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Abstract

Existing score distillation methods are sensitive to
classifier-free guidance (CFG) scale, manifested as over-
smoothness or instability at small CFG scales, while over-
saturation at large ones. To explain and analyze these is-
sues, we revisit the derivation of Score Distillation Sam-
pling (SDS) and decipher existing score distillation with
the Wasserstein Generative Adversarial Network (WGAN)
paradigm. With the WGAN paradigm, we find that exist-
ing score distillation either employs a fixed sub-optimal dis-
criminator or conducts incomplete discriminator optimiza-
tion, resulting in the scale-sensitive issue. We propose the
Adversarial Score Distillation (ASD), which maintains an
optimizable discriminator and updates it using the complete
optimization objective. Experiments show that the proposed
ASD performs favorably in 2D distillation and text-to-3D
tasks against existing methods. Furthermore, to explore the
generalization ability of our paradigm, we extend ASD to
the image editing task, which achieves competitive results.
The project page and code are at this link.

1. Introduction
Score distillation is a rapidly growing technique attracting
a lot of attention [17, 25, 33, 41, 51, 52, 58]. It transfers
knowledge from a pretrained 2D diffusion model to down-
stream tasks, such as image editing [17, 25], video edit-
ing [25], diffusion model distillation [33, 43], and text-to-
3D [4, 7, 8, 29, 36, 41, 44, 51, 52, 57, 58], with no down-
stream data required.

However, as a milestone in score distillation methods,
Score Distillation Sampling (SDS) [41] is very sensitive to
the classifier-free guidance (CFG) [18] scale. Figure 1 takes
2D score distillation as an example. When setting a small
CFG scale, SDS tends to obtain over-smoothing results,
whereas when setting a large one, the generated images be-
come over-saturated. Recently, Variational Score Distilla-
tion (VSD) [52] alleviates the over-smoothing problem at

*Equal contribution
Corresponding authors: Jingkai Zhou, Xuesong Zhang

SDS (CFG = 7.5) SDS (CFG = 100)
(a) SDS is sensitive to the CFG scale.

Optimization Steps

(b) Unstable distillation progress of VSD.

Figure 1. 2D score distillation examples with the prompts “a pho-
tograph of an astronaut riding a horse” and “exterior frontal per-
spective shot of resort villa inspired by Mykonos architecture”.
SDS is very sensitive to the CFG scales while VSD exhibits fluctu-
ation of generated contents during distillation at small CFG scales.

small CFG scales, but we observe that VSD is a bit unsta-
ble during the distillation progress at small CFG scales, as
shown in Figure 1. These phenomena make us conjecture
that there are still some unrevealed methodological issues
behind SDS and VSD.

We start from revisiting the derivation of SDS. In [41],
the gradient of SDS is derived from the L2 loss of the dif-
fusion model. This derivation holds only when the vanilla-
predicted noise is used in the gradient. However, in prac-
tice, the SDS gradient exploits the CFG noise rather than
the vanilla-predicted one. This little trick changes the whole
thing. It means that, in practice, the real SDS loss is no
longer the L2 loss of the diffusion model, but some other
loss associated with the implicit classifier or discriminator.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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a dog with its reflection below
a DSLR photo of a hamburger

inside a restaurant
a professional photo of a sunset

behind the Grand Canyon
a dumpster full of trash

(a) ASD can generate photorealistic images through 2D score distillation.

a freshly baked loaf of sourdough
bread on a cutting board

a ficus planted in a pot a roast turkey on a platter a pineapple

(b) ASD can generate high quality 3D NeRFs from scratch (only stage 1 of VSD [52]).

a cat is posing next to
a laptop computer

a dog is posing next to
a laptop computer

A cartoon elephant A cartoon elephant

(c) ASD can extend to image editing with caption modification.

Figure 2. Examples generated by ASD in 2D distillation, image editing, and text-to-3D tasks. Stable Diffusion [47, 48] is used as the
pretrained diffusion model. For more results please refer to our project page.

To figure out where the real SDS gradient comes
from, we connect SDS to Generative Adversarial Networks
(GANs) [3, 13, 54]. By carefully designing the discrim-
inator using the diffusion model, we can naturally derive
the SDS gradient from the generator loss in the Wasser-
stein GAN (WGAN) [3, 54]. This means that SDS in-
herently comes from WGAN. However, when we employ
the WGAN paradigm to explain and analyze SDS, we find

that the discriminator optimization in WGAN is ignored by
SDS. More specifically, SDS only optimizes the generator
loss in WGAN by using a fixed sub-optimal discriminator
implemented with added noise. Similarly, VSD can also be
represented with the WGAN paradigm, in which case the
discriminator is optimizable but the optimization objective
is incomplete compared to the WGAN discriminator loss,
making the distillation progress unstable.
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In this work, we propose Adversarial Score Distilla-
tion (ASD) based on the WGAN paradigm. ASD main-
tains an optimizable discriminator and optimizes it using
the complete WGAN discriminator loss, thereby improv-
ing distillation stability and quality. Specifically, the dis-
criminator can be implemented using the combination of
diffusion models, where textual-inversion embedding [12]
or LoRA [19] make it optimizable. During discriminator
optimization, we propose two kinds of optimization objec-
tives derived from the complete WGAN discriminator loss.
One exploits both real sample distribution and a pretrained
diffusion model and can therefore be applied to the image-
conditioned task, such as image editing. The other only re-
quires a pretrained diffusion model, which is suitable for
text-conditioned cases. Experiments on 2D distillation and
text-to-3D tasks demonstrate the superior performance of
ASD compared to existing score distillation methods. See
Figure 2 for some examples. In addition, we extend ASD to
image editing via discriminator transformations and show
that the Delta Denoising Score (DDS) [17] is a special case
in our paradigm. Figure 2 and experiments show some com-
petitive editing results. This demonstrates that our paradigm
can be generalized to more GAN paradigms for various
tasks.

Beyond methodological improvements, the more impor-
tant significance of bridging score distillation and GANs
is to enable GAN paradigms to exploit powerful diffusion
models in the form of score distillation. More specifically,
we can extend a general diffusion model to various down-
stream tasks (e.g., text-to-3D, image editing, diffusion dis-
tillation) by designing GAN paradigms, which eliminates
the need to redesign specific diffusion models or collect
large amounts of finetuning samples.

In short, we make the following contributions:
• Bridged score distillation and WGAN to explain the

methodological issues of existing score distillation, which
also enables the pretrained model to extend to various
downstream tasks by designing GAN paradigms.

• Proposed ASD based on the WGAN paradigm that em-
ploys the complete WGAN discriminator loss, resulting
in better distillation stability and quality.

• Comprehensive experiments show that the proposed ASD
performs favorably against existing methods in 2D distil-
lation, text-to-3D, and image editing tasks.

2. Related Work
Score Distillation. Score distillation, first proposed by
[41] and [51], is a method to optimize the parameter space
via distilling a pretrained diffusion model. In text-to-3D
generation, Score Distillation Sampling (SDS) shows great
potential for optimizing 3D representations based on dif-
ferentiable rendering. However, SDS often suffers from
problems such as over-saturation, over-smoothing, and low

diversity. The recent work Variational Score Distillation
(VSD) [52] has made tremendous progress in solving these
problems, which optimizes a 3D distribution by employing
the Wasserstein gradient flow. However, VSD is a bit unsta-
ble during the optimization progress at small CFG scales,
which will be discussed later. Score distillation can also
be used in image editing [17, 46]. Delta Denoising Score
(DDS) [17] proposes to modify the image in a zero-shot
way by only editing its caption. Moreover, StyleGAN-
Fusion [46] and Diff-Instruct [33] apply score distillation
to knowledge distillation between generators in a data-free
manner. Our work will trace the origin of SDS and connect
it with GAN to reveal its methodological issues.
Generative Adversarial Networks. GANs [2, 3, 13, 14,
23, 35, 54] have achieved great success in generating real-
istic and clear images, such as image in-painting [10, 21],
image manipulation applications [5, 6, 16, 39, 60], image-
to-image translation [9, 20, 22, 26, 27, 31, 50, 56, 59].
Among these 2D GANs, Wasserstein GAN (WGAN) [3] is
a remarkable study that minimizes the Wasserstein distance
instead of the Jensen-Shannon divergence to better handle
the case when the generated sample distribution is far away
from the real distribution. In 3D modeling, a lot of work on
3D GANs [1, 45, 53, 55] has been proposed. However, the
generation of 3D representations from low-dimensional la-
tent spaces needs expensive high-quality 3D data for train-
ing. GAN2Shape [40] demonstrates that conventional 2D
GANs, when exclusively trained on images, contain rich
3D knowledge and can faithfully reconstruct intricate 3D
shapes without 3D annotations. In this work, we only use
the form of WGAN to explain and analyze score distillation
methods, such as SDS and VSD.

3. Preliminaries
Score Distillation Sampling. Score Distillation Sampling
(SDS) [41] proposes to use 2D diffusion priors to optimize
the parameters θ of 3D representations. It first employs a
differentiable renderer g(θ, c) parameterized by θ to gener-
ate an image xg

0 = g(θ, c) at a random view c, then adds
noise to this image xg

0 to obtain xg
t , and uses a pretrained

diffusion model to predict noise conditioned on a given text
y. In the SDS paper [41], the gradient is directly derived
from the L2 loss of the diffusion model, which can be writ-
ten as

∇θLdiff = ∇θEt,ϵ[ω(t)∥ϵxg
t ;y,t

− ϵ∥22]

=Et,ϵ[ω(t)(ϵxg
t ;y,t

− ϵ)
∂ϵxg

t ;y,t

∂xg
t

∂xg
t

∂xg
0

∂xg
0

∂θ
] (1)

≈Et,ϵ[ω(t)(ϵxg
t ;y,t

− ϵ)
∂xg

0

∂θ
] = ∇θLSDS

where ω(t) is a weight based on the time t, and ϵxg
t ;y,t

is
the vanilla-predicted noise with input xg

t conditioned on y
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and t. However, in practice, SDS uses the classifier-free
guidance (CFG) [18] noise, that is

ϵ̃xg
t ;y,t

= ϵxg
t ;t

+ λ(ϵxg
t ;y,t

− ϵxg
t ;t
) (2)

where ϵxg
t ;t

is the vanilla-predicted noise with input xg
t con-

ditioned on t, and λ is the CFG scale. Replacing ϵxg
t ;y,t

with ϵ̃xg
t ;y,t

makes the derivation of Eq. 1 no longer valid.
In other words, ∇θLSDS should be written as

∇θLSDS = Et,ϵ[ω(t)(ϵxg
t ;t

+ λ(ϵxg
t ;y,t

− ϵxg
t ;t

)︸ ︷︷ ︸
grad from implicit clssifier

−ϵ)
∂x0

∂θ
] (3)

which cannot be derived from Ldiff, but rather from another
loss related to the implicit classifier or discriminator.
Generative Adversarial Networks. Generative Adversar-
ial Networks (GANs), first introduced in [13], can be for-
mulated by a zero-sum competition between a discriminator
network D and a generator network G. The original form
of GAN [13] essentially minimizes the Jensen-Shannon
(JS) divergence between the distributions of real samples
and generated samples, which gets a gradient close to zero
when two distributions are very different. The Wasserstein
GAN (WGAN) [3, 54] reformulates the original GAN with
the Wasserstein distance to handle the zero-gradient issue,
which can be written as

min
G

max
D

Eµr [D(xr)]− Eµg [D(xg)]− τEµ̃[∥∇x̃D(x̃)∥P︸ ︷︷ ︸
penalty term

] (4)

where xr comes from the distribution µr of real samples,
xg comes from the distribution µg of generated samples, x̃
comes from a mixture distribution µ̃ of first two, ∥·∥P de-
notes p-norm, and τ ≥ 0 is the penalty weight.

4. Adversarial Score Distillation
One goal of this work is to unravel the methodological is-
sues behind SDS by revisiting and discovering the origin of
the SDS gradient. As the gradient used in practice should
originate from the loss associated with the implicit classi-
fier or discriminator, it is natural to connect SDS with GAN.
After carefully building a discriminator using the diffusion
model, we can derive the SDS gradient directly from the
generator loss in the WGAN.

We define a discriminator in the form as

D(xt; y) = log
p(y|xt)

p(ϕ|xt)
(5)

where p(y|xt) denotes the probability of the given noisy
sample xt = αtx0 + σtϵ to be categorized as the samples
described by prompt y, p(ϕ|xt) represents the probability
of xt to be categorized as the samples described by prompt
ϕ. Here, we consider ϕ as the prompt for fake samples.

When xt is close to samples described by prompt y, this
D(xt; y) will give high confidence. Otherwise, it will get
low confidence when xt is close to samples described by
prompt ϕ. Based on WGAN [3, 54], we have the generator
loss as

LG = Et,ϵ[−D(xg
t ; y)] = Et,ϵ[−log

p(y|xg
t )

p(ϕ|xg
t )
] (6)

≤ Et,ϵ[−log
p(y|xg

t )
λ

p(ϕ|xg
t )

] := L′
G s.t. λ ≥ 1

where xg
t = αtg(θ, c) + σtϵ denotes the generated sam-

ple with noise. According to the Bayesian rule, we can do
the transformation ∇xt logp(y|xt) = −1/σt(ϵxt;y,t − ϵxt,t)
similar to CFG [18]. Thus, we have

∇θL
′

G = ∇θEt,ϵ[logp(ϕ|xg
t )− λlogp(y|xg

t )] (7)

= Et,ϵ[ω(t)(ϵxg
t ;t

+ λ(ϵxg
t ;y,t

− ϵxg
t ;t
)− ϵxg

t ;ϕ,t
)
∂xg

0

∂θ
]

where ω(t) is a weight based on the time t. Compare the
SDS gradient in Eq. (3) with the Eq. (7), the only difference
is that the SDS gradient uses the added noise ϵ to approxi-
mate the noise ϵxg

t ;ϕ,t
. This approximation may not be opti-

mal, because ϵxg
t ;ϕ,t

should come from the diffusion model,
so that ϵxg

t ;ϕ,t
− ϵxg

t ;t
approximates −σt∇xt

logp(ϕ|xt).
From another intuitive perspective, ϵxg

t ;ϕ,t
contains the in-

ductive bias of the pretrained diffusion model while ϵ does
not. Recently, VSD [52] uses the LoRA branch to predict
ϵxg

t ;ϕ,t
which also contains the inductive bias of the pre-

trained diffusion model, thereby achieving better quality.
Let us go further into discriminator optimization. We

have the discriminator loss, based on Eq. (4) as

LD = Et,ϵ[D(xg
t ; y)−D(xr

t ; y) + τ∥∇x̃t
D(x̃t)∥22] (8)

= Et,ϵ[log
p(y|xg

t )

p(ϕ|xg
t )

− log
p(y|xr

t )

p(ϕ|xr
t )

+ τ∥∇x̃t log
p(y|x̃t)

p(ϕ|x̃t)
∥22]

where xr
t = αtx

r
0 + σtϵ is the noisy real sample based on

the real sample xr
0 and the time t. In Eq. (8), p(y|xr

t ) and
p(y|xg

t ) are based on the given pretrained diffusion model,
so they are not optimizable. ϕ in p(ϕ|xg

t ) and p(ϕ|xr
t ) is

optimizable, which can be implemented using an textual-
inversion embedding [12] or LoRA [19]. Thus, LD is a loss
function only about ϕ, its gradient can be derived as

∇ϕLD = ∇ϕEt,ϵ[log
p(ϕ|xr

t )

p(ϕ|xg
t )

+ τ∥∇x̃t
log

p(y|x̃t)

p(ϕ|x̃t)
∥22]

= ∇ϕEt,ϵ[log
p(xr

t |ϕ)
p(xg

t |ϕ)
+ τ∥∇x̃t log

p(x̃t|y)
p(x̃t|ϕ)

∥22] (9)

≈ ∇ϕEt,ϵ[∥ϵxg
t ;ϕ,t

− ϵ∥22 − ∥ϵxr
t ;ϕ,t

− ϵ∥22
+ η∥ϵxr

t ;y,t
− ϵxr

t ;ϕ,t
∥22 + γ∥ϵxg

t ;y,t
− ϵxg

t ;ϕ,t
∥22︸ ︷︷ ︸

penalty term

]
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Figure 3. Workflow of ASD. Green lines show the pipeline of gen-
erator optimization. Orange lines show the pipeline of discrimina-
tor optimization. The avatar of NeRF is adapted from [37]. See
the supplementary for the algorithm description.

where x̃ comes from a mixture distribution µ̃, so it can be
replaced by a combination of xr

t and xg
t . η and γ are ad-

justable hyperparameters, to keep the penalty term positive,
they are subject to γ ≥ −η∥ϵxr

t ;y,t
− ϵxr

t ;ϕ,t
∥22/∥ϵxg

t ;y,t
−

ϵxg
t ;ϕ,t

∥22. In practice, we find η = 1/2, γ ∈ [−1, 0) works
for most cases. See supplementary materials for the deriva-
tion details of Eq. (9). In SDS [41], this discriminator op-
timization is completely ignored, as there is no optimizable
ϕ. VSD [52] uses the LoRA or simple UNet branch to im-
plement ϕ, and updates it using ∇ϕ∥ϵxg

t ;ϕ,t
− ϵ∥22, which is

just a part of Eq. (9).
We propose Adversarial Score Distillation (ASD) based

on the WGAN paradigm. Figure 3 illustrates the workflow
of ASD. ASD uses Eq. (7) to update the parameters θ of
a generator. This generator could be a NeRF [37, 38] in
the text-to-3d task, or a general generator similar to that
in [33], or just image pixels in the 2D distillation and im-
age editing tasks. ASD maintains an optimizable discrim-
inator by implementing ϕ with an optimizable conditional
embedding [12] or LoRA [19], and updates this discrimina-
tor using the complete LD. However, in Eq. (9), the noisy
real sample xr

t is unavailable for text-conditioned cases. For
these cases, we can use the upper bound of LD, which does
not contain xr

t terms.
L′
D for text-conditioned distillation. When η = 1/2,

based on triangle and Cauchy–Schwarz inequality, we have
1
2∥ϵxr

t ;y,t
−ϵxr

t ;ϕ,t
∥22 ≤ ∥ϵxr

t ;y,t
−ϵ∥22+∥ϵxr

t ;ϕ,t
−ϵ∥22. Thus,

we can rewrite Eq. (9) as

∇ϕLD ≤∇ϕEt,ϵ[∥ϵxg
t ;ϕ,t

− ϵ∥22
+ γ∥ϵxg

t ;y,t
− ϵxg

t ;ϕ,t
∥22] := ∇ϕL′

D (10)

For the case where real samples are unavailable, we use
Eq. (10) to update the prompt ϕ of ASD. For cases where
real samples are available, like image editing or image / 3D-
conditioned distillation, we can continue to use Eq. (9).
Le
G for image editing. We extend ASD to image editing

SDS (CFG = 7.5) VSD† (CFG = 7.5)

Figure 4. 2D score distillation results with the prompts “ham-
burger” and “a monster truck”. VSD† denotes that the LoRA
branch is updated with 50 steps per iteration, resulting in over-
smoothing images similar to SDS.

by using two discriminators with source prompts z and tar-
get prompts y. The new discriminator function is defined as
F (xt; y, z) = D(xt; y) − D(xt; z), which gives high con-
fidence for samples closing to the target prompt y but away
from the source prompts z. Then, the generator loss will be

∇θLe
G= ∇θEt,ϵ[logp(ϕy|xg

t )− λlogp(y|xg
t )

−logp(ϕz|xg
t ) + λlogp(z|xg

t )] (11)

= Et,ϵ[ω(t)
(
λ(ϵxg

t ;y,t
− ϵxg

t ;t
)− (ϵxg

t ;ϕy,t − ϵxg
t ;t
)

−λ(ϵxg
t ;z,t

− ϵxg
t ;t
) + (ϵxg

t ;ϕz,t − ϵxg
t ;t
)
)∂xg

0

∂θ
]

For discriminator optimization, we can use either Eq. (9) or
Eq. (10) in the image editing task. We find that DDS [17] is
a special case of our paradigm. Specifically, DDS employs
two fixed discriminators (similar to SDS), and feeds the
noisy source image into the second discriminator D(xt; z).

5. Comparison and Discussion
Score Distillation Sampling. In practice, the SDS gradi-
ent comes from the generator loss in WGAN instead of the
L2 diffusion loss. It maintains a fixed sub-optimal discrim-
inator by using ϵ to approximate ϵxg

t ;ϕ,t
, which ignores the

inductive bias of the pretrained diffusion model. In contrast,
ASD uses an optimizable conditional embedding or LoRA
to implement ϕ, thus keeping the inductive bias in ϵxg

t ;ϕ,t
.

Variational Score Distillation. From the methodology
perspective, we employ the WGAN paradigm to explain
and analyze VSD instead of the Wasserstein gradient flow,
which is more straightforward. Based on the Wasserstein
gradient flow [52], for each iteration, VSD needs to train
the score function of the particle distribution (i.e., the LoRA
branch) until convergence. However, some studies [34, 49]
point out that WGAN may fail when approximating the very
accurate Wasserstein distance, which means that updating
the LoRA branch with too many steps per iteration may de-
grade the results. Figure 4 shows the results if we update
the LoRA branch with 50 steps per iteration. In addition,
the discriminator optimization of VSD is just a part of the
WGAN discriminator loss, which can be considered as a
special case of ASD when setting γ in Eq. (10) to 0.
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SDS (CFG = 10k) Only classifier term
(a) 2D score distillation results.

(b) 3D results by using the classifier term only.

Optimization Steps

(c) ASD recovers from over-saturated initialization.

Figure 5. Score distillation results with the prompt “a photograph
of a fox”, “a front view of an owl” in 2D, and “a colorful rooster”,
“a plush dragon toy” in 3D. Only using the classifier term is equiv-
alent to using SDS with a huge CFG scale, which tends to get over-
saturated results in both 2D and 3D distillation. ASD can recover
from over-saturated initialization.

Classifier Score Distillation. Very recently, the concurrent
work Classifier Score Distillation (CSD) [58] highlights the
importance of the classifier term in the SDS gradient. We
observe that only using the classifier term is similar to using
SDS with a very huge CFG scale (as the learning rate can
be adjusted dynamically by the optimizer, the percentage of
the gradient component is the key factor), thereby prone to
over-saturation in both 2D and 3D distillation. As a very
important trick, CSD proposes to use negative prompts to
alleviate over-saturation, which is similar to the discrimina-
tor in Eq (5) with fixed ϕ. Thanks to the adversarial capa-
bilities, ASD can recover from over-saturation even with the
over-saturated initialization. See Figure 5 for visualization.

Disscussion of γ. When γ = 0, Eq (10) becomes VSD,
which can be considered as the WGAN [3, 54] discrimina-
tor loss with fixed penalty term for Lipschitz constraint. For
γ < 0, we decrease the weight of the penalty term, which
can enhance the ability of the discriminator. For γ > 0, we

T2I SDS@100 VSD@7.5 ASD@7.5

a bear wearing sunglasses and a tie looks very proud

a flamingo in the city

a lively magical town inspired by Victorian England
and Amsterdam

(a) Comparisons of 2D score distillation.

SDS@100 VSD@7.5 ASD@7.5

Sydney opera house, aerial view

a steaming hot plate piled high with spaghetti and meatballs

a small saguaro cactus planted in a clay pot

(b) Comparisons of text-conditioned 3D NeRF distillation.

Figure 6. Quality comparisons of distillation results among SDS,
VSD, and ASD. For the text-to-3D task, the effects of different
representations vary widely, so we all compared the results from
NeRF distillation for fair play. “@7.5” denotes “at the CFG scale
7.5”. “T2I” denotes text-to-image results.
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Optimization Steps

V
SD

A
SD

a realistic happy dog playing in the grass

V
SD

A
SD

a pineapple

Figure 7. Stability comparisons of the distillation progress be-
tween VSD and SDS in both 2D and 3D. As can be seen, ASD
constantly keeps the main object and image / NeRF structures un-
changed.

increase the weight of the penalty term. Specifically, when
γ ≫ 0, the penalty term will dominant Eq (10), which
leads to ϵxg

t ,y,t
≈ ϵxg

t ,ϕ,t
. Then the discriminator fails to

recognize fake samples, and the gradient for generators (6)
mainly comes from the implicit classifier term. Only using
the classifier term can be considered as a special case of our
paradigm in this situation.

6. Experiments

Implementation Details. We choose ProlificDreamer-
2D [61] as the code base for 2D score distillation, Three-
stiudio [15] as the code base for the text-to-3D task, and
DDS [17] as the code base for image editing. We em-
ploy Stable Diffusion v2-1-base [48] as the pretrained diffu-
sion model except for the text-to-3D task, where the LoRA
branch is initialized from Stable Diffusion v2-1 [42, 47],
following the configuration of VSD [52] in Threestudio.

We set λ in Eq. (7) to 7.5 by default and use Eq. (10) for
discriminator optimization in both 2D score distillation and
text-to-3D tasks. We set γ in Eq. (10) to -1 for 2D score
distillation, and set to -0.5 for the text-to-3D task. Although
here we use fixed γ for simplicity, we think that a dynamic
γ based on prompts and optimization steps may yield better
results. In the text-to-3D task, all other configurations are
inherited from the default configuration of VSD in Three-
studio [15].

For image editing, we feed the source image into the sec-

a photograph of a lovely cat

a beautiful painting of fantasy land

an ice cream sundae

Figure 8. Diversity evaluation. ASD can easily distill different 2D
and 3D results by switching the random seed.

ond discriminator D(xt; z) following DDS [17]. In such
case, we use Eq. (10) to optimize the first discriminator
D(xt; y) and employ Eq. (9) to optimize the second dis-
criminator D(xt; z), where γ in Eq. (10) is set to -1, η and
γ in Eq. (9) are set to 0 and 1, respectively. The source
image of image editing is generated from Stable Diffusion
v2-1 [47].

Quality. We first compare the distillation quality among
SDS [41], VSD [52], and ASD. Figure 6 shows the vi-
sual results obtained by different distillation methods in 2D
distillation and text-to-3D tasks. In 2D distillation, Figure
6 (a) demonstrates that ASD can consistently achieve bet-
ter results than SDS and VSD for three types of images:
portraits, realistic images, and caricatures. In comparison,
VSD results are slightly more saturated (as shown in the
bear image) and contain artifacts due to instability in the
distillation process (as shown in the flamingo image). Both
phenomena are also seen in the text-to-3D task, where the
VSD results are slightly more saturated in color and have
more structural artifacts. Thanks to the complete discrimi-
nator optimization, the proposed ASD can obtain clean 3D
NeRF compared to VSD.

Stability. We further evaluate the stability of ASD by com-
paring the distillation process with VSD. Figure 7 shows
the distillation progress in 2D and 3D tasks. In 2D distilla-
tion, ASD always keeps the main objects and image struc-
tures unchanged. The gradient of the ASD generator loss
is focused on color and details, where the color of the dog
gradually changes from black to yellow. However, VSD is
not that stable. Both the main object, the image structure,
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a squirrel is * → a panda is *

* eating a piece of food on the ground

Figure 9. Comparisons between DDS and ASD on 2D image editing tasks. We test our ASD in three image editing situations: simplifica-
tion, refinement, and replacement. For each case, we use three images to show the optimization progress.

the color of the dog, and other details are constantly chang-
ing during the VSD distillation process. We note that this
instability has less impact on the text-to-3D task, as occu-
pancy loss and NeRF help maintain structural stability. De-
spite this, the structures distilled by VSD still change faster
than those distilled by ASD, resulting in structural artifacts
(see the pineapple leaves). It is worth noting that both ASD
and VSD will change objects or structures eventually, due to
their adversarial nature. ASD can slow down and stabilize
this process, thereby reducing artifacts.

Diversity. By switching seeds, we can easily get various
distillation results. Figure 8 exhibits several distillation re-
sults using the same text prompt but different seeds. It can
be seen that ASD can always obtain high-quality results in
both 2D and 3D tasks.

Image Editing. In addition to typical score distillation
tasks, we further extend ASD to zero-short image editing.
Figure 9 shows how ASD simplifies the source image, re-
fines the source image, and replaces objects in the source
image. For the simplification tasks, our ASD can remove
the most unnecessary high-frequency details and retain the
main content based on the target prompt. ASD can also
add realistic details back to cartoon-style images, which is
significantly better than the recent zero-shot image editing
method DDS [17]. We also challenged the object replace-
ment task. Our ASD method produces more reasonable,
detailed, and realistic results based on semantic informa-
tion instead of the rigid fashion of copying fixed objects
and then pasting them at fixed locations. See Figure 9, the
squirrel’s tail still appears in the results of DDS. Besides
reasonable object replacement, ASD can maintain the de-
tails of the source image as well.

Quantitative Results. Table 1 presents quantitative eval-
uations of CLIP scores and user studies for 3D generation
tasks, demonstrating that ASD performs favorably against
SDS and VSD. See the supplementary for more discussion
about CLIP scores.

Method CLIP Score
CLIP B/32↑ CLIP B/16↑ CLIP L/14↑

DreamFusion (SDS) 0.3282 0.3290 0.2889
ProlificDreamer (VSD) 0.3203 0.3258 0.2789
Ours (ASD) 0.3314 0.3376 0.2854

Method
User Study

Details(%)
Semantic

Alignment(%)
Overall
Quality (%)

ProlificDreamer (VSD) 35.3 45.7 34.5
Ours (ASD) 64.7 54.3 65.5

Table 1. Quantitative Results. CLIP scores are the cosine simi-
larity between multiple randomly rendered views of the 3D model
and the given text prompt. User evaluation is conducted between
VSD and ASD from three perspectives.

7. Limitation
Despite showing favorable capabilities in terms of distil-
lation quality, stability, and diversity, the speed of ASD
is similar to VSD. We find that sharing the same added
noise between generator optimization and discriminator op-
timization can speed up distillation by 30 ∼ 50%, with a
little quality sacrifice. However, distilling a 3D NeRF still
takes more than 5 hours on a single A800 GPU. Using faster
3D representation [24], or faster PEFT [11, 19, 28, 30, 32]
methods to update the discriminator, or designing forward-
only methods to approximate ϵxt;ϕ,t may be promising so-
lutions to this limitation.

8. Conclusion
In this paper, we proposed the Adversarial Score Distilla-
tion (ASD) under the WGAN paradigm. Compared to ex-
isting methods, our ASD exploits a complete discriminator
loss with a principled discussion, which alleviates the CFG-
sensitive issue and leads to impressive performances.

More importantly, we elucidated the relationship
between score distillation and GAN, which not only
explains methodological issues of existing score dis-
tillation, but also enables the pretrained model to
extend to downstream tasks by various GAN paradigms.
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