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Figure 1. VideoCutLER is a simple unsupervised video instance segmentation method (UnVIS). We show the first competitive unsuper-

vised results on the challenging YouTubeVIS benchmark. Moreover, unlike most prior approaches, we demonstrate that UnVIS models can

be learned without relying on natural videos and optical flow estimates. Row 1: We propose VideoCutLER, a simple cut-synthesis-and-

learn pipeline that involves three main steps. Firstly, we generate pseudo-masks for multiple objects in an image using MaskCut [35]. Then,

we convert a random pair of images in the minibatch into a video with corresponding pseudo mask trajectories using ImageCut2Video.

Finally, we train an unsupervised video instance segmentation model using these mask trajectories. Row 2: Despite being trained only on

unlabeled images, at inference time VideoCutLER can be directly applied to unseen videos and can segment and track multiple instances

across time (Fig. 1a), even for small objects (Fig. 1b), objects that are absent in specific frames (Fig. 1c), and instances with high overlap

(Fig. 1d). Column 2: Our method surpasses the previous SOTA method OCLR [37] by a factor of 10 in terms of class-agnostic APvideo
50 .

Abstract

Existing approaches to unsupervised video instance seg-

mentation typically rely on motion estimates and experi-

ence difficulties tracking small or divergent motions. We

present VideoCutLER, a simple method for unsupervised

multi-instance video segmentation without using motion-

based learning signals like optical flow or training on natu-

ral videos. Our key insight is that using high-quality pseudo

masks and a simple video synthesis method for model train-

ing is surprisingly sufficient to enable the resulting video

model to effectively segment and track multiple instances

across video frames. We show the first competitive unsuper-

vised learning results on the challenging YouTubeVIS-2019

benchmark, achieving 50.7% APvideo
50

, surpassing the pre-

vious state-of-the-art by a large margin. VideoCutLER can

also serve as a strong pretrained model for supervised video

instance segmentation tasks, exceeding DINO by 15.9% on

YouTubeVIS-2019 in terms of APvideo.

1. Introduction

Video instance segmentation is vital for various computer

vision applications, e.g. video surveillance, autonomous

driving, and video editing, yet labeled videos are costly to

obtain. Hence, there is a pressing need to devise an un-

supervised video instance segmentation approach that can

comprehend video content comprehensively and operate in

general domains without labels.

Prior work in this area typically relies on an optical flow

network as an off-the-shelf motion estimator [30, 37, 38].

Although optical flow can be informative in detecting pixel

motion between frames, it is not always a reliable tech-

nique, particularly in the presence of occlusions, motion

blur, complex motion patterns, changes in illuminations,

etc. As a result, models that heavily rely on optical flow

estimations may fail in several common scenarios. For ex-

ample, stationary or slowly moving objects may have flow

estimates similar to the background, causing them to be

omitted in the segmentation process (e.g., the parrot with

negligible motion is missed in Fig. 2a). Similarly, non-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Challenges encountered by the previous state-of-

the-art OCLR: Within the framework of OCLR [37], a method

that heavily relies on optical flows as model inputs, several dis-

tinct failure cases emerge. These include situations where the

method struggles to accurately segment both moving and static

objects (as demonstrated in Fig. 2a), struggles to effectively track

non-rigid objects as a coherent unit (Fig. 2b), encounters difficul-

ties in distinguishing overlapping instances (Fig. 2c), and fails to

maintain consistent predictions under varying illumination con-

ditions (Fig. 2d). Nonetheless, many of these challenges can be

effectively addressed through the application of our proposed ap-

proach, VideoCutLER, without being reliant on the optical estima-

tions used by various prior works [37, 38]. We present qualitative

comparisons using the YouTubeVIS dataset [39].

rigid objects with non-consistent motions for several parts

have varying optical flows, leading to a failure in segment-

ing all parts cohesively as a unit if object motion is pre-

sumed constant (Fig. 2b). Also, objects with similar mo-

tion patterns and high overlap are complex for optic flow

methods to accurately distinguish between them, especially

in boundary regions (Fig. 2c). Finally, objects with illumi-

nation changes across frames can cause optical-flow based

models to produce non-consistent and blurred segmentation

masks (Fig. 2d). Given the limitations above, we advocate

for unsupervised video segmentation models which do not

depend on optical flow estimates. We propose a method to

train a video segmentation model by generating simple syn-

thetic videos from individual images, without relying on ex-

plicit motion estimates or requiring labeled natural videos.

Our method, VideoCutLER, is an unsupervised Video

instance segmentation model that employs a Cut-synthesis-

and-LEaRn pipeline (Fig. 1). First, given unlabeled images,

we extract pseudo-masks for multiple objects in an image

using MaskCut [35], leveraging a self-supervised DINO [4]

and a spectral clustering method Normalized Cuts [28] (de-

tails in Sec. 3.1). Second, given unlabeled images and their

pseudo-masks in a minibatch, we propose ImageCut2Video,

a surprisingly simple video synthesis scheme that generates

a video from those with corresponding pseudo mask trajec-

tories (details in Sec. 3.2). Finally, those mask trajectories

are used to train a video instance segmentation model, aim-

ing to perform object segmentation with temporal consis-

tency across video frames (details in Sec. 3.3). Our model

learns to segment and track object instances based on their

appearance (feature) similarities across video frames.

Despite being learned from only unlabeled images

(and the temporally simple synthetic video sequences we

construct from them), VideoCutLER succeeds at multi-

instance video segmentation, achieving a new state-of-the-

art (SOTA) performance of 50.7% APvideo
50

on YouTubeVIS-

2019. This result surpasses the previous SOTA [37] by sub-

stantial margins of 45.9% (50.7% vs. 4.8%). This result

also considerably narrows the performance gap between su-

pervised and unsupervised learning, reducing it from 29.1%

to 11.0% in terms of the APvideo
50

.

Moreover, most prior works on self-supervised represen-

tation learning [4, 5, 11, 14, 33] are limited to providing

initializations only for the model backbones, with the re-

maining layers being randomly initialized. In contrast, our

pretraining strategy takes a more comprehensive approach

that allows all model weights to be pretrained, resulting

in a stronger pretrained model better suited for supervised

learning. As a result, our method outperforms DINO’s [4]

APvideo on YoutubeVIS-2019 by 15.9%.

Contributions. Insights: We found that a simple video

synthesis method yield surprisingly effective results for

training unsupervised multi-instance video segmentation

models. This efficacy is achieved without the necessity

of explicit motion estimates or the utilization of natural

videos (relying solely on unlabeled ImageNet data suffices),

a novel aspect that has not been previously demonstrated

in the field. Methods: We propose a simple yet effective

cut-synthesize-and-learn pipeline VideoCutLER for learn-

ing video instance segmentation models, given unlabeled

images. Results: Our method shows the first successfully

results on challenging unsupervised multi-instance video

segmentation benchmark YouTubeVIS, outperforming the

previous SOTA model’s APvideo
50

by a large margin.
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CRW DINO OCLR Ours

Segment multiple objects 6 : 6 6

Track objects across frames 6 : 6 6

No need for optical flow 6 6 : 6

No 1st-frame ground-truth : : 6 6

No human labels at any stage : : 6
†

6

Pretrained model for sup. learning : 6 : 6

Table 1. We compare previous methods on unsupervised video

instance segmentation, including CRW [17], DINO [4], and

OCLR [37], with our VideoCutLER in term of key properties.

Our VideoCutLER is the only approach that fulfills all these de-

sired properties. †: The optical flow estimator OCLR employs

(RAFT [30]) is pretrained on both synthetic data and human-

annotated data like KITTI-2015 [18] and HD1K [19].

2. Related Work

Unsupervised video instance segmentation (VIS) re-

quires not only separating and tracking the main moving

foreground objects from the background, but also differ-

entiating between different instances, without any human

annotations [32]. Previous works [16, 21, 36, 38, 40] on

unsupervised video segmentation has primarily centered on

unsupervised video object segmentation (VOS), aiming to

detect all moving objects as the foreground and to generate a

pixel-level binary segmentation mask, regardless of whether

the scene contains a single instance or multiple instances.

Despite some works exploring unsupervised video instance

segmentation (VIS), many of these approaches have re-

sorted to either utilizing first frame annotations [4, 17, 22]

to propagate label information throughout the video frames

or leveraging supervised learning using large amounts of

external labeled data [25, 31, 41, 42]. Furthermore, prior

studies typically utilized optical flow networks that were

pretrained with human supervision using either synthetic

data or labeled natural videos [31, 37, 38, 40].

The properties deemed necessary for an unsupervised

learning method to excel in video instance segmentation

tasks are presented and discussed in Tab. 1. Our proposed

method, VideoCutLER, is the only approach that satisfies

all these properties, making it an effective and promising

solution for unsupervised video instance segmentation.

Unsupervised object discovery aims to automatically dis-

cover and segment objects in an image in an unsupervised

manner [16, 34–36]. LOST [29] and TokenCut [36] focus

on salient object detection and segmentation via leverag-

ing the patch features from a pretrained DINO [4] model.

For multi-object discovery, FreeSOLO [34] first gener-

ates object pseudo-masks for unlabeled images, then learns

an unsupervised instance segmentation model using these

pseudo-masks. CutLER [35] presents a straightforward cut-

and-learn pipeline for unsupervised detection and segmen-

tation of multiple instances. It has demonstrated promising

results on more than eleven different benchmarks, covering

a wide range of domains.

In contrast to previous approaches, our unsupervised

learning method focuses on simultaneously tracking objects

in a video sequence while identifying correspondences be-

tween instances across multiple frames.

Self-supervised representation learning generates its own

supervision signal by exploiting the implicit patterns or

structures present in the input data [3, 4, 14, 15]. Unlike

most previous self-supervised learning models, which still

require fine-tuning on labeled data to be operative on com-

plex computer vision tasks, such as detection and segmen-

tation, VideoCutLER can tackle these complex, challenging

tasks with purely unsupervised learning methods.

3. VideoCutLER

We present VideoCutLER, a simple cut-synthesis-and-learn

pipeline consisting of three main steps. First, we generate

pseudo-masks for multiple objects in an image using Mask-

Cut (Sec. 3.1). Next, we convert a random pair of images

in the minibatch into a synthetic video with corresponding

pseudo mask trajectories using ImageCut2Video (Sec. 3.2).

Finally, we train an unsupervised video instance segmen-

tation model using these mask trajectories. As the model

inputs do not contain explicit motion estimates, it learns to

track objects based on their appearance similarity (Sec. 3.3).

3.1. Single­image unsupervised segmentation

We employ the MaskCut method, introduced in the Cut-

LER [35] method. MaskCut is an efficient spectral cluster-

ing approach for unsupervised image instance segmentation

and object detection and can discover multiple object masks

in a single image without human supervision. MaskCut

builds upon a self-supervised DINO model [2] with a back-

bone of ViT [10] and a cut-based clustering method Nor-

malized Cuts (NCut) [28]. MaskCut first generates a patch-

wise affinity matrix Wij =
KiKj

∥Ki∥2∥Kj∥2

using the ‘key’ fea-

tures Ki for patch i from DINO’s last attention layer. Sub-

sequently, the NCut algorithm [28] is employed on the affin-

ity matrix by solving a generalized eigenvalue problem

(D −W )x = λDx (1)

where D is a diagonal matrix with d(i) =
∑

j Wij and x

is the eigenvector that corresponds to the second smallest

eigenvalue λ. Then, the foreground masks Ms can be ex-

tracted via bi-partitioning x, which segments a single object

within the image. To segment more than one object, Mask-

Cut uses an iterative process that masks out the values in the

affinity matrix using the extracted foreground mask:

W t
ij=

(Ki

∏t

s=1
Ms

ij)(Kj

∏t

s=1
Ms

ij)

∥Ki∥2∥Kj∥2
(2)

and repeats the NCut algorithm. We set t=3 by default.
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Although MaskCut can effectively locate and segment

multiple objects in an image, it operates only on a single im-

age, lacking temporal consistency in the instance segmenta-

tion masks produced across video frames.

3.2. ImageCut2Video Synthesis for Training

We propose a learning-based approach to ensuring temporal

consistency in video segmentation masks, based on gener-

ating synthetic videos from pairs of individual images and

MaskCut masks. Surprisingly, we found that an extremely

simple synthetic video generation method yields sufficient

training data to learn a powerful video segmentation model

that can operate on videos with much greater complexity of

motion than is present in the training data.

Given unlabeled images in the minibatch and their

pseudo-masks, our ImageCut2Video method synthesizes

corresponding videos and pseudo-mask trajectories, thereby

allowing us to train the model in an unsupervised manner

while offering the necessary supervision for simultaneous

detection, segmentation, and tracking of objects in videos.

First, given an image and its corresponding pseudo-

masks in the mini-batch, we duplicate the image t times

and connect its MaskCut pseudo-masks to form the initial

trajectories. This synthetic video, however, only contains

static foreground objects. To generate additional trajecto-

ries with mobile objects, a second image is randomly se-

lected from the mini-batch, and its objects are cropped us-

ing its MaskCut pseudo-masks. These objects are then ran-

domly resized, repositioned, and augmented before being

pasted onto the first image. The resulting masks are con-

nected along the temporal dimension to generate additional

trajectories with mobile objects.

Specifically, given a target image I1, a random source

image I2 in the mini-batch and its corresponding set of bi-

nary pseudo-masks {M1

2
, ...,Ms

2
}, we first apply a trans-

formation function T to resize and shift these pseudo-

masks randomly. This gives us a new set of pseudo-masks

{M̂1

2
, ..., M̂s

2
}, where M̂s

2
= T (Ms

2
). Next, we synthesize

a video with t frames by duplicating image I1 for t times

and pasting the augmented masks onto I1 using:

It
1
=I1 ×Πs

i=1
(1−M̂ i

2
)+I2 × (1−Πs

i=1
(1− M̂ i

2
)) (3)

where × refers to element-wise multiplication.

3.3. Video Segmentation Model

During training, the synthetic videos produced by Image-

Cut2Video, comprising both mobile and stationary objects,

are used as the inputs to train a video instance segmentation

model. The segmentation mask trajectories corresponding

to each object in the video serve as ‘ground-truth’ labels.

We utilize VideoMask2Former [6, 7] with a backbone

of ResNet50 [12] as our video instance segmentation (VIS)

model. It operates by attending to the 3D spatiotempo-

ral features of our synthetic videos and generating 3D vol-

ume predictions of pseudo-mask trajectories using shared

queries across frames. The shared queries across frames en-

able the model to segment and track object instances based

on their appearance (feature) similarities, making it a pow-

erful framework for analyzing video sequences.

4. Implementation Details

VideoCutLER. We first employ the MaskCut approach on

images preprocessed to a resolution of 480×480 pixels. We

then compute a patch-wise cosine similarity matrix using

the pretrained ViT-Base/8 DINO [4] model, which serves

as input to the MaskCut algorithm for initial segmentation

mask generation. We set t = 3, which is the maximum

number of masks per image. To refine the segmentation

masks, we employ a post-processing step using Conditional

Random Fields (CRFs) [20], which enforces smoothness

constraints and preserves object boundaries, resulting in im-

proved segmentation masks.

Next, we use ImageCut2Video to synthetic videos given

images and their pseudo-masks in a mini-batch. We found

that synthetic videos with two frames are sufficient to train

a video instance segmentation model; therefore, we use

s=2 by default. We randomly change the brightness, con-

trast, and rotation of the masks to create new variations

of pseudo-masks. Additionally, we randomly resize the

pseudo-masks (scale∈[0.8,1.0]), and shift their positions.

Training and test data. Our model is trained solely on

the unlabeled images from ImageNet [8], which comprises

approximately 1.3 million images. Without further fine-

tuning on any video datasets, we test our model’s zero-shot

unsupervised video instance segmentation performance on

four multi-instance video segmentation benchmarks, in-

cluding YouTubeVIS-2019 [39], YouTubeVIS-2021 [39],

DAVIS2017 [26], and DAVIS2017-Motion [26, 27].

YoutubeVIS-2019 and YouTube-VIS2021 contain 2,883

high-resolution YouTube videos and 3,859 high-resolution

YouTube videos, respectively. We evaluate the zero-shot

unsupervised learning performance on their training splits

in a class-agnostic manner. For DAVIS-2017, we evaluate

our model’s performance on the 30 videos from its val set.

Training settings. 1) Unsupervised Image Model Pre-

training: We first pretrain a Mask2Former [7] model with

a backbone of ResNet50 [12] on ImageNet using Mask-

Cut’s pseudo-masks. The model is optimized for 160k it-

erations, with a batch size of 16 and a learning rate of

0.00002. The learning rate is decayed by a factor of 20 at it-

eration 80,000. To prevent overfitting, a dropout layer with

a rate of 0.3 is added after the self-attention layers of trans-

former decoders. 2) Unsupervised Video Model Learn-

ing: We initialize the VideoMask2Former model [6] with

model weights from the previous stage, and then fine-tune
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Methods
Training settings YouTubeVIS-2019 YouTubeVIS-2021

flow videos sup. AP50 AP75 AP APS APM APL AR10 AP50 AP75 AP APS APM APL AR10

MotionGroup∗ [38] 6 6 : 1.3 0.1 0.3 0.2 0.3 0.5 1.7 1.1 0.1 0.2 0.1 0.2 0.5 1.5

OCLR∗ [37] 6 6 :
† 4.8 0.4 1.3 0.0 1.2 5.5 11.0 4.4 0.3 1.2 0.1 1.6 7.1 9.6

CutLER‡
: : : 37.5 14.6 17.1 3.3 13.9 27.6 30.4 29.2 10.4 12.8 3.1 12.8 27.8 22.6

VideoCutLER : 6
⋇

: 50.7 24.2 26.0 5.6 20.9 37.9 42.4 38.9 19.0 17.1 5.3 18.3 37.5 31.3

vs. prev. SOTA +12.8 +9.6 +8.9 +2.3 +7.0 +10.3 +12.0 +9.7 +8.6 +4.3 +2.2 +5.5 +9.7 +8.7

Table 2. Zero-shot unsupervised multi-instance video segmentation on YouTubeVIS-2019 and YouTubeVIS-2021. We report the

instance segmentation metrics (AP and AR) and training settings. ∗: reproduced MotionGroup [38] and OCLR [37] results with the

official code and checkpoints. †: the optical flow estimator OCLR employs (RAFT [30]) is pretrained on both synthetic data [1, 9] and

human-annotated data, such as KITTI-2015 [18] and HD1K [19]. ‡: We train a CutLER [35] model with Mask2Former as a detector on

ImageNet-1K, following CutLER’s official training recipe, and use it as a strong baseline. ⋇: VideoCutLER is trained on synthetic videos

generated using ImageNet. Sup and flow denote human supervision and optical flow information, respectively. We evaluate results on

YouTubeVIS’s train splits in a class-agnostic manner (note: we never train on YouTubeVIS).

it on the synthetic videos we construct from ImageNet. We

train VideoCutLER on 8 A100 GPUs for 80k iterations, us-

ing the AdamW optimizer [24]. We set the initial learning

rate to 0.000005 and apply a learning rate multiplier of 0.1

to the backbone. A dropout layer with a rate of 0.3 is added

after the self-attention layers of transformer decoders.

Evaluation metric APvideo and ARvideo: The evaluation

metrics used in YouTubeVIS are Averaged Precision (AP)

and Averaged Recall (AR), which are similar to those used

in COCO [23]. The evaluation is specifically conducted at

10 intersection-over-union (IoU) thresholds ranging from

50% to 95% with a step of 5% [39]. However, unlike in

image instance segmentation, each instance in a video com-

prises a sequence of masks, so the IoU computation is per-

formed not only in the spatial domain, but also in the tem-

poral domain by summing the intersections at every single

frame over the unions at every single frame.

Evaluation metric J and F : For DAVIS [27], we report

results using their official evaluation metrics J&F , J and

F . The region measure (J ) [27] is the intersection-over-

union (IoU) score between the algorithm’s mask and the

ground-truth mask. The boundary measure (F) [27] is the

average precision of the boundary of the algorithm’s mask.

The evaluation metrics are computed separately for each in-

stance, and then the results are averaged over all instances

to get the final score. J&F is the mean of J and F .

5. Experiments

We evaluate the performance of VideoCutLER on sev-

eral video instance segmentation benchmarks. In Sec. 5.1,

we demonstrate that our approach can effectively perform

segmentation and tracking of multiple objects in videos,

even when trained on unlabeled ImageNet images with-

out any form of supervision. Our experimental results re-

veal that our method can drastically reduce the performance

gap between unsupervised and supervised learning meth-

ods for video instance discovery and tracking. Furthermore,

Sec. 5.2 demonstrates that fine-tuning VideoCutLER leads

to further performance gains in video instance segmenta-

tion, surpassing previous works such as DINO in both fully

supervised learning and semi-supervised learning tasks. In

Sec. 5.3, we conduct an ablation study to examine the im-

pact of key components and their hyperparameters.

5.1. Unsupervised Zero­shot Evaluations

In this section, we evaluate the performance of our method

against previous state-of-the-art approaches on various

video instance segmentation benchmarks.

Evaluating unsupervised video instance segmentation

poses two main challenges. Firstly, as unsupervised learn-

ing methods train the model without semantic classes, the

class-aware video segmentation setup cannot be used di-

rectly for an evaluation. As a result, following previous

works, we evaluate video instance segmentation results in

a class-agnostic manner. Secondly, video instance segmen-

tation datasets often annotate only a subset of the objects

in the video, which makes Average Recall (AR) a valuable

metric that does not penalize models for detecting novel

objects not labeled in the dataset [35]. Therefore, we re-

port both AR and AP for YouTubeVIS. Regarding DAVIS,

we use the official unsupervised learning metrics J , F , and

J&F . All these metrics assess the performance of unsuper-

vised video instance segmentation in a class-agnostic man-

ner. Sec. 4 lists more details on evaluation metrics.

Detailed comparisons on YouTubeVIS. Tab. 2 presents

a summary of the results for unsupervised zero-shot

video instance segmentation on the YouTubeVIS-2019 and

YouTubeVIS-2021 datasets. We compare our method’s re-

sults with the previous state-of-the-art methods OCLR [37]

and motion grouping [38]. We reproduce their results using

their official code and checkpoints to ensure fairness.

Although OCLR [37] is also trained on synthetic

videos, it relies on the off-the-shelf optical flow estimator

RAFT [30] to compute optical flows for RGB sequences.

It is worth noting that RAFT is pretrained on a combina-

tion of synthetic videos [1, 9] and human-annotated videos
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Methods
Training settings DAVIS2017 DAVIS2017-Motion

flow videos sup. training data J&F J (Mean) F (Mean) J&F J (Mean) F (Mean)

MotionGroup (sup.) [38] 6 6 : IN-1K+synthetic - - - 39.5 44.9 34.2

Mask R-CNN (w/ flow)∗ [13, 37] 6 6 : IN-1K+synthetic - - - 50.3 50.4 50.2

OCLR (w/ flow)∗ [37] 6 6 : IN-1K+synthetic 39.6 38.2 41.1 55.1 54.5 55.7

VideoCutLER : : : IN-1K 43.6 41.7 45.5 57.3 57.4 57.2

vs. prev. SOTA +4.0 +3.5 +4.4 +2.2 +2.9 +1.5

Table 3. Zero-shot unsupervised single/few-instance segmentation. VideoCutLER also outperforms the previous state-of-the-arts on

DAVIS2017 and DAVIS2017-Motion. Note: 12 out of 30 videos from DAVIS2017 and 26 out of 30 videos from DAVIS2017-Motion contain

only 1 moving instance. Additionally, DAVIS datasets focus solely on the performance of moving prominent objects, even in videos where

multiple objects are present. This disadvantages our model since it can segment both static and moving objects and has not been exposed

to any downstream videos during training. ∗: utilize optical flow predictions from RAFT [30], which is pretrained on external videos. All

methods are evaluated in a zero-shot manner, i.e. no fine-tuning on target videos.

such as KITTI-2015 [18] and HD1K [19]. Our approach,

VideoCutLER, despite not using any optical flow estima-

tions like many previous works on unsupervised video seg-

mentation, achieves over 10× higher AP50 and 18× higher

AP than OCLR [37] on YouTubeVIS-2019. Additionally,

we achieve over 30% higher recall. Furthermore, unlike the

previous state-of-the-art method OCLR [37], which exhibits

poor performance in segmenting small objects (with 0.0%

APS), our approach significantly outperforms it. Similar

performance gains can be observed on YouTubeVIS-2021.

Finally, the performance gains to CutLER [35] demon-

strates the effectiveness of VideoCutLER in training un-

supervised multi-instance video segmentation models, sur-

passing CutLER by over 12.8% on YouTubeVIS-2019.

In Fig. 3, we present qualitative visualizations illustrat-

ing the zero-shot unsupervised video instance segmentation

outcomes of VideoCutLER on YouTubeVIS dataset.

Detailed comparisons on DAVIS. To provide a compre-

hensive evaluation and comparison with existing unsuper-

vised video instance segmentation approaches, we also as-

sess the performance of our model on the validation sets

of DAVIS-2017 and DAVIS2017-Motion [27, 37]. Note

that both DAVIS2017 and DAVIS2017-Motion datasets fo-

cus only on the performance of instance segmentation on

prominent moving objects, even in videos with multiple

objects. As a result, only a single or a few objects of in-

terest per video are annotated, which may not reflect the

challenges that arise when multiple objects are present.

Although the evaluation of DAVIS is an unfair assess-

ment for us since VideoCutLER is supposed to segment

both static and moving objects, whereas DAVIS focuses on

moving prominent objects, with only a single or a few mov-

ing objects of interest per video annotated. However, Tab. 3

shows that VideoCutLER yields approximinately 4% higher

J , F , and J&F . The additional results on DAVIS demon-

strate that VideoCutLER achieves superior performance not

only on static or minimally moving objects but also on dy-

namic objects, where prior methods relying on optical flow

estimates can benefit from additional cues.

Time

Figure 3. We present qualitative visualizations illustrating the

zero-shot unsupervised video instance segmentation outcomes

of VideoCutLER on YouTubeVIS dataset. It’s noteworthy that

VideoCutLER is solely pretrained on image dataset ImageNet-

1K, and its evaluation is conducted directly on the video dataset

YouTubeVIS (no further fine-tuning required). The visual results

provided effectively highlight that VideoCutLER is capable of

segmenting and tracking multiple instances, delivering consistent

tracking results across video frames, and successfully distinguish-

ing between various instances, even when significant overlapping

occurs. We show more demo results in appendix.

Comparison of supervised and unsupervised learning

in object discovery and tracking abilities is presented in

Tab. 4. We train a supervised MaskTrack R-CNN [39]

model on the human-annotated training set of YouTubeVIS-

2019 dataset, and evaluate it in a class-agnostic manner

on the videos that are not shared between YouTubeVIS-

2019 and YouTubeVIS-2021 datasets [39]. Tab. 4 shows

that our VideoCutLER model significantly narrows the

gap between supervised learning and unsupervised learn-

ing methods in terms of the averaged precision AP50

(gaps: 29.1%→11.0%) and the averaged recall AR100

(gaps: 14.9%→3.2%), particularly for the AR100.
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Methods
Training settings YouTubeVIS-2021\YouTubeVIS-2019

flow videos sup. training data AP50 AP75 AP APS APM APL AR100

Mask2Former [6] 6 6 : IN-1K+YT2019 48.9 22.2 24.9 - - - -

MaskTrack R-CNN∗ [39] 6 6 6 IN-1K+YT2019 32.4 13.0 15.0 8.4 24.9 39.0 20.3

MaskTrack R-CNN∗ [39] 6 6 6 IN-1K+COCO+YT2019 35.8 18.7 18.7 10.5 31.3 46.8 24.5

OCLR∗ [37] 6 6 : IN-1K+synthetic 3.3 0.2 1.0 0.3 2.7 7.5 5.4

VideoCutLER : : : IN-1K 21.4 7.1 9.0 4.9 13.3 29.6 17.1

vs. prev. SOTA +18.1 +6.9 +8.0 +4.6 +10.6 +22.1 +11.7

Table 4. VideoCutLER greatly narrows the gap between fully-supervised learning and unsupervised learning for multi-instance video

segmentation. Results are evaluated in a class-agnostic manner on the relative complement of the set of videos from YouTubeVIS-2021

and the set of videos from YouTubeVIS-2019. VideoCutLER and Mask2Former use a backbone of ResNet50. ∗: reproduced results with

the official code and checkpoints. IN-1K refers to ImageNet-1K.

Methods Architecture
YouTubeVIS-2019 YouTubeVIS-2021

AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

DINO [4] Mask2Former [6] 23.0 39.0 23.7 6.0 28.0 34.2 24.6 41.4 25.9 8.7 34.0 39.9

VideoCutLER Mask2Former [6] 38.9 56.7 43.3 22.1 43.1 51.8 33.4 53.8 36.3 15.7 40.9 54.8

vs. prev. SOTA +15.9 +17.7 +19.6 +16.1 +15.1 +17.6 +8.8 +12.4 +10.4 +7.0 +6.9 +14.9

Table 5. VideoCutLER can serve as a strong pretrained model for the supervised video instance segmentation task. The video segmen-

tation model, Mask2Former, is initialized with various pretrained models, i.e., DINO or VideoCutLER, and fine-tuned on the training set

with human annotations. We report the instance segmentation metrics and evaluate the model performance on the val splits.
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Figure 4. We fine-tune VideoCutLER for semi-supervised video

instance segmentation on the YouTubeVIS-2019 dataset, using

different percentages of labeled training data. We evaluate the per-

formance of our method by reporting the average precision and

recall on the validation set of YouTubeVIS-2019. To establish

a strong baseline, we use the self-supervised DINO [4] model

and initialize the weights of VideoMask2Former with DINO. To

ensure a fair comparison, both baselines and VideoCutLER are

trained using the same schedule and recipe.

5.2. Label­Efficient and Fully­Supervised Learning

In this section, we investigate VideoCutLER as a pretrain-

ing approach for supervised video instance segmentation

models, and evaluate its effectiveness in label-efficient and

fully-supervised learning scenarios.

Setup. We use VideoMask2Former with a backbone of

ResNet50 for all experiments in this section unless other-

wise noted. For our experiments on semi-supervised learn-

ing, we randomly sample a subset of videos from the train-

ing split with different proportions of labeled videos. Af-

ter pretraining our VideoCutLER model on ImageNet, we

fine-tune the model on the YouTubeVIS-2019 [39] dataset

with its human annotations. For our experiments on the

fully-supervised learning task, we fine-tune the VideoCut-

LER model on all available labeled data from the training

sets of YouTubeVIS. For baselines, we initialize a Video-

Mask2Former model with a DINO [4] model pre-trained on

ImageNet and fine-tuned on labeled videos. Since DINO

has shown strong performance in detection and segmenta-

tion tasks, it serves as a strong baseline for our experiments.

For semi-supervised learning, both the baselines and our

models are trained for 2× schedule, with a learning rate of

0.0001 for all model weights, except for the final classifica-

tion layers, which use a learning rate of 0.0016. We train

the models using a batch size of 16 and 8 GPUs. For fully-

supervised learning, we use the 1× schedule and a learning

rate of 0.0002 for the final classification layers. We evalu-

ate their performance on the val split of the YouTubeVIS-

2019, and report results from its official evaluation server.

Data for fully-/semi-supervised VIS. We fine-tune the pre-

trained VideoCutLER model on all or a subset of the train-

ing split of YouTubeVIS-2019. We then evaluate the re-

sulting models on the validation set. To ensure a fair com-

parison, we use the same amount of human annotations to

train our model and baselines. Specifically, we initialize

the baselines with the DINO-pretrained model and fine-tune

them on the training set of the respective dataset. We eval-

uate the model performance on their validation sets and re-

port results from its official evaluation server.

Results. Most prior approaches on self-supervised rep-

resentation learning [4, 5, 11, 14, 33] are limited to pro-

viding initializations only for the model backbones, with

the remaining layers, such as Mask2Former’s decoders,
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Figure 5. We present qualitative results on videos covering a range

of out-of-domain sources, e.g., sketches, 3D computer-generated

imagery (CGI) and hybrid (CGI + realistic). VideoCutLER can

produce high-quality segmentation and tracking results for small

objects that are often difficult to distinguish from the background,

as well as for object sketches that lack textual information.

being randomly initialized. In contrast, VideoCutLER

takes a more comprehensive approach that allows all model

weights to be pretrained, resulting in a stronger pretrained

model better suited for supervised learning. As a result, as

shown in Fig. 4 and Tab. 5, our method outperforms these

prior works significantly, offering a strong pretrained model

for fully-/semi-supervised learning tasks.

Fig. 4 shows that VideoCutLER consistently outper-

forms the strong baseline method DINO [4] across all

label-efficient learning settings with varying proportions

of labeled YouTubeVIS-2019 videos. The most signifi-

cant performance gains are observed when 20% labeled

data is provided, where VideoCutLER exceeds DINO by

over 12% AP50 and 13.2% AR. As demonstrated in Tab. 5,

training the model with all available labeled videos from

YouTubeVIS yields considerable performance gains, sur-

passing DINO by more than 15.9% AP on YouTubeVIS-

2019 and 8.8% on YouTubeVIS-2021, respectively.

5.3. Ablation Study

Hyper-parameters and design choices. We present an ab-

lation study on several key hyper-parameters and design

choices of VideoCutLER in Tab. 6. First, we analyze the

impact of varying the size of video frames used for training

VideoCutLER. From Tab. 6a, we observe that the shortest

edge length of 240 pixels yields the best performance. Us-

ing a larger resolution does not always lead to better results.

Next, Tab. 6b shows the effect of the number of frames used

Size → 180 360 480

APvideo
50

49.9 50.7 50.4

(a) Frame size.

# frames → CutLER† [35] 2 3 4

APvideo
50

37.5 49.8 50.7 50.4

(b) # frames. z

Augmentations → none +bright +rotation +contrast +crop all

APvideo
50

47.8 48.1 48.9 48.3 48.7 50.7

(c) Data augmentations for ImageCut2Video.

Table 6. Ablations for VideoCutLER. We report video instance

segmentation result APvideo
50 on YoutubeVIS-2019. (a) The impact

of varying video frame sizes on training VideoCutLER. (b) The

effect of the number of frames used for model training. (c) The

impact of several augmentation methods, including brightness, ro-

tation, contrast, and random cropping, which are used as default

during model training. Default settings are highlighted in gray.

for training video instance segmentation models. We found

that synthetic videos with three frames are optimal for learn-

ing an unsupervised video instance segmentation model. In-

creasing the number of frames does not result in a further

improved performance, aligning with the findings reported

in [6]. Furthermore, Tab. 6c investigates the contribution

of several augmentation methods, including brightness, ro-

tation, contrast, and random cropping, which are used as

default during model training. We found that compared to

ImageCut2Video without any data augmentations, adding

these augmentations can bring about 3% performance gains.

Generalizability. The results presented in Fig. 5 demon-

strate that VideoCutLER can effectively perform video in-

stance segmentation on out-of-domain data sources, e.g.

sketches, 3D computer-generated imagery, and hybrid

videos that combine CGI. These results shows that our

model can be applied to a broad range of videos beyond

the domains it was initially trained on, i.e., ImageNet.

6. Summary

We presented a simple unsupervised approach to segment

multiple instances in a video. Our approach, VideoCut-

LER, does not require labels, and does not rely on motion-

based learning signals like optical flow. In fact, VideoCut-

LER does not need real videos for training as we synthe-

size videos using natural images from the ImageNet-1K.

Despite being simpler, VideoCutLER outperforms models

that use additional learning signals or video data, achieving

10× their performance on benchmarks like YouTubeVIS.

Moreover, VideoCutLER is a strong pretrained model for

supervised learning. We hope that our approach enables

both a wide range of applications in video recognition, as

well as its simplicity enables easy future research.

Limitations: while VideoCutLER demonstrates its capabil-

ity to achieve the state-of-the-art performance without rely-

ing on optical flow estimations, potential further improve-

ments may be obtained by leveraging natural videos and in-

tegrating joint training with optical flow estimations.
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