22.67 0.6909 21.38 0.6377 22.78 0.6967 23.00 (0.22↑) 0.7007 (0.0040↑)
0.10 18.41 0.5786 24.22 0.8031 22.67 0.7643 24.01 0.7845 25.78 0.8319 23.01 0.7631 24.95 0.8218 24.05 0.7830 25.86 0.8323 25.96 (0.10↑) 0.8334 (0.0011↑)

of the CNV2 block with xkp as its input, and then employ
xkc as the input for MARB. Then we commence with layer
normalization operation LN1(·) [50], and subsequently en-
gage a multi-head attention mechanism, MHSA(·), to en-
able the network to learn the interrelationships between dis-
tinct regions within the image. Furthermore, the output of
MHSA(·) is established a residual connection with xkc , lead-
ing to the intermediary value xki . The process can be for-
mally represented as follows:

xk
i = xkc +MHSA(LN1(xk

c )). (7)

Then, xki undergoes another layer normalization LN2(·),
further is processed via an AConv structure AConv1(·),
incorporating a GeLU activation function GeLU(·), fol-
lowed by another AConv structure AConv2(·). Ultimately,
MARB concludes with a residual connection with xki , yield-
ing the definitive output xkm of the MARB in the kth stage.
This is mathematically formulated as follows:

xkt = AConv1(LN2(xki )), (8)

xkm = xki +AConv2(GeLU(xkt )), (9)

where xkt signifies the intermediary output resultant from
the sequential application of the LN2(·) and AConv1(·).

Auxiliary Iterative Reconstruction Block. As shown
in Fig. 2(c), we design Auxiliary Iterative Reconstruction
Block (AIRB) to preserve a broader spectrum of channel-
specific information. Collectively, takig xkm and zk−1

as inputs, AIRB engenders two outputs, namely, xk and
z{k1,k2}1.

To be specific, the process unfolds as follows. Initially,
we attain xkac via the CNV2 block CB(·) taking xkm as input.
Moreover, xkac is concatenated seamlessly with the auxil-
iary variable zk−1 originating from the previous stage. The
amalgamation outcome undergoes MARB, and then culmi-
nates in a convolution layer ConvX(·), yielding one of the
outputs, denoted as xka. The formal expression of this pro-
cess is delineated as follows:

xk
a = ConvX(MARB(Fc(CB(xkm), zk−1))), (10)

1In the experiment, one of the outputs from AIRB before the soft
thresholding is zk1 , and after is zk2 .

where Fc(·, ·) denotes the concatenation of two inputs. Fur-
thermore, an additional convolution operation ConvZ(·) is
applied to the input zk−1, resulting in the output zk1 :

zk1 = ConvZ(zk−1). (11)

In particular, when k = 1, z0 is derived from a preprocess-
ing of r1. To elaborate, this entails a convolution operation
ConvI(·) followed by the CNV2 block layer CBI(·), which
is formulated as follow:

z0 = CBI(ConvI(r1)). (12)

Soft Threshold. During the execution of the soft thresh-
olding operation, the soft thresholding operator νk in the
kth stage is computed by the division of two parameters,
τk and µk. Among these, τk is initialized according to
τk = min{1 + 1.665(1 − δ), 1.999}. Moreover, µ1 is ini-
tialized as µ1 = τ1/(γ · ||x0||∞). The constant, denoted
as γ, is established with a fixed value of 0.9. Particularly,
we introduce the parameter βk to derive the extrapolated
sequence of µk.

µk = min(µk−1 · βk, µ), (13)

where βk is initialized as 2, and µ is a constant with
5000. It is imperative to emphasize that the parameters
µ1∼n, τ1∼n, β1∼n, λ1∼n are all trainable, eliminating the
need for manual customization, which significantly bolsters
the adaptability, intelligence, and versatility of our UFC-
Net. Subsequent to the soft threshoding, we execute a pro-
cedure entirely antithetical to the previous soft thresholding
process.

Furthermore, in the concluding segment of the kth stage,
we amalgamate the two auxiliary variables, zk1 and zk2 ,
which are derived from the AIRB both before and after the
soft-thresholding process. This fusion is achieved through
concatenation and a convolution layer ConvE(·) to yield
zk, serving as the auxiliary variable input for the subsequent
AIRB stage. This process is mathematically represented as
follows:

zk = ConvE(Fc(zk1 , zk2)). (14)
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Table 2. PSNR (dB) and SSIM comparisons of UFC-Net and competing methods on datasets Set11 [30], Set14 [55], Urban100 [25], and
General100 [16] at different sampling rates δ ∈ {0.01, 0.04, 0.10, 0.25}.

Datasets δ
ISTA-Net+ [57] DPA-Net [44] MAC-Net [7] AMP-Net [62] COAST [53] TransCS [38] DPC-DUN [40] TCS-Net [19] LTwIST [20] UFC-Net

(CVPR2018) (TIP2020) (ECCV2020) (TIP2021) (TIP2021) (TIP2022) (TIP2023) (TCI2023) (TCSVT2023) (our method)
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set11

0.01 17.42 0.4130 18.20 0.5101 18.25 0.4002 20.19 0.5578 12.39 0.2636 20.13 0.5063 18.01 0.4600 21.09 0.5504 20.98 0.5469 21.24 (0.15↑) 0.5607 (0.0029↑)
0.04 21.55 0.6238 24.26 0.7541 24.21 0.6981 25.24 0.7719 23.54 0.7157 25.39 0.7880 24.37 0.7497 25.45 0.7863 25.71 0.7900 25.92 (0.21↑) 0.7943 (0.0043↑)
0.10 26.46 0.8035 27.66 0.8530 27.67 0.8181 29.37 0.8775 28.69 0.8607 29.51 0.8873 29.40 0.8800 29.05 0.8835 29.84 0.8930 30.15 (0.31↑) 0.8960 (0.0030↑)
0.25 32.43 0.9236 32.38 0.9311 32.90 0.9243 34.61 0.9480 33.95 0.9404 35.02 0.9544 34.72 0.9480 33.95 0.9540 35.00 0.9546 35.42 (0.40↑) 0.9567 (0.0021↑)

Set14

0.01 18.20 0.4012 18.30 0.4613 18.43 0.3974 21.55 0.5301 13.49 0.2740 20.88 0.4849 19.01 0.4550 21.63 0.5218 21.48 0.5190 21.79 (0.16↑) 0.5324 (0.0023↑)
0.04 22.07 0.5707 23.69 0.6531 23.71 0.6171 25.42 0.6996 23.67 0.6417 25.45 0.7129 24.32 0.6630 25.25 0.7072 25.44 0.7112 25.67 (0.22↑) 0.7163 (0.0034↑)
0.10 25.98 0.7288 26.29 0.7690 26.40 0.7381 28.70 0.8179 27.41 0.7772 28.79 0.8340 28.04 0.7951 28.19 0.8284 28.82 0.8342 29.10 (0.28↑) 0.8363 (0.0021↑)
0.25 30.61 0.8699 30.15 0.8812 30.67 0.8742 33.12 0.9136 32.04 0.8921 33.34 0.9239 32.76 0.9022 32.22 0.9205 33.40 0.9241 33.81 (0.41↑) 0.9259 (0.0018↑)

Urban100

0.01 16.66 0.3733 16.36 0.4150 16.39 0.3637 19.55 0.5016 12.90 0.2616 18.96 0.4395 17.28 0.4214 19.61 0.4946 19.46 0.4886 19.69 (0.08↑) 0.5041 (0.0025↑)
0.04 19.65 0.5368 21.64 0.6486 21.60 0.6120 22.73 0.6819 21.40 0.6331 23.25 0.7114 22.35 0.6767 22.94 0.7035 23.01 0.7061 23.37 (0.12↑) 0.7195 (0.0081↑)
0.10 23.48 0.7200 24.55 0.7841 24.49 0.7465 25.92 0.8144 25.90 0.8021 26.74 0.8416 26.94 0.8358 25.88 0.8290 26.76 0.8463 27.55 (0.61↑) 0.8583 (0.0120↑)
0.25 28.89 0.8830 28.80 0.8944 28.79 0.8798 30.79 0.9188 31.07 0.9165 31.75 0.9329 32.33 0.9320 30.12 0.9241 31.79 0.9349 32.82 (0.49↑) 0.9423 (0.0074↑)

General100

0.01 19.00 0.4698 19.37 0.5436 19.72 0.4857 22.68 0.6109 12.85 0.2960 21.65 0.5414 19.92 0.5361 22.59 0.5977 22.69 0.5989 23.08 (0.39↑) 0.6145 (0.0036↑)
0.04 23.74 0.6545 25.96 0.7472 26.17 0.7169 26.91 0.7689 25.91 0.7352 27.23 0.7841 26.60 0.7529 26.58 0.7712 27.53 0.7935 27.92 (0.39↑) 0.7988 (0.0053↑)
0.10 28.52 0.8100 29.05 0.8497 29.70 0.8275 30.77 0.8712 30.61 0.8572 31.38 0.8916 31.15 0.8714 29.91 0.8749 31.91 0.8990 32.31 (0.40↑) 0.9014 (0.0024↑)
0.25 34.31 0.9248 33.71 0.9316 34.83 0.9283 35.93 0.9493 35.77 0.9405 37.05 0.9599 36.49 0.9479 34.64 0.9505 37.31 0.9616 37.75 (0.44↑) 0.9624 (0.0008↑)

3.4. Loss Function

We employ the mean squared error (MSE) as the loss func-
tion, encompassing all trainable parameters denoted as w.
The original image x serves as the ground truth, and the
reconstructed value x̂ derived from measurements y corre-
sponding to x serves as the network’ s output, thus formu-
lating the loss function as:

L(w) =
1

2N

N∑
i=1

∥∥∥x(i) − x̂(i)
∥∥∥2
2
, (15)

where N denotes the aggregate count of training im-
ages, x(i) represents the ith trainable image, and w =
{A,AT , λ1∼n, µ1∼n, τ1∼n, β1∼n, ζ}, where ζ represents
the convolution bias, etc.

4. Experiments
4.1. Experimental Settings

The default number of iterative stages of our UFC-Net is
10. The batch size is 64 during training. The default feature
channel number is set to 32. Gradient descent step sizes
λ1∼n are initialized to 0.5, and the parameters µ1∼n, τ1∼n

and β1∼n are initialized as elucidated in the soft threshold
at the end of subsection 3.3. All our experiments are im-
plemented based on the PyTorch 1.12.0 framework with a
GeForce RTX 3090 GPU. Refer to the Sect. 2 of Supple-
mentary to obtain more experimental settings. Our source
code is available at UFC-Net.

4.2. Comparisons on UFC-Net and Competing
Methods

In this subsection, we undertake a comparative analysis be-
tween the proposed UFC-Net and other eighteen state-of-
the-art algorithms, which encompass ISTA-Net+ [57], CS-
GAN [28], CSNet+ [39], DPA-Net [44], OPINE-Net+ [58],
MAC-Net [7], NL-CSNet [13], AMP-Net [62], COAST
[53], FSOINET [9], TransCS [38], DGUNet+ [35], Auto-
BCS [18], TCS-Net [19], DPC-DUN [40], CSformer [52],

OCTUF [42] and LTwIST [20]. The outcomes are delin-
eated in Tab. 1, Tab. 2 and Fig. 3. Specifically, the best
results in the tables are indicated in bold, while the second-
best outcomes are designated by underlining.

Firstly, with δ ∈ {0.01, 0.04, 0.05, 0.10}, we perform a
comparison of ten algorithms including CSGAN, CSNet+,
OPINE-Net+, NL-CSNet, FSOINET, DGUNet+, Auto-
BCS, CSformer, OCTUF and our proposed UFC-Net on
the large-scale CIFAR10 and CIFAR100 datasets [29]. The
results in Tab. 1 illustrate the exceptional performance of
our proposed UFC-Net, demonstrating its optimal perfor-
mance across all scenarios. For instance, in comparison to
OCTUF, our UFC-Net demonstrates remarkable enhance-
ments in PSNR (percentage gains) and SSIM (percentage
gains) on the CIFAR10 dataset when δ = 0.01, with in-
creases of 0.68dB (∼3.86%) and 0.0486 (∼15.80%), re-
spectively. Similarly, on the CIFAR100 dataset, UFC-Net
achieves significant improvements of 0.84dB (∼4.72%) and
0.0511 (∼15.88%) in PSNR and SSIM, respectively.

Furthermore, we extend our comparative experiments
to widely employed datasets, including Set11 [30], Set14
[55], Urban100 [25], and General100 [16]. We com-
pare UFC-Net with other nine algorithms, including ISTA-
Net+, DPA-Net, MAC-Net, AMP-Net, COAST, TransCS,
DPC-DUN, TCS-Net and LTwIST, as elaborated in Tab. 2.
These results unequivocally illustrate the substantial advan-
tage of our proposed UFC-Net. For instance, on the Ur-
ban100 dataset, our UFC-Net demonstrates respective en-
hancements of 0.61dB (∼2.26%) and 0.0120 (∼1.42%) in
PSNR and SSIM with δ = 0.10, compared to the second-
best algorithm.

Moreover, we arrange the reconstructed images gener-
ated by our UFC-Net and other eight algorithms in Fig. 3.
To facilitate observations, we directly provide enlarged
views of selected regions. It is discernible that our proposed
UFC-Net excels in reconstructing images of superior qual-
ity, achieving enriched details and crisper lines.
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Figure 3. Comparisons of reconstructed images between UFC-Net and eight competing algorithms. The first row pertains to comparative
images from the flintstones in Set11 [30] at δ = 0.10. The second row corresponds to comparative images from Urban100 dataset [25] at
δ = 0.04, while the third row relates to comparative images from lenna in Set14 [55] at δ = 0.25. Regions of interest are magnified, with
distinctive differences indicated by arrows for ease of observation.

w/o MARBw/o AIRB UFC-Net
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Original Image

PSNR / SSIM

Figure 4. Visual analysis of the reconstructed images and corre-
sponding error maps generated by various models derived from
UFC-Net, conducted on McM18 dataset [60] at δ = 0.25.

4.3. UFC-Net without MARB or AIRB

To substantiate the effectiveness of our customized mod-
ules, we produce two variants of UFC-Net by selectively ex-
cluding modules MARB and AIRB, denoted as w/o MARB
and w/o AIRB, respectively.

Experimental comparisons are conducted between UFC-
Net along with the two aforementioned variants on widely
adopted datasets Set5, Set11 and McM18 at different sam-
pling rates δ ∈ {0.10, 0.25}. From the results illustrated in
Tab. 3, it is evident that the removal of any module leads
to a substantial decline in the overall performance, under-
scoring the beneficial contributions of the proposed MARB

and AIRB. The assessment metrics of reconstructed images
and corresponding error maps shown in Fig. 4 collectively
indicate that both our proposed MARB and AIRB modules
excel at capturing richer image textures and fine-grained de-
tails, leading to higher detail fidelity.

Table 3. PSNR (dB) and SSIM comparisons of UFC-Net with
different components on datasets Set5 [5], Set11 [30] and McM18
[60] at different sampling rates.

Methods δ
Set5 Set11 McM18

PSNR SSIM PSNR SSIM PSNR SSIM

w/o AIRB 0.10 32.30 0.9138 29.83 0.8917 31.71 0.8967
0.25 36.88 0.9585 35.16 0.9549 37.03 0.9606

w/o MARB 0.10 32.23 0.9137 29.81 0.8905 31.74 0.8977
0.25 36.92 0.9589 35.11 0.9547 37.05 0.9610

UFC-Net 0.10 32.51 0.9170 30.15 0.8960 31.97 0.9011
0.25 37.08 0.9597 35.42 0.9567 37.24 0.9619

Additionally, we visually analyze the feature maps of
our proposed UFC-Net and variants at different stages in
Sect. 3.1 of Supplementary. We also conduct ablation ex-
periments of our UFC-Net with different numbers of itera-
tive stages in Sect. 3.2 of Supplementary, and evaluate the
UFC-Net performance under Gaussian noise, and salt and
pepper noise in Sect. 3.3 of Supplementary.
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Table 4. Complexity and running-time on GPU comparisons of
UFC-Net and different methods with an input image of 256×256
at the sampling rate δ = 0.10.

Methods DGUNet+ DPC-DUN OCTUF LTwIST UFC-Net
GPU/s 0.044 0.053 0.031 0.040 0.036

Params (M) 2.287 1.634 0.400 23.491 1.741
GFLOPs 97.79 74.15 189.30 110.74 109.00

4.4. Complexity Analysis

This subsection performs a comprehensive complexity
analysis for five SOTA models: DGUNet+, DPC-DUN,
OCTUF, LTwIST and our UFC-Net at δ = 0.10. We employ
single-channel images with dimensions of 256×256 as in-
puts. This analysis encompasses various aspects, including
running time on GPU (the averaged outcome of 100 repeti-
tions), the number of parameters, and the giga floating-point
operations (GFLOPs).

As illustrated in Tab. 4, the results indicate that our UFC-
Net boasts an exceptionally fast reconstruction time, and
that the parameters and GFLOPs of UFC-Net, while not op-
timal, still showcase a relatively lower levels of intricacy.

4.5. UFC-Net for CS-MRI

In the pursuit of elevating the profundity and scope of our
method, we extend our proposed UFC-Net from the field
of image CS to CS-MRI. The principal distinction lies in
the redefinition of sampling matrix A involved UFC-Net as
A =M · T , whereM represents the Cartesian matrix and
T denotes the discrete Fourier transform, while the other
components of the reconstruction module remain unaltered.
Please refer to the Sect. 2 of Supplementary for experimen-
tal settings in CS-MRI.

We conduct a comparative evaluation of the proposed
UFC-Net and nine meticulously crafted CS-MRI meth-
ods encompassing Zero-filled [4], DC-CNN [37], ISTA-
Net+ [57], RDN [43], CDDN [63], ADMM-CSNet [51],
PUERT [48], HiTDUN [59], and LTwIST [20] at δ ∈
{0.05, 0.10.0.15}. It is imperative to emphasize that these
approaches are retrained on the provided FastMRI knee
dataset [54] to ensure equitable comparisons.

As delineated in the Tab. 5, the comparative findings un-
equivocally demonstrate the pronounced superiority of our
UFC-Net. For example, when compared to the second-
ranking algorithm, HiTDUN, at δ = 0.15, UFC-Net
demonstrates a substantial increment of 0.36dB (∼ 1.24%)
in PSNR and a improvement of 0.0121 (∼ 1.73%) in SSIM.
Furthermore, we showcase the reconstructed knee images
produced by UFC-Net alongside those of other comparative
algorithms at three sampling rates, as shown in Fig. 5 and
Fig. 1 of Supplementary, respectively. It is conspicuously
evident that the images generated by our UFC-Net exhibit
superior clarity in capturing fine textural details.

Table 5. PSNR (dB) and SSIM comparisons of several CS-MRI
methods on datasets FastMRI [54] at different sampling rates δ ∈
{0.05, 0.10, 0.15}.

Methods
Sampling Rate

0.05 0.10 0.15
PSNR SSIM PSNR SSIM PSNR SSIM

Zero-filled [4] 23.23 0.4564 25.38 0.5314 26.31 0.5763
DC-CNN [37] 26.81 0.5432 27.07 0.5899 27.92 0.6624

ISTA-Net+ [57] 27.02 0.5498 27.20 0.5946 28.85 0.6922
RDN [43] 27.00 0.5471 27.32 0.5967 28.89 0.6911

ADMM-CSNet [51] 27.06 0.5512 27.43 0.5999 28.79 0.6898
CDDN [63] 27.13 0.5535 27.42 0.6015 28.93 0.6941
PUERT [48] 26.93 0.5465 27.53 0.6043 28.51 0.6815

HiTDUN [59] 27.08 0.5513 27.62 0.6057 29.10 0.6977
LTwIST [20] 27.23 0.5517 27.70 0.6003 29.03 0.6914

UFC-Net 27.43 0.5642 28.01 0.6202 29.46 0.7098

LTwIST HiTDUN UFC-NetADMM-CSNet
32.86 dB 32.86 dB 33.92 dB 34.36 dB

Original MRI
PSNR

DC-CNN ISTA-Net+ RDNZero-filled
28.85 dB 31.03 dB 33.92 dB 33.12 dB

CDDN
33.14 dB

Figure 5. Comparisons of reconstruction images and error maps of
competing methods and our UFC-Net on the dataset FatMRI when
δ = 0.15. Local areas are zoomed in for better comparisons.

5. Conclusions

In this paper, we propose a unrolling DL-based fixed-point
continuous network for CS, denoted as UFC-Net, which
effectively expands the FPC optimization algorithm into
a deep neural network paradigm. Particularly, we cus-
tomize GDU and CAM, including MARB and AIRB com-
ponents. MARB strengthens feature extraction capability,
while AIRB enhances feature fusion and reduces inter-stage
feature loss during the iterative reconstruction process. Sub-
stantial experiments on image CS and CS-MRI tasks prove
to the state-of-the-art performance of our UFC-Net.
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