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Figure 1. Our method detects consistent and reasonable 3D structure for general object categories from a single 2D image. For training,
our method only requires a collection of images from the same category without any additional information.

Abstract

Understanding 3D object structure from image collec-
tions of general object categories remains a long-standing
challenge in computer vision. Due to the high relevance
of image keypoints (e.g. for graph matching, controlling
generative models, scene understanding, etc.), in this work
we specifically focus on inferring 3D structure in terms
of sparse keypoints. Existing 3D keypoint inference ap-
proaches rely on strong priors, such as spatio-temporal con-
sistency, multi-view images of the same object, 3D shape
priors (e.g. templates, skeleton), or supervisory signals
e.g. in the form of 2D keypoint annotations. In contrast,
we propose the first unsupervised 3D keypoint inference ap-
proach that can be trained for general object categories
solely from an inhomogeneous image collection (containing
different instances of objects from the same category). Our
experiments show that our method not only improves upon
unsupervised 2D keypoint inference, but more importantly,
it also produces reasonable 3D structure for various object
categories, both qualitatively and quantitatively.

1. Introduction

Understanding 3D object structure from 2D images is a fun-
damental problem in computer vision that has been studied

for decades. A range of different 3D structure representa-
tions have been considered, including keypoints [14, 25, 59,
69], meshes [55, 56, 62], and voxels [35, 45, 47]. Among
these, keypoint-based 3D structure representations have the
strong advantage that they are simple and flexible, while at
the same time being highly relevant for diverse downstream
tasks. However, obtaining 3D keypoints from 2D images is
hard due to unknown depth, pose variations, different ap-
pearance, and the lack of explicit geometric information.
Due to these difficulties, prior works mostly focus on 2D
keypoints detection instead of 3D [9, 12, 31, 36, 66].

In this work we investigate whether it is possible to di-
rectly obtain 3D keypoints without using any explicit su-
pervision. Our work is motivated by the fact that 2D image
keypoints are observations of points in 3D space that are
projected onto the 2D image plane. By explicitly under-
standing and inferring 3D geometry we are able to improve
upon the quality of detected keypoints. Specifically, we
experimentally demonstrate that projecting our predicted
3D keypoints onto the image plane leads to more reliable
2D keypoints compared to existing 2D keypoint predictors.
Moreover, our method can serve the increasing amount of
tasks that rely on 3D keypoints, e.g. 3D structure-aware
generative models [58], 3D avatar generation [34], or 3D
reconstruction [55, 56]. Despite keypoint prediction being a
well-studied problem in the 2D domain, 3D keypoint infer-
ence is under-explored and we thus specifically contribute
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towards this area.
Existing works on inferring 3D keypoints either use 3D

point clouds or 2D images/videos from the same object in-
stance as input data. While the former is conceptually a
subset selection problem, in this work we solely focus on
the more challenging latter case. Manually obtaining 3D
keypoints in image data is much harder than annotating
2D keypoints. Thus, there are only very few datasets with
3D keypoints annotations, which in turn motivates unsuper-
vised learning strategies that do not require expensive or
even infeasible 3D annotations for training. Existing works
that address 3D keypoint inference from image data use for
example 2D keypoint annotations [38, 44], multiple views
with known poses [11, 35, 48], spatial-temporal consistency
in videos [9, 15], 2D/3D skeleton [55, 56] or templates [14].
In stark contrast, in this work we relax the assumptions
about the availability of such supervisory signals and train a
3D keypoint predictor merely from category-specific image
collections as input. Our method builds upon the assump-
tion that object instances from the same category should
have a similar 3D structure with moderate intra-class vari-
ations (e.g. faces, horses, birds). Table 1 summaries the
differences among existing methods and Fig. 2 gives a visu-
alization of some additional information within these meth-
ods and the comparison to our setting.

Methods Unsup. w/o Prior Cat.-agnostic

Bulat et al. [3] ✗ ✓ ✓
Gou et al. [10] ✗ ✓ ✓
Zhao et al. [68] ✗ ✓ ✓
Tulyakov et al. [50] ✗ ✓ ✓
Pavlakos et al. [41] ✗ ✓ ✗
Zhang et al. [66] ✗ ✓ ✗
He et al. [14] ✗ ✗ ✓
Mildenhall et al. [35] ✓ ✗ ✓
Wu et al. [54] ✓ ✗ ✓
Moniz et al. [37] ✓ ✗ ✗
Supasorn et al. [48] ✓ ✗ ✓
Novotny et al. [38] ✓ ✗ ✓
Park et al. [40] ✓ ✗ ✓
Chen et al. [5] ✓ ✗ ✓
Reddy et al. [44] ✓ ✗ ✓
Zhou et al. [69] ✓ ✓ ✗
Dundar et al. [9] ✓ ✓ ✗
Xu et al. [59] ✓ ✓ ✗
Honari and Fua [15] ✓ ✗ ✓
Ours ✓ ✓ ✓

Table 1. In comparison to existing 3D keypoints inference meth-
ods, our approach combines a unique set of desirable properties: it
can be trained in an unsupervised manner without requiring any
additional information; it does not require any shape prior and
can thus be applied to different object categories.

Figure 2. (Top row from left to right) Existing methods require dif-
ferent additional information for 3D structure inference, e.g. mul-
tiple views (from [12]), 2D keypoint annotations (from [12]), and
a symmetry prior (from [54]). (Bottom row) Our setting does not
require such information but instead also infers a 3D shape space
model that is learned in an unsupervised manner.

Our method enables to infer 3D keypoints from
category-specific image collections without relying on ad-
ditional prior information. To this end, we build upon the
recent unsupervised 2D keypoint detection method by He
et al. [12] and extend it by additionally learning a sparse
3D shape space model to represent 3D structure. To regu-
larise the 3D structure, a self-supervised re-projection loss
is introduced to couple 3D keypoints with corresponding
2D keypoints. By combining our 3D shape space model,
re-projection loss, and additional regularisation loss terms,
we demonstrate that our proposed method not only im-
proves 2D keypoint accuracy, but also produces reasonable
3D structure. We summarise our main contributions as:

• For the first time we obtain 3D keypoints from general
category-specific image collections without relying on
additional prior information.

• Our method obtains reasonable 3D keypoints based on
our learnable 3D shape space model that is fused with a
state-of-the-art unsupervised 2D keypoint detector.

• We demonstrate that our method both improves unsuper-
vised 2D keypoint detection accuracy and obtains reason-
able 3D shape on different benchmarks.

2. Related Work

In the following we summarize relevant 2D and 3D key-
point prediction methods.
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2.1. 2D Keypoint Detection

Supervised methods. Various domain-specific super-
vised 2D keypoint detection methods have been proposed
that are trained on a large amount of labeled datasets,
e.g. for faces [2, 57, 71], human bodies [1, 4, 18, 21, 32],
or vehicles [43], etc. However, labeling keypoints for im-
ages is time-consuming, laborious and error-prone, espe-
cially when there are occlusions, extreme pose variations, or
appearance changes. As a consequence, labeling errors will
subsequently influence network training and downstream
task performance.

Unsupervised methods. Due to these reasons, an in-
creasing amount of attention is paid to unsupervised meth-
ods. One popular concept is multi-view geometric con-
sistency. Thewlis et al. [49] detect keypoints by recover-
ing transformations between one image and its deformed
counterpart from pre-defined deformations. Without relying
on pre-defined deformations, various video-based methods
[9, 19, 20, 22, 24, 36, 46] infer keypoints based on a tempo-
ral coherence prior. Instead of using multiple views as in-
put, Xu et al. [60] use unpaired input to disentangle appear-
ance and poses by conducting a swapping-reconstruction
strategy and encouraging reconstructed images to resem-
ble the original. He et al. [13] and He et al. [11] use a
generative adversarial training framework to constrain key-
point locations by interpreting them as latent codes for an
image generator. However, collaboratively learning inter-
mediate keypoints and complex adversarial models is un-
stable and does not scale. Starting from some initial point
sets, Mallis et al. [31] filter keypoints by optimizing alter-
natively between clustering of keypoints features across a
dataset, and training a keypoint detector with pseudo-labels
offered by cluster centers. However, this method depends
heavily on the initial point set. Zhang et al. [67] address
single-image keypoint inference using an auto-encoder ar-
chitecture to interpret keypoints as a latent representation,
while reconstructing the input image from the concatenated
keypoints and respective pixel feature descriptors. He et al.
[12] use a similar idea by representing keypoints as latent
features in an auto-encoder manner. However, they recon-
struct the input from an edge map created from keypoints
combined with random masking of appearance information.
In this way, paired input data is not needed to disentangle
appearance and poses, which makes this method applicable
in wider scenarios.

2.2. 3D Keypoint Inference

Compared to 2D keypoints detection, 3D keypoints detec-
tion is an under-explored topic, particularly in unsupervised
settings without strong priors.

Supervised methods. Some earlier methods [3, 10, 68]
use a two-stage strategy that infers 2D keypoints first, and
then predicts depth for these keypoints. These methods

not only need 3D keypoints or depth annotations for train-
ing, but are also sub-optimal due to their two-stage proce-
dure. Tulyakov et al. [50] generalize a cascaded regression
method to 3D for estimating 3D face landmarks in an end-
to-end manner from images. Pavlakos et al. [41] general-
ize 2D heatmaps directly to 3D by inferring 3D keypoints,
while Zhang et al. [66] improve this method via a joint voxel
and coordinate regression to avoid the curse of dimension-
ality. However, these methods all needs 3D keypoints an-
notations, so that their scope of application is limited due
to the absence of annotated 3D keypoints in many cases.
Reddy et al. [44] propose a trifocal loss to learn (possibly
occluded) 3D keypoints from multiple views by using 2D
keypoints annotations. Closely related to 3D shape infer-
ence, sparse non-rigid structure-from-motion methods also
take 2D keypoints as input to infer 3D structure of objects
[8, 23, 38–40, 52, 64, 65]. Based on [12], He et al. [14]
predict 3D keypoints using dozens of images with 2D an-
notations together with a skeleton template.

Unsupervised methods. In order to get rid of sub-
optimal two-stage approaches or 2D/3D keypoints anno-
tations, some works aim at unsupervised 3D structure in-
ference. Supasorn et al. [48] use paired views and known
transformations between them as input to infer 3D key-
points. Chen et al. [5] use multiple views as input to in-
fer 3D keypoints by averaging 2D keypoints and depth val-
ues detected in each view. Using a pair of views as input,
Honari and Fua [15] propose a two-stream auto-encoder to
encode 2D keypoints of each view, and then use triangula-
tion to lift two sets of 2D keypoints to 3D. Various unsu-
pervised 3D human pose estimation methods [25, 59, 69],
either use multiple views or video as input, or they rely on
some domain-specific losses as constraints.

Different from all mentioned 3D keypoints inference set-
tings, our method does not rely on 2D/3D keypoints anno-
tations, 3D template/priors/skeletons, multiple views/video,
or domain-specific 3D structure. Instead, for the first time
we infer 3D structure only from category-specific collec-
tions of images for a broad range of object categories.

3. Background
Our method builds upon the recent AutoLink method [12]
that addresses the task of unsupervised keypoint detection
in 2D. In this section we give a brief overview of AutoLink.

AutoLink comprises an auto-encoder with 2D keypoints
as bottleneck latent embeddings. For training, it employs
a reconstruction loss that compares the input image with a
reconstructed image that is obtained based on edge maps
and a randomly masked input image.

Formally, given an image I ∈ RW×H×3, the en-
coder takes I as input and outputs K heatmaps, denoted
as H1, H2, . . . ,HK , where Hi ∈ [0, 1]

W×H . The i-th
heatmap represents the likelihood for each pixel to be the
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Figure 3. Overview of our pipeline. We sample images I from a category-specific image collection, which are then piped into an encoder
that predicts K heatmaps. These heatmaps are used to extract a K × 2 keypoint matrix P 2D . From P 2D , an edge map S is constructed,
which is then, together with a randomly masked version of the input image Imasked, fed into the decoder to reconstruct image I ′. Moreover,
an MLP takes P 2D as input and predicts with different heads, the coefficients α, the 3D translation T , and the 3D rotation R. At the same
time we optimize for a globally trainable mean shape M and basis B, which define a 3D shape space model used to represent our 3D
keypoints, see Eq.(5). The main difference to AutoLink [12], which predicts 2D keypoints only, is that we infer 3D keypoints and a 3D
shape space model.

specified keypoint i, where K represents the total number of
different keypoints. With that, the location of each 2D key-
point P 2D

i = (xi, yi), i = 1, 2, . . . ,K can be represented
as

P 2D
i =

∑
p

Hi(p)∑
p′ Hi(p′)

p, (1)

where p, p′ ∈ [−1, 1] × [−1, 1] are normalized pixel coor-
dinates.

For each pair of 2D keypoints, P 2D
i and P 2D

j , 1 ≤ i, j ≤
K, the method constructs an edge map Sij ∈ RH×W de-
fined on normalized pixel coordinates p via

Sij(p) = exp(−dij(p)/σ
2), (2)

where dij(p) is the L2 distance of pixel p to the line segment
connecting P 2D

i and P 2D
j , and σ ∈ R controls the thickness

of the edge. The final edge map S ∈ RW×H summarizing
all edges between all keypoints is given by

S(p) = max
1≤i,j≤K

ωijSij(p), (3)

where ωij are learnable parameters that are shared by all
images and optimized during training.

Finally, the edge map S and the (randomly masked) in-
put image Imasked are concatenated along the channel axis
and fed into a decoder to reconstruct the input. The whole
AutoLink pipeline is trained end-to-end only based on the
reconstruction loss

Lrec = ∥F (D(S ⊙ Imasked))− F (I)∥2, (4)

where D is the decoder, F is a pre-trained and fixed feature
extractor (i.e. VGG network), ⊙ represents channel-wise
concatenation, and Imasked is the randomly masked original
input image with 80% mask area.

4. Unsupervised 3D Structure Inference
In the following we explain our method. To this end, we in-
troduce our 3D shape space model for inferring 3D keypoint
structure in Section 4.1. In section 4.2 we explain estimat-
ing the object pose. Section 4.3 introduces our unsupervised
losses. Our overall pipeline is summarized in Fig. 3.

4.1. Trainable 3D Shape Space Model

Rather than working with high-dimensional and expensive
3D heatmaps, we infer 3D geometry by training a 2D key-
point predictor together with a 3D shape space model in an
end-to-end manner, see Fig. 3. Our encoder first predicts
2D keypoint heatmaps from a given 2D image, which are
then transformed into a 2D keypoint matrix using Eq. (1).
Then a multi-layer perceptron (MLP) takes the 2D keypoint
matrix as input to predict input-dependent coefficients α of
a 3D shape model. At the same time, the mean shape M
and the set of basis vectors B of this 3D shape space model
are optimized as global trainable parameters. Overall, this
allows to obtain the 3D keypoints (in canonical pose) as

P 3D
canonical = mat(M + αB), (5)

where M is the mean shape of size 1 × 3K, B is the ba-
sis matrix of size n× 3K and α are the coefficients of size
1 × n, with n denoting the number of basis functions. The
operation mat() reshapes a 1 × 3K row vector to a K × 3
matrix. By training these components simultaneously with
our 2D heatmap predictor, we can ensure that during train-
ing our 2D heatmap predictor receives gradients that contain
explicit information about 3D geometry.

We emphasize that opposed to most existing 3D shape
space learning methods that require known keypoint loca-
tions, we simultaneously optimize for keypoint locations

10707



while using our trainable 3D shape space model as 3D
geometry-aware regularizer. Unlike non-rigid structure-
from-motion methods [8, 38–40] that utilize similar ideas,
our approach does not require multiple images of the same
object from different views. Instead, we use an inhomo-
geneous collection of category-specific images, where the
3D shape space model serves as flexible and adaptive shape
prior that can adjust to the different geometries of objects
(within the considered object category). As such, our ap-
proach is much more flexible, since it can handle single-
view image collections as for example available in web col-
lections.

4.2. Pose Estimation

After getting the 3D keypoints P 3D
canonical (in canonical pose)

using Eq. (5), an input-dependent transformation matrix and
scaling factor are estimated that transform P 3D

canonical to the
posed 3D keypoints P 3D, such that the projection of P 3D

onto the 2D image plane coincides with the 2D structure of
the object within the 2D image.

Non-rigid object deformations are taken care of by the
3D shape model, so that we represent the object pose solely
via a rigid body transformation matrix (R, T ) ∈ SE(3).
With the 2D keypoint matrix P 2D as input, an MLP com-
putes the translation T ∈ R1×3 and the rotation angles
Θ ∈ R1×3, which are converted to a rotation matrix via
the Rodrigues formula [30]:

R = I3 +
sin(θ)

θ
[Θ]× +

1− cos(θ)

θ2
[Θ]

2
× , (6)

where θ = ∥Θ∥ and the skew-symmetric operator [ · ]×
turns a vector in R1×3 into a skew-symmetric matrix. Fi-
nally the 3D keypoint matrix P 3D is given as

P 3D = P 3D
canonicalR+ 1KT, (7)

where 1K is a K-dimensional vector of all ones.

4.3. Unsupervised Losses

Our re-projection loss penalizes the discrepancy between
the projected 3D keypoints and the 2D heatmap keypoint
predictions, i.e.

Lproj = ∥P 3DΠ− P 2D∥F , with Π =

s1 0
0 s2
0 0

 (8)

being a simple orthographic projection (of P 3D from
Eq. (8)) combined with scaling s = (s1, s2), which is pre-
dicted by an MLP. This loss ensures consistent 2D keypoint
predictions between different images, since the 3D shape
structure is shared across the whole image collection via
the 3D shape space model.

However, combining Lrec and Lproj alone will lead to de-
generate solutions (i.e. all keypoints converge to a single
location). In order to avoid this situation, we consider the
repulsion loss

Lrep = −
K∑
i=1

∥pi −N (pi)∥2 exp(−∥pi −N (pi)∥2/h),

(9)
where pi is a 2D keypoint (a row of P 2D), N (pi) is the
nearest keypoint (other than pi) of pi in P 2D, and h is a
temperature parameter that controls the repulsion decrease
rate. The effect of Eq. (9) is that neighboring keypoints do
not move too close to each other.

Our total loss combines all terms and is defined as

L = Lrec + λ1Lproj + λ2Lrep, (10)

where λ1, λ2 are weights of the individual terms.

5. Experiments
We evaluate our method on various datasets and compare
to existing keypoint prediction methods. Implementation
details are provided in the supplementary document.

5.1. Experimental Setup

Datasets. We evaluate our method on six datasets:
CELEBA WILD [28], CUB-200-2011 [51], 300W-LP
[71], AFLW2000-3D [71], HORSE [70] and AFHQ [6].
The CELEBA WILD dataset [28] contains celebrity faces in
in-the-wild environments, along with 2D keypoint annota-
tions for each image. Following the setting of He et al.
[12], we remove the images whose face covers less than
30% of the area. The 300W-LP [71] dataset is a large syn-
thetic face dataset containing 61,225 samples across large
poses (1,786 from IBUG, 5,207 from AFW, 16,556 from
LFPW and 37,676 from HELEN). The AFLW2000-3D
dataset was introduced along with the 300W-LP dataset
by the same data acquisition method, containing 2,000 fa-
cial images, each with 68 3D keypoints annotations. We
train on the 300W-LP dataset and test on the AFLW2000-
3D dataset to evaluate the quantitative 3D keypoint detec-
tion performance. We use subsets from the AFHQ dataset
[6], namely CAT, DOG, TIGER, FOX, CHEETAH, WOLF,
JAGUAR and LION, to get qualitative 3D structure infer-
ence results. CUB-200-2011 consists of 11,788 images
of birds. Following the settings in [12, 29], we align all
birds facing left, and remove seabirds. The HORSE dataset
is extracted from the CycleGAN dataset [70] by removing
images with multiple horses and aligning them to face left.
CUB-200-2011, HORSE, AFHQ and CELEBA WILD are
used to generate qualitative results. We quantitatively evalu-
ate unsupervised 2D keypoint inference using the CELEBA
WILD dataset and compare it with the recent state-of-the-art
method by He et al. [12].
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Figure 4. Visualization of the 3D structure for different instances of the AFHQ dataset (CAT, DOG, FOX and TIGER subset in each row) .
Each 3D structure is shown in two forms: (i) 3D keypoints with linking edges between them (the edge thickness is proportional to the edge
map coefficients ω, which indicate their relative importance); (ii) Delaunay triangulation of the 3D keypoints rendered as shaded mesh.
Different keypoints are shown in different colors to demonstrate consistency across different images (columns).

Figure 5. Visualization of the 3D structure for different images from the HORSE and CUB-200-2011 datasets (rows).

Metrics. For unsupervised 2D keypoint inference, we fol-
low the metrics used by He et al. [12], which is the normal-
ized mean L2 error (NME) of detected 2D keypoints aligned
to the ground truth. For the 3D case, we generalize NME
to 3D by calculating the normalized mean L2 of detected
3D keypoints aligned to ground truth 3D keypoints. In both
cases, the normalization is the ocular distances of each im-
age.

5.2. Qualitative Results

We visualize the learned 3D structure on four subsets of
AFHQ (Cat, Dog, Fox and Tiger; visualization of results of
other subsets are in supplementary document), CUB-200-
2011, and HORSE datasets in Fig. 4 and 5, respectively.
From the visualizations we can directly recognize the 3D
structure of each shown object category. For the four sub-
sets of AFHQ dataset, despite these animal categories shar-
ing many similarities, we can recognize the individual an-
imal face characteristics from predicted 3D keypoints with
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linking edges. Moreover, we find that the set of thick edges,
i.e. the ones with large learned edge coefficient ω, coin-
cide with the most notable structures of each category, while
negligible edges remain very thin. Finally, we demonstrate
that keypoints are consistently detected among different in-
stances of objects per category, which can be seen based on
the consistency of the color of keypoints (both in 2D and
3D). More qualitative results and videos are included in the
supplementary document and attached files.

Since there does not exist any other 3D keypoint infer-
ence method that is applicable in our unsupervised setting
(cf. Table 1), as comparison we consider a simple baseline
that first predicts 2D keypoints using AutoLink [12], and
then lifts 2D keypoints to 3D by pinpointing learned 2D
keypoints on the depth map (given by the pre-trained un-
supervised monocular depth estimator MiDaS [42]). Fig. 6
shows a comparison on CELEBA WILD dataset.

Figure 6. Comparison of predicted 3D structures between our
method (left) and AutoLink [12] combined with MiDaS [42]
(right). Our method obtains more consistent 2D keypoint predic-
tions and more realistic 3D structure.

5.3. Quantitative Results

2D keypoint inference. First, we show that our method
improves upon unsupervised 2D keypoint inference. Ta-
ble 2 shows the NME values of our method and of vari-
ous other unsupervised methods on the CELEBA WILD
dataset. We also compare to the method by He et al. [12]
for various choices of K on the CELEBA WILD dataset to
show the robustness of our method, as shown in Table 3. We
can see that our method outperforms all competitors across
all settings.

Method K=8

DFF [7] 31.30%∗

SCOPS (w/o saliency) [17] 22.11%†

SCOPS (w/saliency) [17] 15.01%†

Liu et al. [27] 12.26%†

Huang et al. [16] 8.4%†

GANSeg [13] 6.18%†

Thewlis et al. [49] 31.30%∗

Zhang et al. [67] 40.82%∗

LatentKeypointGAN [11] 21.90%†

LatentKeypointGAN-tuned [11] 5.63%†

Lorenz et al. [29] 11.41%‡

IMM [19] 8.74%‡

AutoLink [12] 5.39%
Ours 5.21%

Table 2. Normalized L2 error (NME) for 2D keypoints inference
of various unsupervised methods on CELEBA WILD datasets for
K = 8. (∗ reported from Collins et al. [7]; † reported from He et al. [12];
‡ reported from Liu et al. [27])

Method K=8 K=16 K=24 K=32

AutoLink [12] 5.39% 4.69% 3.99% 3.77%
Ours 5.21% 3.97% 3.54% 3.48%

Table 3. Normalized L2 error (NME) of AutoLink and our method
for different numbers of keypoints using the CELEBA WILD

dataset.

Supervised Unsupervised
3DDFA AutoLink+Unsup3d AutoLink+MiDaS Ours

4.94% 11.47% 9.23% 8.48%

Table 4. Normalized L2 error (NME) of our method, two unsu-
pervised methods (AutoLink + MiDaS and AutoLink + Unsup3d)
and one supervised method (3DDFA) for 3D keypoints inference
(training on the 300W-LP dataset and testing on the AFLW2000-
3D dataset).

3D keypoint inference. As stated in Sec. 5.2, there does
not exist any other 3D keypoint inference method that is ap-
plicable in our unsupervised setting. So we define two un-
supervised baselines by combining AutoLink [12] with Mi-
DaS [42], and Autolink [12] with Unsup3d [54]. Moreover,
we compare against the supervised method 3DDFA [71] to
understand the gap between unsupervised and supervised
methods. Table 4 summarises the NME results, in which
our method achieves better performance compared to the
two-stage baselines.

6. Ablation Study

In this section we discuss our ablation studies. Results are
shown in Fig. 7. The first and second row show the results
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with full training losses (i.e. Eq. (10)) with the number of
keypoints being 32 and 16, respectively. We can see that
with an increasing number of keypoints more detailed struc-
ture can be captured by our 3D keypoints. Furthermore, we
remove Lrep from our overall loss to train our framework
(third row). The structure collapses into a degenerate key-
point configuration, which confirms the importance of Lrep.

A more detailed analysis on the behavior of Lrep, and
on the influence of the number of basis functions n of our
shape model, are provided in the supplementary document.

Figure 7. Ablation study on CELEBA WILD dataset. The first and
second rows show results for a different number of keypoints (32
and 16). The third row show results without repulsion loss Lrep.

7. Discussion

Figure 8. Pose estimation visualization of two instances from
CELEBA WILD dataset from two views.

Large pose estimation has always been an important
yet challenging issue in many 3D shape inference settings

[26, 33, 55, 56, 61, 63]. Recent works have found that when
the pose variations falls into a small range, it can be learned
directly by a network together with shape [53]. We ob-
serve similar results in our setting. For the CELEBA WILD,
AFHQ (instances with moderate pose variations), CUB-
200-2011 and HORSE (aligned facing direction) datasets,
Fig. 4 and 5 have shown multiple instances in different
poses with correct pose estimation. Fig. 8 gives more pose
estimation results. However, for datasets consisting of in-
stances with large pose variations, our method may fail
to optimize for the correct poses. For example, our test
on the HUMAN3.6M dataset [18] shows that, even though
our model learns plausible human body structure, it fails
to optimize for the correct pose of each instance, which
also leads to incorrect instance-specific deformations, as
shown in Fig. 9 – for such cases with strong articulation,
domain-specific approaches that exploit domain knowledge
(e.g. about the human kinematic skeleton structure) are at
the time being more suitable. Yet, inferring such articulated
objects is a highly relevant and interesting direction for fu-
ture work.

Figure 9. Incorrect pose estimation visualization of HUMAN3.6M

dataset. For severely articulated objects additional domain knowl-
edge is currently needed (e.g. a human body kinematic skeleton).

8. Conclusion
Overall, our method is the first unsupervised approach that
can infer 3D keypoints from category-specific image col-
lections without the need of any additional prior informa-
tion. Conceptually, our main novelty lies in simultaneously
learning 3D keypoints along with a 3D shape space model
from an inhomogeneous collection of category-specific im-
ages (e.g. opposed to homogeneous collections of multi-
view images or videos, which show the same object from
different views or in different poses). We experimentally
demonstrate that our method not only improves upon 2D
keypoint accuracy, but also infers plausible 3D structure for
various object categories. We expect our work to be use-
ful for diverse downstream tasks, for example related to 3D
reconstruction or 3D shape-based generative models.
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