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Abstract

Image-based mirror detection has recently undergone
rapid research due to its significance in applications such
as robotic navigation, semantic segmentation and scene re-
construction. Recently, VMD-Net was proposed as the first
video mirror detection technique, by modeling dual cor-
respondences between the inside and outside of the mir-
ror both spatially and temporally. However, this approach
is not reliable, as correspondences can occur completely
inside or outside of the mirrors. In addition, the pro-
posed dataset VMD-D contains many small mirrors, lim-
iting its applicability to real-world scenarios. To address
these problems, we developed a more challenging dataset
that includes mirrors of various shapes and sizes at differ-
ent locations of the frames, providing a better reflection of
real-world scenarios. Next, we observed that the motions
between the inside and outside of the mirror are often in-
consistent. For instance, when moving in front of a mir-
ror, the motion inside the mirror is often much smaller than
the motion outside due to increased depth perception. With
these observations, we propose modeling inconsistent mo-
tion cues to detect mirrors, and a new network with two
novel modules. The Motion Attention Module (MAM) ex-
plicitly models inconsistent motions around mirrors via op-
tical flow, and the Motion-Guided Edge Detection Module
(MEDM) uses motions to guide mirror edge feature learn-
ing. Experimental results on our proposed dataset show
that our method outperforms state-of-the-arts. The code
and dataset are available at https://github.com/
AlexAnthonyWarren/MG-VMD.

1. Introduction
Mirrors and reflective surfaces are abundant in our sur-
roundings. Successful detection of mirrors underpins many
vision applications such as autonomous drone navigation
and vehicle vision systems [16]. When a scene con-
tains mirrored regions, mirror identification is critical to
reducing errors in applications such as salient object de-

Figure 1. We propose to model motion inconsistency as a cue for
mirror detection. The 1st column shows the inconsistent motions
(depicted with arrows). The locations of these cues align well with
the mirror regions. The 2nd column shows the optical flow com-
puted between frame N (3rd column), and frame N-1 from respec-
tive videos in our new dataset. Our method (5th column) predicts
more reliable and consistent mirror regions, outperforming VMD-
Net [12] (4th column). The 6th column is the ground truth.

tection [25, 26], semantic segmentation [16, 21], scene
reconstruction[3, 4] and NeRF modeling [6, 31].

Mirror detection involves binary classification of indi-
vidual pixels in RGB images to determine if they are inside
or outside of the mirror. It is a challenging research as mir-
rors typically do not have their own visual appearance. They
instead reflect objects within their surroundings. This visual
attribute makes mirrors difficult to detect.

There are a few image-based and one video-based mir-
ror detection methods in the literature. Yang et al. [30] first
introduced a mirror detection method using contrast and se-
mantics. Lin et al. [11] introduced a PMD-Net that utilizes
edge detection and leverages contextual contrasting objects
inside and outside of mirrored regions to detect mirrored re-
gions. Tan et al. [22] detect mirrors using Visual Chirality
Cue [13] that encodes mirror-like symmetrical properties
at the pixel level. Mei et al. [15] factor depth estimation
into their mirror detection process and show good results
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in RGB and RGB-D mirror datasets. Recently, Lin et al.
[12] introduced the first video mirror detection method us-
ing inter-frame and intra-frame dual correspondences.

Despite these exciting results, we observe research gaps
and limitations in these works, especially in video mirror
detection. The state-of-the-art VMD-Net [12] models dual
correspondences inside and outside of mirrors to aid in the
detection of mirror regions in videos. However, the ap-
proach is not reliable as correspondences can appear com-
pletely inside or outside of mirrors as discussed in [22]. In
addition, the proposed VMD-D dataset contains primarily
small mirrors, with small inter-frame motion, mirror cov-
erage and content variation. This limits its applicability to
mirror detection in real-world scenarios.

To address these issues, we first developed a new, more
challenging dataset, Mirror Motion Dataset (MMD). The
dataset contains 37 (≈9-second) videos with substantial
motion, each accompanied by manual mirror annotations.
To address the small mirror issue in VMD-D, we capture a
high variance of mirror sizes and shapes at different spatial
locations, generalizing to real-world scenarios. We further
include challenging examples, including low-contrast envi-
ronments, multi-/large/full-mirror scenes and under differ-
ent lighting conditions. Next, we observe that the motions
between the inside and outside of mirrors are often inconsis-
tent. For instance, when moving in front of a mirror, the mo-
tion inside is often smaller than outside due to the increased
depth perception. The inconsistent motion cues (depicted
by arrows in the 1st column in Figure 1) also apply in chal-
lenging scenarios like low-contrast and multi-mirror scenes.
These observations motivate us to ask the question: Can we
apply the motion inconsistency cue to improve mirror de-
tection in challenging complex video scenes?

Neuroscience studies suggest that humans often rely on
dynamic perceptual cues to identify mirrored regions in
daily life. Tamura et al. [18] [19] show that humans are ca-
pable of distinguishing mirrors in dynamic scenes involving
rotational movement. [20] highlights that rotational, par-
allax, forward and backward motions are exploitable mo-
tion inconsistencies for mirror detection. To our knowledge,
such motion inconsistency cues have not been utilized be-
fore for the video mirror detection task.

To this end, we propose a novel network to model motion
inconsistency for mirror detection, with two novel mod-
ules. First, the Motion Attention Module (MAM) predicts
mirror regions by exploiting inconsistent motion cues ob-
tained from optical flow fields. Second, the Motion-guided
Edge Detection Module (MEDM) further uses motion to
guide mirror edge detection. Experimental results show that
the proposed network outperforms relevant state-of-the-art
methods. To summarise, our main contributions include:
• We propose a novel deep-learning video mirror detection

method based on the motion inconsistency cue.

• Our network includes two novel modules. Motion Atten-
tion Module (MAM) attentively predicts mirror regions
using motion inconsistency in the optical flow fields.
Motion-guided Edge Detection Module (MEDM) uses
the motions to guide mirror edge feature extraction.

• We further present a new video dataset (MMD). Com-
pared to VMD-D, our dataset contains mirrors of various
shapes and size at different locations of the images. It also
covers various scenes, e.g., low-light scenes, and multi-
/large/full mirror scenes. It is a more challenging dataset,
more suitable for real-life scenarios.

• Extensive evaluations show that the proposed model out-
performs existing methods on video mirror detection.

2. Related Works
Video Mirror Detection. VMD-Net [12] introduced the
first video mirror detection method. It employs dual corre-
spondences across both inter-frame and intra-frame to pre-
dict mirrored regions. They further presented a video mir-
ror dataset for this purpose. However, despite its demon-
strated success, we observe two limitations. First, the idea
of dual correspondences is not reliable as correspondences
can occur completely inside or outside of the mirrors [22].
Second, their dataset contains an excess of small mirrors,
which does not generalize well to real-world scenarios.

This paper aims to facilitate video mirror detection in the
wild from two perspectives. First, we propose to model the
inconsistent motion cues to learn more robust mirror repre-
sentations. Second, we introduce a new benchmark dataset
comprising videos with more complex scenarios.
Image-Based Mirror Detection. [30] pioneered mirror de-
tection by utilizing contextual contrasting features and in-
troducing a mirror detection dataset. [15] refined detec-
tion using RGB-D data and presented the first RGB-D mir-
ror dataset. [11] introduced a method leveraging contex-
tual contrasts to relate mirror interior and exterior contents,
along with an expanded image-based mirror dataset. [22]
incorporated chirality cues for mirror detection. Although
these work achieved good results, they mainly focus on
single-image mirror detection and lack the capacity to iden-
tify mirrors within temporal videos.
Video Salient Object Detection. Video Salient Object De-
tection (VSOD) seeks to identify the most visually promi-
nent object in videos. Early VSOD studies [27] [28] utilized
manually crafted features to detect these salient objects. In
more recent research [9] [8] [9] [14] [23], the focus has
shifted to deep learning models, which have demonstrated
promising results in VSOD. These techniques however are
not optimized for the video mirror detection task. This is be-
cause mirrored regions may not always represent the most
visually significant objects within a scene. Our technique
aims to identify mirrors in real-life scenarios.
Optical Flow Estimation. Optical flow estimation fo-
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Figure 2. Snapshots of our proposed Motion Mirror Dataset (MMD), with pixel-level mirror and edge annotations.

Figure 3. Cumulative Distributions.

Figure 4. Mirror Sizes.

Figure 5. Color Contrast.

cuses on extracting per-pixel motion from video sequences.
Early efforts [5] used hand-crafted features of image bright-
ness between consecutive frames. In recent studies, con-
volutional deep learning and transformer-based approaches
have made significant improvements [24] [7]. In our con-
text, optical flow estimation is not inherently applicable to
video mirror detection and cannot serve as a direct detection
method. This study aims to leverage deep-learning optical
flow as a way to model inconsistent motion cues, which en-
ables a robust end-to-end video mirror detection framework.

3. Proposed Dataset

To create our Motion Mirror Dataset (MMD), we first
recruited six volunteering participants (final year univer-
sity students) to capture 37 nine-second smartphone videos
from their surroundings (e.g., living rooms, bathrooms).
Participants were instructed to maintain consistent motion
around mirror regions while recording. We recorded videos
under various lighting conditions, including daily light and
low-light settings. The dataset was subsequently divided
into non-overlapping training (4,653 samples) and testing
(5,074 samples) sets. To accomplish this, we randomly split
the 37 videos into the two sets (training and testing). Specif-
ically 18 videos (4,653 samples) are put into the training
set and 19 videos (5,074 samples) are put into the testing

Dataset SSIM ↑
VMD-D 0.7950544833184201
Ours (MotionMirrorDataset) 0.9033545507233643

Table 1. SSIM of MMD and VMD-D. A higher SSIM indicates a
more reasonable split of dataset.

Dataset Areas not covered by mirrors ↓
(Ours) MMD Training 0.000061
(Ours) MMD Testing 0.000015

VMD-D Training 0.00038147
VMD-D Testing 0.00024414

Table 2. Mirror Coverage. A smaller non-coverage rate indicates
a more even spatial distribution of mirrors.

set. Each frame was meticulously annotated with pixel-
level mirror masks. We applied a depth-first search algo-
rithm to the pixel-level mirror masks to extract edge masks,
which we then manually verified for ground truth accuracy.
All videos in the dataset have a frame rate of 30 fps.
Statistic Analysis. We compare our proposed MMD with
VMD-D [12] in terms of Cumulative Distribution and
Structural Similarity between training and testing sets, Mir-
ror Size Distribution, and Area Coverage.

Figure 3 shows the cumulative distribution of all mirrors
in both training and testing sets. Compared to VMD-D, our
MMD dataset contains more intricate scenarios. VMD-D
[12] however is highly biased with majority of mirror re-
gions fall in the center in the train/test sets whilst there are
nearly none along the edge (darker color on left/right). The
mirror regions of our proposed dataset (MMD) are spread
out across the entire heatmap where mirrors are also found
at the image edges. We further compute the Structural Sim-
ilarity Index (SSIM) on the cumulative area distributions
(Figure 3) directly to compare the structure between the
whole training and testing sets. The higher SSIM of our
MMD in Table 1 shows that the training and testing sets are
similar in structure and fairer for evaluation purpose.

Figure 4 shows the size distribution of mirrors in both
MMD and VMD-D datasets. VMD-D contains a lot of
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Figure 6. Method overview. Our MG-VMD network takes three adjacent frames (IN-2, IN-1, IN) as inputs and extracts their multi-scale
features via a shared ResNext-101 [29] backbone and DeepLabV3[2]. We apply the optical flow coherence block to process IN-2 and IN-1 to
compute an optical flow map for IN-1, followed by an optical flow vector field extrapolation to estimate the optical flow map for IN. These
two optical flow maps are fed into our proposed MAM and MEDM modules to guide the mirror localization and mirror-edge detection
processes, respectively. The proposed Motion Attention Module (MAM) learns to locate mirrors from optical flow fields, exploiting
motion cues, attentively modeling motion inconsistency. The proposed Motion-guided Edge Detection Module (MEDM) learns to extract
and refine mirror boundary edge features. Finally, a fusion refinement module is used to predict the mirror maps by fusing the predicted
mirror boundary maps of MEDM, the mirror localization maps of MAM, and the extracted multi-scale image backbone features.

small mirrors with few/no large mirrors, which does not rep-
resent real-world scenarios. In contrast, our MMD dataset
has a more reasonable distribution, containing a variety of
small, medium and large sized mirrors, and therefore is
more challenging than VMD-D.

Table 2 shows the areas (ratio to the whole image) where
there is no mirror coverage within the two datasets. The
smaller ratios show that MMD contains mirrors that are
more evenly spatially distributed across the whole image.
MMD is more challenging and will introduce less spatial
bias in the model learning.

We further compare the color contrast between mirror
and non-mirror regions in all images between MMD and
VMD-D. The histogram in Figure 5 shows that MMD con-
tains more images with lower color contrast between mirror
and non-mirror regions. Lower color contrast implies a de-
crease in the amount of contextual information available for
a model to leverage, making it more challenging to detect
mirrors. The 4th column of Figure 2 shows one example.
These show that MMD is more challenging than VMD-D.

4. Proposed Method

Our proposed method, Motion-guided Video Mirror De-
tection (MG-VMD), aims to enhance mirror detection by

modelling motion inconsistency cues. Drawing inspiration
from our own observations and neuroscience studies, we
hypothesise that modeling motion inconsistency cues can
improve the accuracy of mirror detection, especially in dy-
namic video scenarios.

The core idea behind MG-VMD is to utilize optical flow
to model motion inconsistency and use it to guide the ex-
traction of multi-scale image and edge features, allowing
for the temporal detection of mirrored regions in videos. To
achieve this, we introduce two key modules: the Motion
Attention Module (MAM) and the Motion-guided Edge De-
tection Module (MEDM).

Specifically, the Motion Attention Module (MAM) is de-
signed to explicitly predict mirror locations by modelling
motion inconsistency cues from the underlying optical flow
fields. This module enhances video mirror prediction by
providing spatial contextual information through the multi-
scale image features and motion cues. It informs the sub-
sequent stages of the model about the location of mirror re-
gions in the video.

The Motion-guided Edge Detection Module (MEDM) is
dedicated to predicting mirror boundaries, contributing to
the enhancement of overall mirror region predictions. This
module takes advantage of image features and employs mo-
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Figure 7. The proposed MAM (Motion Attention Module) aims to
model the inconsistent motion cues to localize the mirrors.

tion inconsistency cues to guide the detection of features at
the edges, specifically tailored for mirror detection.

The Fusion Refinement Module, inspired from PMD-
Net [11], further takes the MAM predicted mirror loca-
tions and the MEDM refined mirror boundaries to predict
mirrors. The integration plays a pivotal role in improving
mirror prediction by alleviating errors arising from the lim-
ited capability of edge detection or inconsistent motion cues
alone. It overcomes the limitations of individual modules
and provides spatial and temporal context for accurate mir-
ror prediction.

In Figure 6 (Architecture Overview), the MG-VMD pro-
cesses adjacent images (IN-2, IN-1, IN) as inputs. Optical
flow field extrapolation is employed to enhance coherency
and address temporal errors between adjacent branches (N-
1 and N). The model utilizes a shared ResNext-101 [29]
backbone and DeepLabV3 [2] to extract multi-scale image
features. The outputs include predicted mirror binary maps
(MN-1 and MN), predicted mirror-boundary edge maps (EN-1
and EN), and mirror motion predictions (MpN-1 and MpN).
The collaboration of MAM, MEDM, and the Fusion Re-
finement Module ensures accurate and robust video mirror
detection by considering both spatial and temporal aspects
of mirror cues.

4.1. Optical Flow Coherence Block

Our architecture leverages a pre-trained optical flow model.
Similar to previous work [10], our optical flow block uti-
lizes frozen weights. However, optical flow may become
unreliable in scenarios with low contrast in image details
or when images become saturated. To achieve a simpler
design while obtaining more stable optical flow, we intro-
duce our Optical Flow Coherence Block, inspired by the
work in [24] for motion estimation. This block extracts
motion and extends it using linear extrapolation. The ex-
trapolated optical flow motion, denoted as flo, is then uti-
lized in our subsequent motion-guided modules, MAM and
MEDM. We empirically find that this simple design outper-
forms alternatives (refer to Section 6 of the Supplemental)
whilst enhancing coherency.

Specifically, the block calculates motion vectors f(N −
2, N − 1) between frames IN-2 and IN-1. These vectors
are then extrapolated by one frame to estimate motion
f ′(N − 1, N) between IN-1 and IN. By using extrapola-

Figure 8. Our proposed MEDM (Motion-Guided Edge Detection
Module) aims to detect the mirror boundaries based on the cap-
tured motion cues in the optical flow vector fields.

tion, we connect the motion information from the frame at
N-2 to N-1, and then to N. This connection helps maintain
a smooth and consistent flow of motion information, reduc-
ing errors from neighboring frames and sudden changes in
motion, especially around mirror regions.

4.2. Motion Attention Module

Figure 7 shows the architecture of the Motion Attention
Module (MAM). This module focuses on direct mirror
prediction from the optical flow fields. It leverages self-
attention to capture and refine better features, to model mo-
tion inconsistency cue and to inform mirror locations. The
output is then fed to the Fusion Refinement Module for the
final mirror refinement.

Specifically, we initiate the MAM by embedding patches
with positional information to create floembed. Subsequently,
we guide floembed through six transformer blocks. Each
block incorporates self-attention, treating floembed as Q, K,
and V in the self-attention mechanism, with output denoted
as floattend. To enhance its representation, floattend under-
goes batch normalization, followed by processing through
a feed-forward design.

The output of the self-attention mechanism within one
Transformer BlockLayer N is then passed to the subsequent
Transformer BlockLayer N+1. Following this sequence, the
output from Transformer BlockLayer 6 is channeled through
a convolutional layer. The intentional use of six sequen-
tial transformer blocks serves a dual purpose: it equips the
model to comprehend long-range dependencies, crucial for
temporal relationships, and enables the capture of intricate
spatial dependencies. This enhanced capability is particu-
larly valuable for predicting spatial locations of the attended
mirrors, denoted as MpN-1 and MpN.

4.3. Motion-guided Edge Detection Module

Figure 8 shows the architecture of the Motion-guided Edge
Detection Module (MEDM). Unlike previous mirror edge
detection in [11, 22] that only exploits image features, we
also leverage the inconsistent motion cues captured in the
optical flow field to guide the mirror edge detection process.

MEDM processes three inputs: Ilow (a 2nd-level multi-
scale image feature), Ihigh (a 5th-layer multi-scale image

17248



feature), and flo (the optical flow field for motion guid-
ance). The process begins with convolutional layers that
extract and predict edge features—referred to as EN or
EN−1—from Ilow, Ihigh, and flo.

The cross-attention mechanism involves matrix multipli-
cation between the transformed flo and EN or EN−1. A
Softmax activation determines the cross-attended beta value
between flo and EN or EN−1. This beta value, represent-
ing the attention weight, is then used to focus on flo, deter-
mining the contribution of each element in the optical flow
field to the final cross-attended motion-guided edge feature.
We specifically employ a cross-attention mechanism in this
step to guide the extracted edge feature with the optical flow
field. The motion-guided edge feature undergoes a convo-
lutional pass, producing the output: the motion-guided edge
feature map, EN or EN−1, respectively.

4.4. Fusion Refinement Module

We refine the motion-guided edge detection features from
MEDM and the motion-based mirror predictions from
MAM. This refining step is crucial to address limitations in
each module (MEDM, MAM) and ensure accurate mirror
prediction with both spatial and temporal context.

The process involves fusion-refinement, where model in-
formation is combined, refined, and fed into a convolutional
binary classification head. This produces per-pixel binary
classification maps, named MN-1 and MN, using two in-
stances of the Fusion Refinement Module. Our approach
is inspired by PMD-Net’s [11] refinement strategy, adapted
here to improve multiple modalities and guide mirror pre-
diction for MN-1 and MN.

4.5. Loss Function

To train the model, we use the loss function (LFinal):

LA = (LMirrorA · α) + (LMotionA · ζ) + (LEdgeA · γ)
LB = (LMirrorB · α) + (LMotionB · ζ) + (LEdgeB · γ)

LCoherence = (MirrorCoherence

+ EdgeCoherence + MotionCoherence) · δ
LFinal = LCoherence + LA + LB

We discuss the loss component below:

Temporal Loss (LCoherence): To make predictions across
consecutive frames more consistent over time, we use
BCELossWithLogits (binary cross-entropy) between MN-1
and MN, MpN-1 and MpN, as well as EN-1 and EN. We set δ
to 1, calling this loss LCoherence. This loss is aimed at reduc-
ing temporal inaccuracies in edge prediction, motion mirror
location, and mirror prediction between frames in a video.
It ensures that predictions from our model’s combined fea-
tures remain consistent over time, addressing a current lim-
itation in video mirror detection.

Mirror Binary Losses (LMirrorA and LMirrorB): We use two
BCELossWithLogits loss functions to predict mirrored re-
gions in MN-1 (LMirrorA) and MN (LMirrorB). These losses are
then compared with the actual ground truth mirror maps.
We set α to 3 for these losses, emphasizing the importance
of accurately detecting mirrors in the model.
Motion Mirror Losses (LMotionA and LMotionB): Two ad-
ditional BCELossWithLogits loss functions are used to
predict mirror regions from motion-guided image features
MpN-1 (LMotionA) and MpN (LMotionB). These losses are then
compared with the ground-truth mirror maps. We set ζ to 1
for both of these losses.
Mirror Edge Losses (LEdgeA and LEdgeB): Two BCELoss-
WithLogits loss functions are utilized for predicting mirror
boundaries in EN-1 (LEdgeA) and EN (LEdgeB). These losses
are compared against the ground-truth mirror edge maps.
We set γ = 2 for each of these losses, emphasizing the pre-
cision of mirror edge prediction.

5. Experiments
5.1. Setups and Metrics

We implemented MG-VMD using PyTorch, trained and val-
idated it against comparative models on a NVIDIA RTX
3090 GPU. In the data preprocessing phase, all images,
ground-truth mirror maps, and edge maps were resized
to a resolution of 224 × 224. Our model’s ResNext-101
backbone and DeepLabV3 parameters were initialized us-
ing the pretrained ResNext-101 backbone and pretrained
DeepLabV3 weights from VMD-Net [12].

We utilized a Stochastic Gradient Descent Optimizer
with a starting learning rate of 9e-3, a momentum of 1.9,
and a weight decay of 5e-4. Then, we applied an adaptive
learning rate to the optimizer, interpolating the learning rate
from 9e-3 to 3e-3 across epochs 1 to 15. The model under-
went 15 epochs of training with a batch size of 8.

For validation, we employed four quantitative met-
rics: Mean Absolute Error (MAE↓), F-measure (Fβ↑),
Accuracy↑, and Intersection over Union (IoU↑). F-measure
(Fβ↑) is computed as follows:

Fβ =
1 + β2(precision ∗ recall)

β2 + recall
, (1)

where β is set to 0.3, as suggested by previous research [11]
[1]. The F-measure (Fβ↑) assesses the harmonic mean be-
tween precision and recall.

5.2. Experimental Results

In Table 3 and Figure 9, we evaluate our proposed technique
against 8 state-of-the-art methods in Video Salient Object
Detection, and Image-Based/Video Mirror Detection. Us-
ing their respective pre-trained weights, we fine-tune and
validate these results on our proposed MMD dataset..
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Image F3Net UFO FSNet AGLRF MGA MirrorNet PMDNet VMDNet Ours GT
Figure 9. Qualitative results table comparing our proposed method against state-of-the-art Video Salient Object Detection, and Image-
Based/Video Mirror Detection FS-Net [8], MGA [10], ALGRF [23], F3Net [9], UFO[17], MirrorNet[30], PMD-Net [11], VMD-Net[12]
trained and validated on our proposed MMD dataset.

5.3. Comparison Against State-of-the-art

Our MG-VMD achieves better performance in Mean Abso-
lute Error (MAE↓), F-measure (Fβ↑), Accuracy↑, and In-
tersection over Union (IoU↑) when compared to state-of-
the-art Video Salient Object Detection, Image-Based Mir-
ror Detection and Video Mirror Detection methods fine-
tuned and validated on our proposed Motion Mirror Dataset.
We attribute the better performance to the exploiting of
motion inconsistency cues across adjacent frames through
our novel modules: Motion-Guided Edge Detection Mod-
ule (MEDM) and Motion Attention Module (MAM). Fig-
ure 9 shows that our method is able to detect mirrors well in
complex (e.g., low contrast) scenarios, outperforming state-
of-the-arts.

We also evaluate the generalizability of our model. In
the Supplemental, we show results comparing MG-VMD
and VMD-Net trained on our MMD dataset and tested on

VMD-D [12]. MG-VMD outperforms VMD-Net, showing
that our model has slightly better/close generalization per-
formances.

5.4. Ablation

We conducted an ablation study to assess the effectiveness
of the proposed modules in MG-VMD. Initially, we re-
moved both the Motion Attention Module and the Motion-
guided Edge Detection Module, resulting in the baseline
with only the Refinement module, which incorporates con-
volutional layers. This configuration is referred to as the
”baseline” for comparative analysis. The rationale behind
evaluating the baseline’s performance without the Opti-
cal Flow Coherence Block, Motion-Guided Edge Detec-
tion Module, and Motion Attention Module was to quan-
titatively gauge the efficacy of our deep-learning approach
without leveraging inconsistent motion cues.

Table 4 shows the performance of the ablated models:
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Models Accuracy↑ MAE↓ Fβ↑ IoU↑
MGA 0.566037 0.433963 0.489176 0.281285
UFO 0.796797 0.203204 0.797447 0.598641
FSNet 0.853287 0.146713 0.837732 0.707848
ALGRF 0.723772 0.276229 0.692829 0.502814
F3Net 0.838863 0.161137 0.847321 0.670618
PMD-Net 0.740909 0.259091 0.847211 0.424085
MirrorNet 0.835227 0.164772 0.838987 0.666242
VMDNet 0.854415 0.145585 0.812347 0.722634
Ours 0.872532 0.127468 0.869419 0.725130

Table 3. Quantitative results table comparing our proposed method
against state-of-the-art Video Salient Object Detection, and
Image-Based/Video Mirror Detection FS-Net [8], MGA [10], AL-
GRF [23], F3Net [9], UFO [17], PMD-Net [11], MirrorNet[30],
VMD-Net[12] methods trained and validated on our proposed
MMD dataset. Red, Blue and Green indicate the best, second and
third best performances, respectively.

Models Accuracy↑ MAE↓ Fβ↑ IoU↑
baseline 0.857519 0.142481 0.837578 0.700855
b + MEDM 0.858176 0.141824 0.847853 0.707350
b + MAM 0.866218 0.133782 0.841614 0.713005
Ours 0.872532 0.127468 0.869419 0.725130

Table 4. Ablation Results: Qualitative results table comparing our
proposed method (MG-VMD (Ours)) against ablated versions of
our model: b + MAM, b + MEDM, and baseline (b), trained and
validated on our proposed MMD dataset. Red, Blue and Green
indicate the best, second and third-best performances, respectively.

“baseline (b)”, “b + MEDM”, “b + MAM”, and “MG-VMD
(Ours)”. Both MAM and MEDM exploit motion inconsis-
tency cues, demonstrating better performance compared to
the baseline. The full model combines the complementary
outputs from MAM and MEDM, yielding the best results.

Our baseline outperforms state-of-the-art VMD-Net [12]
for two reasons. First, our model is fine-tuned on VMD-
Net’s [12] ResNext-101 backbone and DeepLabV3 weights
(Section 5). Second, VMD-Net [12] assumes dual corre-
spondence, but in real-life datasets, dual correspondence
does not always occur. This shows the usefulness of our
MMD dataset.

Table 4 shows that MEDM and MAM each contributes to
the model individually. Without MEDM, mirror edges be-
come noisy (e.g., Figure 10 Column 4 Rows 2 and 4). With-
out MAM, MEDM may mistakenly detect object edges in-
side mirrors (e.g., cabinet edges in Figure 10 Column 3 Row
2), leading to inaccurate mirror detection. (Best viewed by
zooming in.) Both modules use motion features, comple-
menting each other and boost performance (Figure 10 Col-
umn 5, and Table 4).

6. Conclusion
This paper introduces a novel deep-learning approach to
tackle video mirror detection by leveraging inconsistent

Image baseline b+MEDM b+MAM Ours GT
Figure 10. Qualitative results of the ablated models.

Image Ours GT
Figure 11. Failure cases. Our Method may not be good in scenar-
ios containing both mirror regions and windows, due to windows
irregular motion compared to a scene.

motion cues within and outside mirrored regions. We also
present a benchmark video mirror dataset featuring consis-
tent inter-frame motion across long videos. Our experimen-
tal results demonstrate that our proposed MG-VMD deep-
learning method outperforms state-of-the-arts in Video Mir-
ror Detection, Image-Based Mirror Detection, and Video
Salient Object Detection. Furthermore, we conclude that
our proposed Motion Mirror Dataset (MMD) is challenging
compared to state-of-the-art Video Mirror Datasets.

Our method is not without limitation. Figure 11 shows a
scenario with both mirror and window in a scene. We found
that similar to mirror regions, windows can have different
motions from their surroundings. Thus, our method tends
to over-predict window regions as mirrors. We plan to
improve our design to mitigate this in the future.
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