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Abstract

Video grounding aims to localize a spatio-temporal sec-
tion in a video corresponding to an input text query.
This paper addresses a critical limitation in current
video grounding methodologies by introducing an Open-
Vocabulary Spatio-Temporal Video Grounding task. Unlike
prevalent closed-set approaches that struggle with open-
vocabulary scenarios due to limited training data and pre-
defined vocabularies, our model leverages pre-trained rep-
resentations from foundational spatial grounding models.
This empowers it to effectively bridge the semantic gap be-
tween natural language and diverse visual content, achiev-
ing strong performance in closed-set and open-vocabulary
settings. Our contributions include a novel spatio-temporal
video grounding model, surpassing state-of-the-art results
in closed-set evaluations on multiple datasets and demon-
strating superior performance in open-vocabulary scenar-
ios. Notably, the proposed model outperforms state-of-the-
art methods in closed-set settings on VidSTG (Declarative
and Interrogative) and HC-STVG (V1 and V2) datasets.
Furthermore, in open-vocabulary evaluations on HC-STVG
V1 and YouCook-Interactions, our model surpasses the re-
cent best-performing models by 4.88 m vIoU and 1.83% ac-
curacy, demonstrating its efficacy in handling diverse lin-
guistic and visual concepts for improved video understand-
ing. Our codes will be publicly released.

1. Introduction
Spatio-temporal video grounding is pivotal in linking visual
content with natural language descriptions, thus facilitat-
ing semantics interpretation within visual data. Prevailing
approaches in video grounding such as TubeDETR [28],
STCAT [9], and STVGFormer [11] focus mainly on su-
pervised closed-set settings, where models are trained on
specific datasets [24, 32] with predefined vocabulary and
meticulously annotated data. While these current state-of-

Figure 1. Performance comparison on conventional closed-set
and open-vocabulary settings for the video grounding task. We
compare our approach with TubeDETR [28] and STCAT [9] in
supervised setting for VidSTG [32] declarative/interrogative and
HC-STVG V1 [24], along with open-vocabulary evaluation on
HC-STVG V1 and YouCook-Interactions [23] datasets.

the-art methods excel in closed-set settings on datasets like
VidSTG [32] and HC-STVG [24], their limited generaliza-
tion beyond training dataset distributions poses a significant
challenge. The relatively small scale and restricted sample
variety in existing video datasets hinder models from adapt-
ing to unseen scenarios effectively.

Motivated by the inherent limitation of supervised
closed-set approaches in terms of their restricted vocab-
ulary, this paper investigates Open-Vocabulary Spatio-
Temporal Video Grounding. Unlike conventional method-
ologies, this paradigm addresses challenges posed by the
unrestricted diversity of language and visual concepts in
the wild. The goal is to train on a set of base categories
and generalize to unseen objects/actions based on the open-
vocabulary nature of backbone models. This paper ex-
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plores the challenges and opportunities inherent in open-
vocabulary video grounding, laying the groundwork for
more robust and versatile video understanding.

However, training an effective open-vocabulary video
grounding model would require a large enough dataset with
a rich set of natural language expressions and corresponding
spatio-temporal localizations. Such an extensive dataset can
allow the model to learn generalized visual and textual rep-
resentations and handle out-of-distribution samples. How-
ever, video grounding datasets [24, 32] are quite limited
in scale, e.g., VidSTG has only 5.4k training videos with
80.6k distinct sentences. In contrast, an image grounding
model GLIP [10] is trained with ∼26.5M image-text pairs.
Therefore, our research explores the following fundamen-
tal question: How spatio-temporal video grounding mod-
els can achieve robust performance in both Closed-Set and
Open-Vocabulary scenarios without requiring large-scale
video annotations, ensuring effective generalization beyond
training datasets?

In addressing this question, we find inspiration in the ac-
complishments of foundational models specializing in spa-
tial grounding [4, 8, 12, 14, 29]. These models undergo
training on an extensive corpus of image-text data, enabling
effective generalization to samples from a given target dis-
tribution. We aim to harness this pretrained representation
to enhance our video grounding model. Our proposed solu-
tion is a spatio-temporal video grounding model adopting a
DETR-like architecture enhanced by temporal aggregation
modules. The spatial modules are initialized using the pre-
trained representation of a foundational image model [12].
Meanwhile, the image and text feature extractors remain
frozen while the video-specific spatio-temporal adaptations
are modeled via learnable adapter blocks. This approach is
designed to preserve the nuanced representation of the foun-
dational model, enhancing our model’s ability to generalize
effectively to novel samples.

A summary of our closed-set and open-vocabulary re-
sults is shown in Fig. 1, where the proposed approach excels
in both settings by a clear margin. Our major contributions
are summarized as follows:

• For the first time, we evaluate spatio-temporal video
grounding models in an open-vocabulary setting on HC-
STVG V1 [24] and YouCook-Interactions [23] bench-
marks in a zero-shot manner. We outperform state-of-
the-art methods TubeDETR [28] and STCAT [9] by 4.26
m vIoU and 1.83% accuracy, respectively.

• By combining the strengths of spatial grounding mod-
els with complementary video-specific adapters, our ap-
proach consistently outperforms the previous state-of-
the-art in closed-set setting on four benchmarks, i.e.,
VidSTG (Declarative) [32], VidSTG (Interrogative) [32],
HC-STVG V1 [24] and HC-STVG V2 [24].

2. Related Work
Spatial Grounding Foundation Models: Recent literature
introduces notable spatial grounding models. GLIP [10]
unifies object detection and phrase grounding through a
language-image pre-training model, leveraging extensive
image-text pairs for semantic-rich representations. Ground-
ing DINO [12] integrates language with a transformer-
based detector to achieve an open-set detector, excelling
in benchmarks like COCO and ODinW. Kosmos-1 [8]
and Kosmos-2 [14] contribute Multimodal Large Language
Models (MLLMs) with capabilities such as zero-shot and
few-shot learning, language understanding, and multimodal
tasks. Kosmos-2 [14] specifically integrates grounding into
downstream applications, introducing GrIT, a large-scale
dataset of Grounded Image-Text pairs. Shikra [4] addresses
referential ability in MLLMs by handling spatial coordi-
nates in inputs and outputs, showcasing promising perfor-
mance in various vision-language tasks. Ferret [29] unifies
referring and grounding in the LLM paradigm, achieving
superior performance in classical referring and grounding
tasks, excelling in region-based multimodal chatting and
image description. Recently, GLaMM [16] allows pixel-
level grounded conversations with an LLM, showcasing
generalizability to several captioning and referring segmen-
tation tasks. However, spatial methods cannot work for
grounding objects in videos, a gap addressed by this work.
Spatio-Temporal Video Grounding: Several methods
tackle the challenge of localizing objects in untrimmed
videos based on query sentences. STVGBert [21] presents
a one-stage visual-linguistic transformer for simultaneous
spatial and temporal localization. TubeDETR [28] intro-
duces a transformer-based architecture to model tempo-
ral, spatial, and multi-modal interactions efficiently. Aug-
mented 2D-TAN [22] adopts a two-stage approach, enhanc-
ing the 2D-TAN with a temporal context-aware Bi-LSTM
Aggregation Module. OMRN [33] addresses the chal-
lenge of unaligned data and multi-form sentences in spatio-
temporal video grounding, proposing an object-aware
multi-branch relation network for effective relation discov-
ery. MMN [26] introduces a Mutual Matching Network as a
metric-learning framework for temporal grounding, achiev-
ing competitive performance. STCAT [9] is an end-to-end
one-stage framework addressing feature alignment and pre-
diction inconsistency. Finally, STVGFormer [11] proposes
an effective framework with static and dynamic branches
for cross-modal understanding. While the above methods
advance video grounding, their generalization to out-of-
distribution and open-vocabulary samples is limited due to
constrained video datasets [24, 32]. To address this issue,
we utilize the generalized representation of spatial ground-
ing foundation models [4, 8, 10, 12, 14, 29] trained on a
large corpus of image-text data and can perform well on
both closed-set and open-vocabulary evaluations.
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3. Methodology
As discussed above, the current state-of-the-art spatio-
temporal video grounding methods [9, 11, 21, 22, 24, 26,
28, 30, 32, 33] primarily evaluate in a supervised setting on
the VidSTG [32] and HC-STVG [24] datasets. However,
these methods lack the multimodal spatio-temporal under-
standing required to perform well on out-of-distribution
samples [2]. Therefore, this work aims to achieve im-
proved open-vocabulary performance while maintaining
strong closed-set video-grounding performance.

We take inspiration from recent foundation models for
spatial grounding [4, 8, 10, 12, 14, 29]. These models are
trained on a large corpus of visual-textual data and hence,
generalize well to unseen samples. We aim to leverage
the strong generalization capabilities of such foundation
models to achieve strong open-set spatio-temporal video
grounding performance. Our proposed spatio-temporal
video grounding method uses DETR-like [1] design, with
temporal aggregation and adaptation modules for learning
video-specific representations.

Below, we explain our proposed methodology. We for-
mally define the spatio-temporal video grounding problem
in Sec. 3.1. We then explain our architecture details in
Sec. 3.2. We finally explain the loss formulation used to
train the model and model initialization in Sec. 3.3.

3.1. Problem Definition

The spatio-temporal video grounding task involves localiz-
ing and recognizing objects and actions in a video sequence
by integrating spatial and temporal information. In contrast
to spatial grounding, which focuses on recognizing and lo-
calizing objects or actions within individual frames, spatio-
temporal grounding extends this concept to include the tem-
poral dimension. This means understanding where objects
or actions are in each frame and how they evolve and move
over time.

Consider a video V ∈ RT×H×W×C with T frames,
H × W spatial resolution, and C channels, respectively,
along with a text prompt P . The spatial grounding problem
can be defined as the localization of one or more objects
associated with the prompt P in a frame Vt, t ∈ {1, ..., T}
using a bounding box Bt

i = (xt
i, y

t
i , w

t
i , h

t
i), where xt

i and
yti are the coordinates of the top-left corner, wt

i and ht
i are

the width and height of the bounding box, i ∈ {1, ..., N} is
the object number for the frame t. The temporal ground-
ing problem, on the other hand, involves understanding
how objects or actions evolve over time. It aims at lo-
calizing the temporal interval (ts, te) where the specific
action/interaction happens in the entire temporal duration,
where interval (ts, te) indicates the start and end frame of
the object occurrence within the total frames T (1 ≤ ts <
te ≤ T ). Hence, the spatio-temporal grounding problem for
object i associated with prompt P can be summarized as a

set of spatio-temporal coordinates associated with the sub-
set of frames where the object exists: (xt

i, y
t
i , w

t
i , h

t
i, t) and

t ∈ {ts, ..., te}. The interval (ts, te)|{1 ≤ ts < te ≤ T}
and is a subset of the total frames T .

3.2. Spatio-Temporal Video Grounding

Here, we explain our video grounding model in Fig. 2. As
discussed earlier, we aim to design a spatio-temporal video
grounding model that can perform well in closed-set and
open-vocabulary settings. Strong open-vocabulary perfor-
mance requires learning a rich visual/textual representation,
which in turn requires a large amount of training data. Un-
fortunately, spatio-temporal video grounding datasets are
quite limited in scale [24, 32], resulting in current video
grounding methods failing in generalizing well to out-of-
distribution samples because they lack the requisite strong
visual/textual representation.

To solve this problem, our approach takes inspiration
from recent spatial grounding methods [4, 8, 12, 14, 29],
which have strong open-vocabulary performance thanks
to the large image-text corpus they are trained on. We
can utilize the generalized representations of these mod-
els to enrich the weaker representation of video-grounding
approaches obtained from the limited number of training
samples. Our approach aims to leverage the strong pre-
trained representations of spatial grounding methods to
achieve strong closed-set supervised and open-vocabulary
video grounding performance. Our spatio-temporal video
grounding approach is based on the state-of-the-art DETR-
based [1] object detection framework DINO [31] and also
borrows concepts of image-text alignment and grounding
from Grounded Language-Image Pre-training (GLIP) [10]
and Grounding DINO [12]. We extract initial features
from backbone vision and text encoders θv and θp. Fol-
lowing that, we model inter-frame and intra-frame features
and learn cross-modal visual/textual relations in the Cross-
Modality Spatio-Temporal Encoder (Sec. 3.2.1). The result
enriched cross-modal features are used to initialize queries
for each frame (Sec. 3.2.2). These queries are then de-
coded to predict the bounding boxes per frame and the tem-
poral grounding start/end frame by aggregating informa-
tion across spatial/temporal dimensions and injecting infor-
mation through cross-attention from enriched visual/textual
context (Sec. 3.2.3).

Given the video V and text prompt P as described above,
we obtain per-frame features F 0

v and text features F 0
p from

vision and text encoders, θv and θp, respectively. The vi-
sion encoder is based on a Swin Transformer [13], and
the text-encoder is defined as a BERT [6] model. Like
other DETR-based detectors [31, 35], image features are
extracted from different vision-encoder blocks at multiple
scales. The features are then passed to the Cross-Modality
Spatio-Temporal Encoder.
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Figure 2. Overall architecture: We present our video grounding architecture. It consists of vision and text encoders that produce
visual and textual features. A cross-modality spatio-temporal encoder which fuses information across spatial/temporal dimensions and
visual/textual modalities. A language guided query selction module to initialize cross-modal queries. A cross-modality spatio-temporal
decoder to decoder queries while fusing information from visual/textual features. And finally two prediction heads to predict the bounding
boxes per frame and the temporal tube. Modules with ( ) are trainable and those with ( ) are frozen.

3.2.1 Cross-Modality Spatio-Temporal Encoder

The initial vision and text features F 0
v and F 0

p neither
contain any cross-modal information nor model the tem-
poral relationship across frames. Therefore, we further
encode the initial features through the Cross-Modality
Spatio-Temporal Encoder to model the temporal informa-
tion across frames and learn cross-modal features.

Each layer of the M layer encoder first applies a Multi-
Head Self-Attention (MHSA) [25] to the visual features Fv

along the temporal dimension, followed by a Deformable
Attention (DA) [35] along the spatial dimension. This
is done to model relations within frames and temporally
across frames. Similarly, we apply a MHSA on the text
features Fp. This is illustrated in Eq. 1.

Fm′
v = DAm

spatial(MHSAm
temporal(F

m−1
v )),

Fm′
p = MHSAm

p (Fm−1
p ),

(1)

where Fm−1
v and Fm−1

p are visual and textual input fea-
tures to layer m, Fm′

v and Fm′
p are the intermediate vi-

sual and textual feature representation, and DAm
spatial,

MHSAm
temporal and MHSAm

p are the spatial-deformable,
temporal and textual attentions at layer m ∈ {1, ...,M},
respectively. Following initial spatial, temporal, and tex-
tual attentions, we fuse features across the visual and textual
modalities, as done in GLIP [10].

More specifically, we calculate the joint visual-textual
attention, Attnmjoint, using projected intermediate features
Fm′
v and Fm′

p . This attention is then used alongside the

intermediate features Fm′
v and Fm′

p , to calculate the image-
to-text and text-to-image cross-attentions as shown in Eq. 2
and Eq. 3.

Attnmjoint =

(
projmq,v(F

m′
v )projmq,p(F

m′
p )T

√
dk

)
, (2)

where projmq,v and projmq,p are the query projections for the
visual and textual features, respectively, at layer m.

Fm
v = FFNm

v (softmax(Attnmjoint)proj
m
p (Fm′

p ))),

Fm
p = FFNm

p (softmax(Attnmjoint
T )projmv (Fm′

v ))),
(3)

where Fm
v and Fm

p are the final output features at layer m
of the encoder, FFNm

v and FFNm
v are the visual and textual

Feed Forward Networks (FFN) and projmv and projmp are
the linear layers to project the visual and textual features.
The final encoded features at layer m = M are then utilized
to initialize cross-modal queries.

3.2.2 Language-Guided Query Selection

This module is designed to select features more relevant
to the input text as decoder queries for effective language-
vision fusion. We combine a DETR/DINO [1, 31] style
queries with a sinusoidal temporal positional encoding to
the positional part of the queries. The sinusoidal positional
encoding added to the positional part of the queries adds
important contextual information regarding the sequence
of frames, allowing for improved temporal correlation and
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grounding [28]. The query selection module takes the en-
coder’s visual and textual features as input and outputs
num query indices that correspond to the most relevant
features for object detection per frame, {Q0

t}Tt=1, where Q0
t

are the initial queries for the frame t. The module initial-
izes the decoder queries using a combination of the selected
indices and dynamic anchor boxes. The content part of the
queries is set to be learnable during training, while the po-
sitional part is computed using the dynamic anchor boxes
initialized using the encoder outputs. We also add a sinu-
soidal temporal positional encoding to the positional part of
the queries.

3.2.3 Cross-Modality Spatio-Temporal Decoder

To decode the above queries into bounding box locations
and temporal start/end tubes, we need to transform them
into an output embedding, which can then be fed into pre-
diction heads. The decoder allows for the queries to interact
globally with others within a frame and across frames while
utilizing the entire visual and textual features as context.
Formally, the queries produced earlier are fed into a N layer
decoder. Each layer starts with a temporal self-attention,
a spatial self-attention followed by a visual cross-attention
and textual cross-attention, and finally an FFN. This is rep-
resented in Eq. 4.

Qn′
t = MHSAn

spatial(MHSAn
temporal(Q

n−1
t )),

Qn
t = FFNn(CAn

p (CA
n
v (Q

n′
t , FM

v ), FM
p )),

(4)

where Qn−1
t are the input queries at layer n ∈ {1, ..., N},

Qn′
t are the intermediate queries after spatial and tempo-

ral attention at layer n, Qn′
t are the output queries at layer

n, and CAn
v and CAn

p are the visual and textual cross-
attentions at layer n. The cross-attentions are further elabo-
rated in Eq. 5.

CAn
v (Q

n′
t , FM

v ) =

(
projnq,v(Q

n′
t )projnk,v(F

M
v )T

√
dk

projnv (F
M
v )T

)
,

CAn
p (CA

n
v , F

M
p ) =

(
projnq,p(CA

n
v )proj

n
k,p(F

M
p )T

√
dk

projnp (F
M
p )T

)
,

(5)
where projnq,v , projnk,v and projnv are the visual query, key
and values projection for layer n and projnq,p, projnk,p and
projnp are the textual query, key and value projections. The
final queries from the decoder at layer N , {QN

t }Tt=1, are
then used for prediction.

3.2.4 Prediction Heads

The decoder outputs refined queries per frame {QN
t }Tt=1.

We follow the standard DETR-like bounding box regres-
sion head implemented as a Multi-Layer Perceptron (MLP),

which predicts bounding boxes Bt
i = (xt

i, y
t
i , w

t
i , h

t
i), per

frame. To predict the temporal interval (ts, te)|{1 ≤ ts <
te ≤ T}, we add a temporal grounding head, implemented
as an MLP, alongside the bounding box regression head,
similar to existing works like [9, 28]. The new head pre-
dicts the probabilities of the start τs ∈ [0, 1]T and ends
τe ∈ [0, 1]T of the interval. During inference, the start and
end interval (ts, te)|{1 ≤ ts < te ≤ T} is computed by tak-
ing the maximum of the joint distribution of (τs, τe). Any
invalid combinations with te ≤ ts are masked out.

3.3. Loss Function

To leverage the generalized pre-trained representation from
spatial-grounding foundation models, we initialize all spa-
tial modules and cross attentions from the Grounding
DINO [12] spatial grounding model. To preserve this gen-
eralized representation while ensuring effective modeling
of the downstream task, we freeze the Vision and Text En-
coders θv and θp and fine-tune the remaining components.

During training, the model receives a batch of videos V
with text prompt P . The ground-truth annotation contains
the bounding box sequence {Bt

i}
te
t=ts , and the correspond-

ing start and end timestamps (ts, te). For spatial ground-
ing, we follow the standard loss formulation used in DETR-
like [1, 31, 35], namely the L1 loss, LL1

, and the Gener-
alized Intersection over Union (GIoU) [17] loss, LGIoU .
Formally, the spatial grounding loss, Lspatial is defined in
Eq. 6.

Lspatial = λL1
LL1

(B̂, B) + λGIoULGIoU (B̂, B). (6)

For temporal grounding, we follow [18, 21, 28] and gen-
erate two 1-dimensional gaussian heatmaps πs, πe ∈ RT ,
for the starting and ending positions. The temporal ground-
ing loss is therefore defined in Eq. 7 as,

Ltemporal = Ls
KL(π̂s, πs) + Le

KL(π̂e, πe), (7)

where Ls
KL and Le

KL are the KL divergence losses for the
start and end distributions, respectively.

Note that the model outputs the bounding boxes and
starting/ending distributions during inference. We deter-
mine the temporal grounding segment, (ts, te), by taking
the segment with the maximal joint start and end probabil-
ity. Then, we consider the bounding boxes only within that
tube for spatial grounding.

4. Results

4.1. Experimental Setup and Protocols

Below, we first briefly explain the implementation details
(Sec. 4.1.1), followed by evaluation settings (Sec. 4.1.2),
and datasets (Sec. 4.1.3) used in our work.
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Table 1. Performance comparisons of the state-of-the-art on HC-STVG V1 [24] and YouCook-Interactions [23] in open-vocabulary setting.

Method Pre-training HC-STVG V1 YouCook-Interactions

m vIoU vIoU@0.3 vIoU@0.5 Accuracy

TubeDETR (CVPR’22) [28] VidSTG 16.84 22.32 9.22 51.63
STCAT (NeurIPS’22) [9] VidSTG 22.58 32.14 20.83 55.90
VideoGrounding-DINO VidSTG 27.46 40.13 29.92 57.73

4.1.1 Implementation Details

As discussed in the methodology (Sec. 3), we initialize
the spatial modules in our model from the Grounding
DINO [12] spatial grounding model and keep the vision and
text encoders frozen. Our prediction heads for both spatial
and temporal predictions are set to be 3-layer Multi-Layer
Perceptrons (MLPs). We sample 128 frames during training
and inference, resized to a resolution of 448 on the shorter
side. We set both M and N to 6, and train the model with a
batch size of 8 and learning rate of 1e−4, and weight decay
if 10−4. The number of epochs for VidSTG is set to 10, and
for HC-STVG V1/V2 is set to 90.

4.1.2 Evaluation Settings

We evaluate our video grounding model in two settings,
Open-Vocabulary and Closed-Set Supervised.
Open-Vocabulary Evaluation: In the open-vocabulary
setting we train our model on the VidSTG [32] dataset and
then evaluate on two different datasets, HC-STVG V1 [24]
and YouCook-Interactions [23] to understand how well the
model generalizes to new distributions. The reason for
choosing these two datasets is that the former provides a
relatively minor distribution shift given the similar perspec-
tive/objects in the videos compared to the training dataset
VidSTG. In contrast, the latter provides a major distribu-
tion shift with changes in perspective and annotated ob-
jects/interactions.
Closed-Set Supervised Evaluation: In the supervised
evaluation setting, we train on the training set and eval-
uate each dataset’s respective validation/testing set. This
evaluation is conducted for three majorly used datasets
in spatio-temporal video grounding, namely VidSTG [32],
HC-STVG V1 [24] and HC-STVG V2 [24].

4.1.3 Datasets

We evaluate our approach and compare against the state-
of-the-art in two settings: Open-Vocabulary and Closed-
Set Supervised, across a total of four grounding datasets,
namely: VidSTG [32], HCSTVG V1 [24], HCSTVG
V2 [24], and YouCook-Interactions [23].
VidSTG: The VidSTG [32] dataset is derived from the Vi-
dOR [20] dataset, incorporating object relation annotations.

It includes 99,943 video-text pairs, encompassing 44,808
declarative sentence queries and 55,135 interrogative sen-
tence queries. The training, validation, and test sets consist
of 80,684, 8,956, and 10,303 sentences and 5,436, 602, and
732 videos, respectively. VidSTG’s text queries are con-
fined to describing pre-defined object/relation categories in
VidOR [20].
HC-STVG V1/V2: The HC-STVG datasets are sourced
from movie scenes, each video clip spanning approximately
20 seconds. These datasets pose challenges in spatio-
temporal grounding due to video clips featuring multiple
individuals engaged in similar actions. HC-STVG V1 com-
prises 4,500 training and 1,160 testing video-text pairs. HC-
STVG V2 expands HC-STVG V1, enhancing annotation
quality with 10,131, 2,000, and 4,413 samples for training,
validation, and testing, respectively. As HC-STVG V2’s
test set annotations are unavailable publicly, results are re-
ported on the validation set.
YouCook-Interactions: The YouCook-Interactions [23]
dataset serves as an expansion of the YouCook2 [34] dataset
focused on cooking instructions. This extension includes
bounding boxes for 6,000 carefully chosen frames, typi-
cally encompassing the hand and the tool specified in the
corresponding sentence-level annotations. Our assessment
revolves around examining models’ spatial grounding capa-
bilities using this dataset.

4.2. Experimental Results and Analysis

In this section, we present our results across the evalu-
ation mentioned above settings (Sec. 4.1.2) and datasets
(Sec. 4.1.3). We start with the closed-set evaluation in
Sec. 4.2.2, followed by the open-vocabulary evaluation in
Sec. 4.2.1.

4.2.1 Open-Vocabulary Evaluation

For open-vocabulary evaluation, we train on VidSTG [32]
and present results HC-STVG V1 [24] and YouCook-
Interactions [23]. The results are reported jointly in Tab. 1.
Results on HC-STVG V1: We report open-vocabulary
evaluation on m vIoU, vIoU@0.3, and vIoU@0.5. We
achieve state-of-the-art performance over both Tube-
DETR [28] and STCAT [9]. We attribute this strong per-
formance to our design, which leverages the strong pre-
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Table 2. Performance comparisons of the state-of-the-art on the VidSTG [32] test set in closed-set supervised setting.

Method Declarative Sentences Interrogative Sentences

m tIoU m vIoU vIoU@0.3 vIoU@0.5 m tIoU m vIoU vIoU@0.3 vIoU@0.5

Factorized:
GroundeR (ECCV’16) [19]+TALL (ICCV’17) [7]

34.63
9.78 11.04 4.09

33.73
9.32 11.39 3.24

STPR (ICCV’17) [27]+TALL (ICCV’17) [7] 10.40 12.38 4.27 9.98 11.74 4.36
WSSTG (arXiv’19) [5]+TALL (ICCV’17) [7] 11.36 14.63 5.91 10.65 13.90 5.32
GroundeR (ECCV’16) [19]+L-Net (AAAI’19) [3]

40.86
11.89 15.32 5.45

39.79
11.05 14.28 5.11

STPR (ICCV’17) [27]+L-Net (AAAI’19) [3] 12.93 16.27 5.68 11.94 14.73 5.27
WSSTG (arXiv’19) [5]+L-Net (AAAI’19) [3] 14.45 18.00 7.89 13.36 17.39 7.06

Two-Stage:
STGRN (CVPR’20) [32] 48.47 19.75 25.77 14.60 46.98 18.32 21.10 12.83
STGVT (TCSVT’21) [24] - 21.62 29.80 18.94 - - - -
OMRN (IJCAI’21) [33] 50.73 23.11 32.61 16.42 49.19 20.63 28.35 14.11

One-Stage:
STVGBert (ICCV’21) [21] - 23.97 30.91 18.39 - 22.51 25.97 15.95
TubeDETR (CVPR’22) [28] 48.10 30.40 42.50 28.20 46.90 25.70 35.70 23.20
STCAT (NeurIPS’22) [9] 50.82 33.14 46.20 32.58 49.67 28.22 39.24 26.63
STVGFormer (CVPR’23) [11] - 33.70 47.20 32.80 - 28.50 39.90 26.20
VideoGrounding-DINO 51.97 34.67 48.11 33.96 50.83 29.89 41.03 27.58

Table 3. Performance comparisons of the state-of-the-art on the
HC-STVG V1 [24] test set in closed-set supervised setting.

Methods m vIoU vIoU@0.3 vIoU@0.5

STGVT (TCSVT’21) [24] 18.15 26.81 9.48
STVGBert (ICCV’21) [21] 20.42 29.37 11.31
TubeDETR (CVPR’22) [28] 32.40 49.80 23.50
STCAT (NeurIPS’22) [9] 35.09 57.67 30.09
STVGFormer (CVPR’23) [11] 36.90 62.20 34.80
VideoGrounding-DINO 38.25 62.47 36.14

Table 4. Performance comparisons of the state-of-the-art on the
HC-STVG V2 [24] val set in closed-set supervised setting.

Methods m vIoU vIoU@0.3 vIoU@0.5

Yu et al (arXiv’21) [30] 30.00 - -
Aug. 2D-TAN (arXiv’21) [22] 30.40 50.40 18.80
TubeDETR (CVPR’22) [28] 36.40 58.80 30.60
STVGFormer (CVPR’23) [11] 38.70 65.50 33.80
VideoGrounding-DINO 39.88 67.13 34.49

trained generalized features of a spatial grounding founda-
tion model.

Results on YouCook-Interactions: We evaluate our
method further on the YouCook-Interactions [23] dataset,
reporting pointing game accuracy for spatial grounding.
Our approach gains nearly 2% in accuracy over STCAT [9]
and more than 6% compared to TubeDETR [28]. This
further shows our strong generalization capabilities in the
open-vocabulary setting.

4.2.2 Closed-Set Supervised Evaluation

We present closed-set evaluations across three datasets,
VidSTG [32], HC-STVG V1 [24] and HC-STVG V2 [24].

Results on VidSTG: We present results on the VidSTG
test set in closed-set setting in Tab. 2, reporting m tIoU,
m vIoU, vIoU@0.3 and vIoU@0.5. The results show that
our method achieves state-of-the-art performance in com-
parison to both Two-Stage and One-Stage methods. In
particular, we achieve more than 1t IoU gain in tempo-
ral grounding over the previous best methods OMRN [33]
(One-Stage) and STVGFormer [11] (Two-Stage), both for
Declarative and Interrogative sentences. Similarly, for
m vIoU, vIoU@0.3 and vIoU@0.5, we achieve a more than
1 unit gain the state-of-the-art methods STVGFormer [11]
and STCAT [9]. Note that our method uses a frozen visual
and textual encoder. In contrast, those mentioned above pre-
vious state-of-the-art methods all train the entire encoder.

Results on HC-STVG V1: We present results on the HC-
STVG V1 dataset in Tab. 3, reporting m vIoU, vIoU@0.3
and vIoU@0.5. We achieve a nearly 1.5 unit gain in m vIoU
and vIoU@0.5 and a 1 unit gain in vIoU@0.3 over the pre-
vious best method STVGFormer [11]. This shows the con-
sistent performance of our method on this dataset.

Results on HC-STVG V2: We present results on the HC-
STVG V2 dataset in Tab. 4, reporting m vIoU, vIoU@0.3
and vIoU@0.5. Our performance gain on HC-STVG V1 is
reflected here as well, with a consistent performance gain
on HC-STVG V2, in comparison to the SoTA [11, 28].
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Table 5. Ablation on various design choices for our approach on the VidSTG [32] test set in closed-set supervised setting.

Method Declarative Sentences Interrogative Sentences

m tIoU m vIoU vIoU@0.3 vIoU@0.5 m tIoU m vIoU vIoU@0.3 vIoU@0.5

Naive Solution (Frozen Grounding DINO [12]) 39.78 18.07 22.31 13.75 39.79 9.66 10.42 3.84
+ Decoder Temporal Aggregation 42.81 20.74 26.53 15.41 43.81 12.38 16.71 8.62
+ Encoder Temporal Aggregation 46.29 23.19 32.38 18.95 47.17 16.19 23.28 13.04
+ Finetuned Spatial Modules in Decoder 48.06 28.97 41.60 26.06 49.58 24.27 32.85 20.11
+ Finetuned Spatial Modules in Encoder 51.97 34.67 48.11 33.96 50.83 29.89 41.03 27.58

Figure 3. Sample visualization for video grounding result on HC-STVG V1 [24] for TubeDETR [28], STCAT [9] and ours with the prompt
The man behind the shirtless man turns and squats. We show bounding boxes for Ground-truth, Closed-Set Supervised, and Open-
Vocabulary results. Note how both TubeDETR and STCAT are close to the ground truth in the supervised setting (STCAT more so than
TubeDETR), they cannot correctly ground the text properly in the open-vocabulary setting.

4.3. Ablative Analysis

We perform an ablative analysis of the various design
choices for our model. In particular, we first evaluate a
naive baseline where no additional temporal aggregators are
added, and all pre-trained spatial modules are frozen in the
encoder and decoder. This baseline is relatively weak in
both temporal and spatial grounding. We next add temporal
modules in first the decoder, and subsequently in the en-
coder. We find that it gives significant improvements in the
temporal grounding, and additionally also improves the spa-
tial grounding. Finally, we finetune the pre-trained spatial
modules in both the decoder and the encoder, which pro-
vides a strong improvement in spatial grounding, alongside
consistent improvement in temporal grounding.

4.4. Limitation

While our video grounding model excels in closed-set
and open-vocabulary scenarios, it leverages image-text pre-
trained models like Grounding DINO [12]. To enhance
understanding in open-vocabulary settings, an extension to
video-language pre-training on a larger and more diverse
dataset, akin to CLIP [15], can help further boost perfor-

mance. Building a video-language pre-training dataset with
diverse natural language expressions and spatio-temporal
localization is imperative, given the constraints of datasets
like VidSTG [32] and HC-STVG [24].

5. Conclusion

This paper introduces an Open-Vocabulary Spatio-
Temporal Video Grounding task, enhancing current
closed-set methodologies by using pre-trained representa-
tions from spatial grounding models. The proposed model
performs well in closed-set and open-vocabulary scenarios,
surpassing state-of-the-art results in supervised setting
on VidSTG and HC-STVG datasets, and outperforming
recent models in open-vocabulary on HC-STVG V1 and
YouCook-Interactions. Its architecture includes learnable
adapter blocks for video-specific adaptation, bridging
the semantic gap between natural language queries and
visual content. This research addresses open-vocabulary
challenges and explores achieving robust performance
without extensive video annotations, paving the way for
open-vocabulary video grounding.
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