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Abstract

Semantic scene completion (SSC) aims to predict com-
plete 3D voxel occupancy and semantics from a single-view
RGB-D image, and recent SSC methods commonly adopt
multi-modal inputs. However, our investigation reveals two
limitations: ineffective feature learning from single modal-
ities and overfitting to limited datasets. To address these
issues, this paper proposes a novel SSC framework - Ad-
versarial Modality Modulation Network (AMMNet) - with
a fresh perspective of optimizing gradient updates. The
proposed AMMNet introduces two core modules: a cross-
modal modulation enabling the interdependence of gradi-
ent flows between modalities, and a customized adversar-
ial training scheme leveraging dynamic gradient competi-
tion. Specifically, the cross-modal modulation adaptively
re-calibrates the features to better excite representation po-
tentials from each single modality. The adversarial training
employs a minimax game of evolving gradients, with cus-
tomized guidance to strengthen the generator’s perception
of visual fidelity from both geometric completeness and se-
mantic correctness. Extensive experimental results demon-
strate that AMMNet outperforms state-of-the-art SSC meth-
ods by a large margin, providing a promising direction for
improving the effectiveness and generalization of SSC meth-
ods. Our code is available at this link.

1. Introduction

Semantic scene completion (SSC) is a crucial task in 3D
scene understanding domain that seeks to forecast com-
plete 3D voxel occupancy and semantics from a single-view
RGB-D image [17, 20, 21]. Current SSC methods rely on
multi-modal inputs like RGB images and depth represented
as Truncated Signed Distance Function (TSDF) represen-
tations, as shown in Figure 1 (b), which provide comple-
mentary cues for scene geometry reconstruction and seman-
tic prediction. These methods typically utilize an encoder-
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Figure 1. Comparisons of encoder representation power. For
the multi-modal training in (b), the informative representations in
RGB and TSDF are not fully unleashed compared to learning them
individually in (a). The proposed Adversarial Modality Modula-
tion Network (AMMNet) in (c) enables a more thorough unleash-
ing of potentials via “cross-modal modulation M” and “adversar-
ial training L(D,G)”.

decoder paradigm to exploit multi-modal data, where the
RGB image and TSDF are encoded separately and subse-
quently combined for final predictions. Despite the promis-
ing results demonstrated by these multi-modal models on
indoor scene completion benchmarks [29], two key obser-
vations can still be made from these models [4, 34].

Observation 1: When learned jointly in multi-modal mod-
els, the rich information in individual modalities is not suf-
ficiently unleashed compared to single-modal models. To
validate this observation, we conducted a two-stage exper-
iment. In the first stage, we trained uni-modal and multi-
modal SSC models using the same dataset and settings.
In the second stage, we evaluated separate single-modal
networks initialized with encoder weights from stage one
models to assess the learned representations. Through con-
trolled comparison, we found degraded representation capa-
bilities of the multi-modal encoders compared to their uni-
modal counterparts. Specifically, we examined the repre-
sentation power of RGB and TSDF encoders by initializ-
ing two RGB-only networks and two TSDF-only networks
using corresponding encoder weights from uni-modal and
multi-modal stage one models. With the encoders frozen,
the decoders were then trained. As the only difference was
the frozen encoder, performance gaps demonstrated the in-
sufficient unleashing of modalities in multi-modal training.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 2. Two key observations on multi-modal SSC models. (a) Performance drops of “multi-modal encoders” compared to single-
modal counterparts, validating insufficient unleashing of modalities in joint training. “Our method” demonstrates significantly enhanced
encoder capabilities. (b) “Diverging training/validation curves” of baseline and the variant AMMNet, indicating overfitting issues. Under
the adversarial training scheme L(D,G), our model alleviates overfitting and achieves “steadily increasing performance”.

As shown in Figure 2 (a), employing the multi-modal RGB
encoder led to a performance drop of 0.37% in terms of
SSC-mIoU compared to utilizing the single-modal RGB en-
coder, on the NYU dataset [29]. Similarly, adopting the
multi-modal TSDF encoder incurred a 0.51% decrease in
SSC-mIoU compared to the single-modal TSDF encoder.
Observation 2: Deep SSC models trained with limited
scene data are prone to overfitting. To validate this ob-
servation, we examined the training processes of a base-
line model [34] and a variant of our AMMNet without the
proposed adversarial training scheme L(D,G). We observed
severe overfitting behaviors, where models first reached op-
timal validation performance but further training led to in-
creasing divergence between training and validation. As il-
lustrated in Figure 2, the baseline model [34] (dotted green
line) achieved the best validation score in the middle of
training, while later epochs led to a 22.8% SSC-mIoU in-
crease on the training set but a 2.8% SSC-mIoU drop on
the validation set. A similar divergence was observed for
the AMMNet w/o L(D,G) (solid green line), validating that
SSC models tend to overfit the training data.

To address these issues, we propose an Adversarial
Modality Modulation Network (AMMNet), a novel SSC
framework to better unleash the potential by optimizing gra-
dient updating. A conceptual illustration is presented in
Figure 1 (c), it consists of two key components designed
to address the identified issues. 1) A cross-modal modula-
tion is introduced to better unleash the potentials of indi-
vidual modalities. With inter-dependent gradient updating
across modalities, it can stimulate the encoders to fully un-
leash the representations of RGB and TSDF in joint train-
ing. Specifically, it adaptively recalibrates the RGB fea-
tures by incorporating information from the TSDF. As illus-
trated in Figure 2 (a), compared to the encoder in the multi-
modal baseline [34] on the NYU [29] dataset, the RGB

and TSDF encoders in AMMNet demonstrate improved ca-
pabilities, with 1.01% and 1.12% higher SSC-mIoU, re-
spectively. 2) A customized adversarial training scheme is
developed to alleviate overfitting. The minimax competi-
tion in the scheme dynamically stimulates the continuous
evolution of the models. To provide effective supervision,
particularly for SSC, we construct two types of perturbed
ground truths: one with disrupted geometric completeness
and the other with randomly shuffled semantic categories.
These perturbed ground truths are fed to the discrimina-
tor as fake samples, explicitly enhancing the discriminator’s
ability to recognize flaws in both geometry and semantics.
Figure 2 (b) shows that by incorporating the proposed ad-
versarial training scheme, both the baseline model [34] and
our AMMNet achieve steadily increasing training and vali-
dation accuracy over epochs.

Our main contributions of AMMNet are thus two-fold.
1) we proposed a cross-modal modulation module to better
exploit single-modal representations in multi-modal learn-
ing. 2) we developed a customized adversarial training
scheme to prevent overfitting. Experimental results vali-
dated the effectiveness of our AMMNet, showing that it out-
performs state-of-the-art SSC methods by significant mar-
gins, e.g., improving SSC-mIoU by 3.5% on NYU [29] and
3.3% on NYUCAD [11] compared to previous methods.

2. Related Work

Semantic Scene Completion (SSC). SSC can be roughly
categorized into single-modal methods and multi-modal
methods based on the usage of input modalities. Single-
modal methods take only TSDF [7, 30] or points [38] con-
verted from depth as input. Volume-based methods like SS-
CNet [30] adopt 3D CNNs on TSDF. Point-based meth-
ods like SPCNet [38] avoid voxel discretization but are
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Figure 3. The overall framework of our AMMNet. It consists of three components: an image encoder for RGB input, a TSDF encoder
for TSDF input, and a decoder for final prediction. It has two novel modules: cross-modal modulations after the encoders and decoder
to recalibrate features, and a discriminator that distinguishes real/fake voxels to mitigate overfitting issues. The conv(k, s)/Deconv(k, s)
denotes 3D conv/deconv layer with kernel size k and stride s, and DDR(d, s) denotes DDR layer [17] with dilation d and stride s.

prone to noise. Single-modal inputs are limited in com-
plementary cues. Multi-modal methods can be further
grouped. Some methods process depth as 2D images us-
ing 2D CNNs [15, 17, 18, 20], which are less effective for
3D geometry. Other works encode depth as points [27, 33]
or TSDF [4, 34], and adopt dual-branch networks fusing
RGB, TSDF, and/or points, achieving state-of-the-art per-
formance. However, they overlook the problems of insuffi-
cient encoder feature learning and overfitting as observed in
our study. Our work is the first tailored solution addressing
these limitations for advanced multi-modal SSC.

Multi-Modal Learning. Multi-modal learning has at-
tracted increasing attention owing to the growing avail-
ability of multi-modal data. However, it does not always
achieve synergistic performance surpassing the sum of in-
dividual modalities [25]. The crux lies in the inadequate
harnessing of all modal information by most joint training
methods [26]. Prior works have explored various directions
to address this challenge. Hu et al. proposed a tempo-
ral multi-modal deep learning architecture that transforms
connected multi-modal restricted Boltzmann machines into
probabilistic sequence models, achieving more efficient
joint feature learning [16]. Du et al. referred to inferior
joint training outcomes as ”modality failure” and proposed
combining fusion objectives with uni-modal distillation [9].
Instead of designing complex joint training architectures,
we aim to enable fuller unleashing of modal representations
by proposing simple yet effective solutions - cross-modal
modulation and adversarial training.

Overfitting Problem in Deep Learning. Various strate-

gies have been explored to alleviate the overfitting prob-
lem in deep neural networks. They can be grouped into
three categories [1]: 1) Passive Methods, like neural archi-
tecture search [39] and ensembling [12], aim to determine
suitable model configurations before training starts. How-
ever, such static configurations lack the flexibility to adapt
to dynamic training processes. 2) Active Methods, include
techniques like Dropout [31], augmentation [28], and Nor-
malization [14]. In this category, the model architecture
remains unchanged, but certain model components are un-
leashed during each training step. 3) Semi-active Methods,
like pruning [24] and network construction [10], updates
the network by adding or removing neurons or connections.
Utilizing an adversarial training scheme also falls under this
category. Unlike other methods requiring complex network
search or design, our adversarial training scheme uses a
minimax game to stimulate the model evolution, alleviating
overfitting without architectural optimization. To our best
knowledge, this is the first attempt at utilizing an adversar-
ial training scheme to mitigate overfitting in SSC.

3. Preliminaries

The baseline model [34] for SSC typically contains an im-
age encoder for RGB input, a TSDF encoder for TSDF
input, and a decoder for final prediction. Specifically, the
RGB encoder extracts a D-channel 2D feature Fr from the
RGB input. To obtain 3D representations, a 2D-3D projec-
tion layer is applied to map Fr to visible surfaces based on
per-pixel depth values, while filling other areas with zeros.
This results in a 3D RGB feature Vr ∈ RD×Gx×Gy×Gz ,
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where Gx, Gy , and Gz denote the width, height, and depth
of the voxel grid. The TSDF encoder employs 3D con-
volutions to encode the input voxels to 3D feature maps
Vt ∈ RD×Gx×Gy×Gz . The projected 3D RGB feature Vr

is fused with Vt via element-wise addition as:

V̄cm = Vr +Vt. (1)

The fused feature V̄cm is fed into the decoder, which ap-
plies 3D convolutions with skip connection to generate the
completed voxel grid Ŷ ∈ R(C+1)×Gx×Gy×Gz , where C
is the number of classes and +1 is an additional channel
indicating voxel occupancy, i.e., empty or not.

This structure has been widely adopted as a basic frame-
work for multi-modal SSC models, such as [4, 34]. Such a
simple addition fails to fully unleash the potential of each
modality as illustrated in observation 1.

4. Adversarial Modality Modulation Network
In this section, we will elaborate on the proposed AMM-
Net. We introduce two key components in AMMNet to ad-
dress the aforementioned limitations of existing methods:
a cross-modal modulation module and a customized adver-
sarial training scheme.

4.1. Cross-Modal Modulation

The cross-modal modulation is expressed as a red circled
M in Figure 3. It adaptively recalibrates the RGB features
by incorporating information from the TSDF, which enables
an interdependent gradient updating across modalities. It
first transforms Vt into a scale Ms and a bias Mb using
two 1 × 1 × 1 convolutional layers. Ms and Mb share the
same shape as Vr. Then, it modulates Vr via an element-
wise operation, which is expressed as:

V̂cm = Vr ⊗ (1 + σ(Ms)) +Mb. (2)

where ⊗ denotes element-wise multiplication, and σ is
the activation function sigmoid. The recalibrated fea-
ture V̂cm is then fed to the decoder. Compared to the
element-wise addition operation in the baseline model [34],
our modulation enables interdependent gradient updating
across modalities. Specifically, the gradient, w.r.t. Vr, in
the modulation is formulated as:

∂L
∂Vr

=
∂L

∂V̂cm

⊗ (1 + σ(Ms)) (3)

where L is the loss function. The gradient w.r.t. Vr de-
pends on Vt via the scale term Ms. Similarly, the gradient
Vt depends on RGB contexts. In contrast, in the baseline
model [34], the gradient Vr is expressed as:

∂L
∂Vr

=
∂L

∂V̄cm
, (4)

which is independent of Vt and is not desirable.
Meanwhile, the cross-modal modulation enables an im-

proved forward fusion of the modalities. We will validate
through ablation studies in Sec. 5.5 that the interdependent
gradient updating plays a more critical role than the im-
proved modality fusion. As shown in Figure 3, we apply
the cross-modal modulation on the last two layers of the de-
coder features similarly. To match the resolution with the
decoder features, the TSDF feature Vt first goes through a
DownScale module, resulting in downscaled TSDF features
V′

t ∈ RD×Gx
2 ×Gy

2 ×Gz
2 . The resulting feature V′

t modu-
lates the second last decoder layer output. After that, V′

t

further goes through an UpScale module to restore the size
and is used to modulate the last decoder layer output in the
same way.

4.2. Adversarial Training

To prevent overfitting, a customized discriminator is de-
signed to introduce dynamic adversarial gradients. By com-
peting against the generator (i.e., the voxel predictor in this
work) in a minimax game, the discriminator provides con-
tinuous and adaptive supervision besides the static losses.
In SSC tasks, complete spatial structures and correct se-
mantic perceptions are vital. Accordingly, we customize
the discriminator in three aspects:
Geometry Completeness. To make the discriminator more
aware of geometry completeness, we construct additional
fake samples by perturbing the geometry of ground truth
voxels. Specifically, we randomly erase some non-empty
voxels in the ground truth maps to “empty”, by:

ȳG
i =

{
empty, rGi |rGi ∼U(0,1) ≤ pG

yi, otherwise,
(5)

where rGi is a random number that follows a uniform dis-
tribution U(0, 1), pG is the erasing probability, yi ∈ Y is
a voxel in the ground truth, ȳG

i ∈ ȲG is the geometrically
perturbed counterpart. This operation damages the integrity
of the 3D structures randomly. Using these examples (de-
noted as “fake”) in training, we force the discriminator to
learn to pay more attention to the completeness and conti-
nuity of geometric shapes, such as to feedback to and guide
the SSC voxel predictor to achieve high completeness.
Semantic Correctness. To force the discriminator to be
more aware of semantic correctness, we construct another
set of fake samples by shuffling semantic categories in the
ground truth. For a scene with m non-empty category la-
bels, we randomly select n ≤ m categories to introduce
perturbation, where n is also randomly determined. The
perturbation for a particular category cj can be formed as:

ȳS
i|i∈{yi=cj} =

{
Mapcj→ck,j ̸=k(yi), rSi |rSi ∼U(0,1) ≤ pSj
yi, otherwise,

(6)
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Methods Inputs
Scene Completion(%) SSC-mIoU(%)

Prec. Recall IoU ceil. floor wall win. chair bed sofa table TVs furn. objs. avg.

SSCNet [30] D 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

CCPNet [37] D 74.2 90.8 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5

DDRNet [17] RGB+D 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

AIC-Net [18] RGB+D 62.4 91.8 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3

3D-Sketch [4] RGB+D 85.0 81.6 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1

FFNet [35] RGB+D 89.3 78.5 71.8 44.0 93.7 41.5 29.3 36.2 59.0 51.1 28.9 26.5 45.0 32.6 44.4

CleanerS [34] RGB+D 88.0 83.5 75.0 46.3 93.9 43.2 33.7 38.5 62.2 54.8 33.7 39.2 45.7 33.8 47.7

PCANet [19] RGB+D 89.5 87.5 78.9 44.3 94.5 50.1 30.7 41.8 68.5 56.4 32.6 29.9 53.6 35.4 48.9

SISNetDLabv3 [2] RGB+D 92.1 83.8 78.2 54.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 52.4

CVSformerDLabv3 [6] RGB+D 87.7 82.1 73.7 46.3 94.3 43.5 42.8 46.2 67.7 66.0 39.2 43.2 53.9 35.0 52.6

AMMNet RGB+D 90.5 82.1 75.6 46.7 94.2 43.9 30.6 39.1 60.3 54.8 35.7 44.4 48.2 35.3 48.5

AMMNetDLabv3 RGB+D 88.7 84.5 76.3 49.2 94.2 47.0 41.7 52.4 68.1 66.4 46.4 52.4 58.3 41.1 56.1

Table 1. Result comparisons on the test set of NYU [29]. Results with “DLabv3” denote that these results are based on DeepLabv3 [3] as the
backbone network for RGB image feature extraction. Bold numbers represent the best performance.

where rSi is a random number that follows a uniform distri-
bution U(0, 1), pSj is a random perturbation probability for
category cj , Map(·) is an operation that transforms the cat-
egorical labels by mapping the class cj to a different class
ck, with j, k = 1, 2, . . . , C. Note that the category indices
j, k start from 1 instead of 0, as c0 denotes empty voxels
that remain unchanged. By discerning fakes with shuffled
semantics, the discriminator is compelled to develop a more
robust understanding of inter-class contexts. Its adversarial
gradients can thus feedback to and guide the SSC voxel pre-
dictor towards the increase of semantic correctness.
Structurally Lightweight. We adopt the lightweight DDR
layer as a basic building unit to avoid excessive overheads.
As illustrated in Figure 3, the discriminator network D con-
sists of a series of DDR layers with different strides, fol-
lowed by a few linear layers. It outputs a confidence score
indicating whether the input voxel is real or fake, providing
an overall understanding of the global structural layout and
semantic coherence. The overall adversarial training objec-
tive is thus as follows,

L(D,G) = min
G

max
D

[EY[logD(Y)] + EŶ[log(1−D(Ŷ))]]

+ EȲG [log(1−D(ȲG))]] + EȲS [log(1−D(ȲS))]]
(7)

where Ŷ is the output of G, i.e., the voxel predictor. It tries
to: 1) maximize the probability of correctly distinguishing
real/fake voxels by D; 2) minimize the probability of gen-
erated voxels by G being classified as real by D.

4.3. Overall Loss Function

The full training objective of the proposed AMMNet con-
tains two parts: the SSC loss LSSC and the proposed adver-
sarial loss L(D,G):

Lall = LSSC + βL(D,G), (8)

where β is a coefficient balancing the two parts. LSSC pro-
vides supervision for predicting voxels. Following [34], it
contains two terms:

LSSC = SCE(Ŷ,Y) + λSCE(Ŷ2D,Y2D), (9)

where SCE denotes the smooth cross entropy loss [32].
The first term is applied to the 3D voxel predictions. The
second term provides 2D supervision Y2D for the image
semantic prediction Ŷ2D. Specifically, Ŷ2D is obtained
by applying an additional convolutional layer on 2D RGB
features, and Y2D is obtained by back-projecting Y to 2D
space as described in [34]. λ is a coefficient balancing the
two loss terms.

5. Experiments

5.1. Datasets and Evaluation Metrics

Datasets. Following [4, 13, 30], we conduct experiments
on NYU [29] and NYUCAD [11] datasets which are com-
mon indoor benchmarks of SSC. NYU contains 1,449 noisy
RGB-D images captured by Kinect sensors. NYUCAD is
synthesized from CAD models and has noise-free depth.
We use the standard split with 795 images for training and
654 for testing. To select values of hyperparameters, we
randomly split one more small set of 100 samples from the
training set and take it as a validation set.
Evaluation Metrics. Two metrics are used for evaluation:
1) Scene Completion (SC) IoU measuring voxel occupancy
prediction accuracy for occluded voxels. It evaluates scene
completion capability, and for it, we report precision, re-
call, and IoU; 2) Semantic Scene Completion (SSC) mIoU
measures the accuracy of predicting semantic labels for oc-
cupied voxels, where the per-class IoU, as well as the mean
IoU (mIoU) across all classes, are reported.
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Methods Inputs
Scene Completion(%) Semantic Scene Completion(%)

Prec. Recall IoU ceil. floor wall win. chair bed sofa table TVs furn. objs. avg.

SSCNet [30] D 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

CCPNet [37] D 91.3 92.6 82.4 56.2 94.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2

DDRNet [17] RGB+D 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

AIC-Net [18] RGB+D 88.2 90.3 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

3D-Sketch [4] RGB+D 90.6 92.2 84.2 59.7 94.3 64.3 32.6 51.7 72.0 68.7 45.9 19.0 60.5 38.5 55.2

PCANet [19] RGB+D 92.1 91.8 84.3 54.8 93.1 62.8 44.3 52.3 75.6 70.2 46.9 44.8 65.3 45.8 59.6

SISNetDLabv3 [2] RGB+D 94.1 91.2 86.3 63.4 94.4 67.2 52.4 59.2 77.9 71.1 51.8 46.2 65.8 48.8 63.5

CVSformerDLabv3 [6] RGB+D 94.0 91.0 86.0 65.6 94.2 60.6 54.7 60.4 81.8 71.3 49.8 55.5 65.5 43.5 63.9

AMMNet RGB+D 92.4 88.4 82.4 61.3 94.7 65.0 38.9 58.1 76.3 73.2 47.3 46.6 62.0 42.6 60.5

AMMNetDLabv3 RGB+D 92.8 89.0 83.3 65.5 94.6 65.8 52.0 64.9 81.1 78.2 57.6 66.9 67.4 45.1 67.2

Table 2. Result comparisons on the test set of NYUCAD [11]. Results with “DLabv3” denote that these results are based on DeepLabv3 [3]
as the backbone network for RGB image feature extraction. Bold numbers represent the best performance.

(a) RGB (Depth) (c) SSCNet (d) 3D-Sketch (g) Ground-Truth(b) TSDF (e) CleanerS (f) AMMNet

Figure 4. Qualitative comparison on challenging indoor scenes from the test set of NYU [29] with state-of-the-art methods, including
SSCNet [30], 3D-Sketch [4], and CleanerS [34].

5.2. Implementation Details

Network Architectures. For the image encoder, the de-
fault setting follows [34] by adopting Segformer-B2 [36]
backbone with four MLP layers for feature extraction. The
image encoder initializes from ImageNet [5] pre-trained
weights and freezes the backbone while keeping the MLP
head trainable. To facilitate a fair comparison with CVS-
former [6], we alternatively incorporate the pre-trained
DeepLabv3 model as the image encoder, which was ob-
tained by training for 1,000 epochs on the RGB image seg-
mentation task and freeze its parameters. The rest of the
network trains from scratch. The TSDF encoder consists of
three layers of 3D convolution, two DDR [17] blocks, and
two layers of 3D deconvolution. The discriminator consists
of four DDR [17] layers with stride 2, 2, 3, 1 respectively
for downsampling, followed by flattening and two linear
layers for prediction. The feature channel size D = 256
and the 3D resolution Gx, Gy, Gz of prediction is set to
(60, 36, 60). In the loss function, λ is set as 0.25, follow-
ing [34], β is set as 0.005. In the GT perturbations, the
probability PG, PS

j are set as random variables uniformly
distributed between 0.1 and 0.9, a detailed analysis for the
hyperparameters is given in Sec. 5.5.
Training Settings. We implement all experiments using

PyTorch on 2 NVIDIA 3090 GPUs. The model is optimized
with AdamW [23] using a weight decay of 0.05 and an ini-
tial learning rate of 0.001. The learning rate is scheduled in
a cosine decay policy [22] with a minimum value of 1e-7.
Training is conducted for 150 epochs with a batch size of
4. Common data augmentation is applied, including resize,
random crop, flip for 2D images, and random x/z axis flip
as well as x-z permutation for 3D volumes, following [8].

5.3. Comparisons with State-of-the-Arts.

To evaluate AMMNet, we compare it against several recent
state-of-the-art methods, including single-modal methods
SSCNet [30] and CCPNet [37], and multi-modal methods–
DDRNet [17], AIC-Net [18], 3D-Sketch [4], FFNet [35],
CleanerS [34], PCANet [19], SISNet [2], and CVS-
former [6].
Quantitative Comparisons. 1) Results on NYU [29]. Ta-
ble 1 shows AMMNet achieves superior performance on
real NYU [29] data, outperforming CVSformer [6], the
previous best method, by 3.5% for SSC-mIoU. Moreover,
CleanerS [34] has the most relevant setting as our AMM-
Net, using the same RGB and TSDF inputs, and the same
baseline architecture, while relying on clean CAD data and
a complex distillation pipeline. In contrast, our approach
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Methods M L(D,G) LSSC SC-IoU SSC-mIoU

Baseline ✓ 71.6% 46.1%

AMMNet ✓ ✓ 74.0% 47.4%

AMMNet ✓ ✓ 74.4% 47.7%

AMMNet ✓ ✓ ✓ 75.6% 48.5%

Table 3. Ablation studies of different components in AMMNet on
the test set of NYU [29].

Methods L(D,G) M1st M2nd M3rd SC-IoU SSC-mIoU

AMMNet ✗

✓ 73.5% 47.1%

✓ ✓ 74.0% 47.2%

✓ ✓ ✓ 74.0% 47.4%

AMMNet ✓

✓ 74.7% 47.8%

✓ ✓ 74.8% 48.2%

✓ ✓ ✓ 75.6% 48.5%

Table 4. Performance comparison of progressively integrating
cross-modal modulation modules in AMMNet on the test set of
NYU [29], under settings with and without adversarial training.

simply unleashes the modality potentials, achieving even
better results in a simpler manner. 2) Results on NYU-
CAD [11]. Table 2 presents results on synthetic NYU-
CAD [11] dataset. AMMNet demonstrates noticeable ad-
vantages, achieving a top SSC-mIoU of 67.2%. Clean CAD
environments enable more effective feature learning, thus
the benefits of cross-modal modulation become more no-
ticeable, as it can fully exploit the representation power of
RGB and TSDF without interference from noise.
Qualitative Comparisons. Figure 4 presents two challeng-
ing scene completion examples from the NYU [29] dataset
to qualitatively compare AMMNet against other methods.
AMMNet excels in reconstructing semantically accurate
parts, correctly predicting the elongated table and mirror
highlighted in red boxes, which other methods fail to cap-
ture. Equally importantly, AMMNet completes geometri-
cally plausible structures behind walls, generating empty
spaces rather than clutter highlighted in dotted red boxes.
Such completion aligns better with natural layouts. To-
gether, these examples showcase AMMNet’s strengths - its
ability to produce semantically and geometrically faithful
scene reconstructions, exceeding prior arts.

5.4. Ablation Study

To analyze the contribution of each proposed component,
we conduct ablation studies on the NYU [29] dataset by
adding them incrementally to the baseline model. Fol-
lowing [34], the baseline only contains the basic encoder-
decoder architecture without cross-modal modulation (M)
and adversarial training (L(D,G)). As presented in Table 3,
it achieves 46.1% SSC-mIoU and 71.6% SC-IoU.
Effectiveness of M. When integrating the proposed M

Methods FeatFusion GradUpdating SC-IoU SSC-mIoU

AMMNet⋆ ✓ 73.2% 46.5%

AMMNet⋆ ✓ 74.1% 46.9%

AMMNet⋆ ✓ ✓ 73.5% 47.1%

Table 5. Ablation study of two benefits in modulation module
M1st on the test set of NYU [29], under a simplified AMMNet⋆

setting where the latter two modulation modules are removed.

Methods Geometry Semantic Discriminator SC-IoU SSC-mIoU

AMMNet† ✓ 74.0% 46.7%

AMMNet† ✓ ✓ 74.4% 46.6%

AMMNet† ✓ ✓ 74.0% 47.1%

AMMNet† ✓ ✓ ✓ 74.4% 47.7%

Table 6. Ablation study of the GT perturbations in adversarial
training on the test set of NYU [29], under a simplified AMMNet†

setting where all the modulation modules are removed.

into the baseline model, the performance is improved by
2.4% in SSC-mIoU and 1.3% in SC-IoU, as presented in
the 2nd row of Table 3. Meanwhile, regarding the adversar-
ial trained model in the 3rd row as a strong baseline, inte-
grating M can still bring an improvement of 1.2% SC-IoU
and 0.8% SSC-mIoU. This demonstrates the importance of
M for enabling superior semantic scene understanding even
over a strong baseline.
Effectiveness of L(D,G). Similarly, adding adversarial
training to the baseline improves the SSC-mIoU by 1.6%
and SC-IoU by 2.8% as shown in the 3rd row of Table 3.
Without adversarial training in our AMMNet, we observe a
performance drop of 1.1% in SSC-mIoU and 1.6% in SC-
IoU as in the 2nd row. This proves the regularization effect
of adversarial training in preventing overfitting. Further-
more, as depicted in Figure 2(b), the performance curves
over training epochs validate that incorporating adversarial
training leads to steadily increasing SSC-mIoU and SC-IoU
on both train and test sets. This demonstrates that the per-
formance gains of adversarial training stem from enabling
stable optimization with dynamic competition in gradient
updating, instead of potential overfitting to the training data.

In summary, the ablation studies clearly validate the effi-
cacy of the key components of AMMNet. The combination
of both leads to the best performance with an overall im-
provement of 2.4% in SSC-mIoU and 4.0% in SC-IoU.

5.5. Discussions

Analysis of Progressive Modulation. To further analyze
the impact of cross-modal modulation, we conduct experi-
ments by progressively adding modulation components. For
simplicity, we denote the three modulation modules in Fig-
ure 3 from left to right as M1st, M2nd and M3rd re-
spectively. As shown in Table 4, compared with the base-
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Figure 5. Sensitivity analysis of key hyperparameters based on the random split validation set from NYU [29].

line model, incorporating M1st brings substantial gains of
1.0% SSC-mIoU and 1.9% SC-IoU, validating the benefit
of enriching uni-modal features with cross-modal contexts.
However, further adding M2nd and M3rd only leads to
minor improvements over using M1st alone. We hypoth-
esize this is because the model capacity is still limited by
overfitting. With the proposed adversarial training scheme,
progressively integrating more modulation modules consis-
tently improves the performance, as presented in the lower
part of Table 4.

In summary, with proper regularization, the combination
of M1st, M2nd and M3rd leads to the best results by suf-
ficiently modulating both shallow and deep representations.
Analysis of Modulation Benefits. As discussed in Sec. 4,
compared to addition, modulation provides two benefits: 1)
inter-dependent gradient updating across modalities, and 2)
enhanced forward feature fusion. To analyze their contri-
bution, we simplify AMMNet to only have the first modu-
lation M1st, denoted as AMMNet⋆. Based on AMMNet⋆,
we compare two variants: 1) replacing M1st with addition
but keeping inter-dependent gradient updating; 2) detach-
ing M1st gradient while retaining forward feature calibra-
tion. As shown in Table 5, detaching inter-dependent gra-
dient causes an SSC-mIoU drop of 0.6%, while replacing it
with addition leads to a smaller 0.2% decrease. This sug-
gests inter-dependent gradient updating provides more con-
tribution, while forward calibration also complements the
improvements.
Analysis of Adversarial Training. To thoroughly ana-
lyze the gains from adversarial training, we built an ablated
AMMNet, denoted as AMMNet†, by removing all cross-
modal modulation modules. As shown in Table 6, compared
to the baseline model, utilizing the developed discriminator
alone (1st row) significantly improves geometric complete-
ness, increasing SC-IoU by 2.4%. Adding fake samples that
disrupt geometric completeness (2nd row) further enhances
geometric perception, achieving an additional 0.4% SC-IoU
gain. However, without guidance on semantic validity, it
achieves slightly inferior semantic performance compared
to the discriminator-alone setting, with a minor 0.1% SSC-
mIoU drop. Introducing fake samples damaging semantic
correctness (4th row) provides better semantic supervision,

leading to a noticeable improvement in semantic accuracy,
increasing SSC-mIoU by 1.1% over the geometry-only set-
ting. This verifies the complementary effects of the two per-
turbation strategies in improving scene completion.
Analysis of Hyperparameter Sensitivity. We analyze the
sensitivity of the key hyperparameters based on the ran-
domly split validation set: the loss weight β in the loss func-
tion, and the probabilities pG and pS of generating geomet-
rically/semantically perturbed fake GT, where the subscript
j in pSj is omitted since the same probability is used for per-
turbing each semantic category here. As Figure 5 (a) shows,
an overly large loss weight for the adversarial training loss
like 0.05 overwhelms the task-specific loss LSSC , harm-
ing the performance. AMMNet selects β = 0.005 which
achieves optimal results.

In the sensitivity analysis for the perturbation probabil-
ities pG and pS , we build on the ablated AMMNet† with
cross-modal modules removed. The experiments show per-
formance remains stable across a wide range of fixed val-
ues for both pG and pS , with only minor variations ob-
served. This indicates the robustness of the proposed ad-
versarial training scheme across different perturbation lev-
els. To avoid hyperparameter tuning burden, we randomly
sample probabilities within [0.1, 0.9] for both pG and pS ,
avoiding too little noise below 0.1 or too much above 0.9.

6. Conclusions
In this work, we identify two limitations of existing RGB-
D based semantic scene completion methods: ineffective
feature learning and overfitting problems. To address these
issues, we propose a new deep learning framework AMM-
Net. The core techniques include cross-modal modulation
to better exploit single-modal representations, and adversar-
ial training to prevent overfitting to the training data. Exten-
sive experiments on NYU and NYUCAD datasets demon-
strate AMMNet’s state-of-the-art performance.
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