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De-Diffusion Makes Text a Strong Cross-Modal Interface
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Figure 1. De-Diffusion is an autoencoder whose decoder is a pre-trained text-to-image diffusion model. It encodes an input image into a
piece of information-rich text, which mixes comprehensive semantic concepts present in the image to be a “scrambled caption”. We group
semantics by color for illustration. De-Diffusion text can act as a flexible interface between different modalities, for example, enabling
diverse vision-language applications including: (i) providing transferable prompts for different text-to-image tools, (ii) enabling text-only
chatbots, e.g., Bard [1], to engage in multi-modal dialogue, and (iif) injecting image context into off-the-shelf large language models
(LLMs), e.g., PalLM 2 [5], to perform open-ended visual question answering by prompting the LLM with few-shot examples.

Abstract

We demonstrate text as a strong cross-modal interface.
Rather than relying on deep embeddings to connect image
and language as the interface representation, our approach
represents an image as text, from which we enjoy the in-
terpretability and flexibility inherent to natural language.
We employ an autoencoder that uses a pre-trained text-to-
image diffusion model for decoding. The encoder is trained
to transform an input image into text, which is then fed into
the fixed text-to-image diffusion decoder to reconstruct the

original input — a process we term De-Diffusion. Exper-
iments validate both the precision and comprehensiveness
of De-Diffusion text representing images, such that it can
be readily ingested by off-the-shelf text-to-image tools and
LLMs for diverse multi-modal tasks. For example, a single
De-Diffusion model can generalize to provide transferable
prompts for different text-to-image tools, and also achieves
a new state of the art on open-ended vision-language tasks
by simply prompting large language models with few-shot
examples. Project page: dediffusion.github.io.
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1. Introduction

We have witnessed LLM-powered products such as Chat-
GPT taking over the world by storm. Nowadays many
people are convinced of the benefits that LLMs can bring
in understanding natural language conversations and as-
sisting humans in creative tasks. However, what is the
path forward? One clear direction and trend is towards
multi-modality, allowing the model to understand additional
modalities such as image, video, and audio. GPT-4 [57]
is a multi-modal model with impressive image understand-
ing capabilities, and has recently rolled out to the public
together with audio-processing capabilities. Gemini is also
“multi-modal from day one” [2]. Multi-modal models like
these have a fundamental design choice to make, i.e., how
different modalities should communicate and connect? In
the context of this work, we rephrase the question as: what
is the cross-modal interface?

We argue that a good cross-modal interface should at
least possess the following two properties: (1) content pre-
serving, i.e., signals from the original modality can be re-
constructed from the interface representation to a high de-
gree; (2) semantically meaningful, i.e., the interface repre-
sentation contains useful abstractions of the raw signals, so
that understanding and reasoning can be performed more
easily. Balancing these two properties is challenging, and
in fact they can often be in contention with each other. For
example, the raw signals from the original modality satisfy
content preserving perfectly, but are lacking on the seman-
tically meaningful front.

Ever since the deep learning era [18, 31, 32, 44], deep
embeddings have been the go-to choice as cross-modal in-
terface. They can be good at preserving image pixels if
trained as an autoencoder [32], and can also be seman-
tically meaningful, with the most recent exemplar being
CLIP [59]. In this paper, we do not argue that deep em-
beddings are a bad cross-modal interface per se, but instead
convey the idea that according to our experiments, text can
be a strong alternative cross-modal interface.

If we consider the relationship between the speech and
text for a quick second, text has always been so natural of
a cross-modal interface that we do not typically think of
it as such. Converting the speech audio to text well pre-
serves the content such that we can reconstruct the speech
audio with the mature text-to-speech technique. We are also
confident that the transcribed text contains all the semantics
information, in other words, semantically meaningful. By
analogy, we can also “transcribe” an image into text, which
has the more familiar name of image captioning. But when
we compare typical image captions against the two proper-
ties of cross-modal interface, they do not preserve content
well but only capture the most salient semantic concepts. In
other words, image captions are more about precision than
comprehensiveness [13, 83], and it is hard to answer any

and all visual questions from the short captions.

While image captions do not make an ideal interface rep-
resentation, we argue that precise and comprehensive text,
if attainable, remains a promising option, both intuitively
and practically. Intuitively, humans rely on language to
articulate our physical surroundings, engage in reasoning,
and deliver solutions. In other words, we constantly “tran-
scribe” information about the external world into language
and use it as an interface for higher-level cognition [16, 23].
Practically, text is the native input domain for LLMs. Using
text as the interface can avoid the need for adaptive train-
ing often required with deep embeddings [4, 46]. Given
that training and adapting top-performing LL.Ms can be pro-
hibitively expensive [4, 5, 57], text provides a modular de-
sign that opens up more possibilities. The question is, how
can we attain precise and comprehensive text of images?

We resort to the classic autoencoding for a solution [32].
Unlike common autoencoders, we utilize a pre-trained text-
to-image diffusion model as the decoder, and naturally, with
text as the latent space. The encoder is trained to transform
an input image into text, which is then fed into the text-
to-image diffusion model for decoding. To minimize the
reconstruct error, the latent text, though often mixing se-
mantic concepts together to be a “scrambled caption” of the
input image, has to be both precise and comprehensive. No
extra supervision is used other than images themselves.

Recent generative text-to-image models excel at convert-
ing arbitrary rich text of, e.g., tens of words, to highly de-
tailed images that closely follow the prompts [56, 61, 64,
67, 86]. This essentially suggests the remarkable capability
of these generative models to process complex text into vi-
sually coherent outputs. By employing one of these genera-
tive text-to-image models as the decoder, the optimized en-
coder explores the wide latent space of text and unpacks the
enormous visual-language knowledge encapsulated within
the generative model, embodying a foundational paradigm
known as Analysis by Synthesis [7, 10, 89].

We show De-Diffusion text extensively captures seman-
tic concepts in images, and, when used as text prompts,
enables diverse vision-language applications (Fig. 1). De-
Diffusion text can generalize to be a transferable prompt
for different text-to-image tools. Evaluated quantitatively
by reconstruction FID [30], De-Diffusion text significantly
outperforms COCO captions [48] as prompts to a third-
party text-to-image model [64]. De-Diffusion text also en-
ables off-the-shelf LLMs to conduct open-ended vision-
language tasks by simply prompting LLMs with few-shot
task-specific examples. We highlight De-Diffusion out-
performs Flamingo [4] on open-ended few-shot VQA [6]
with 100x fewer learnable weights and without using inter-
leaved image-text supervision. The results demonstrate De-
Diffusion text effectively interconnects both human inter-
pretations and various off-the-shelf models across domains.
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2. Related Work

Autoencoding is a classical approach for learning represen-
tations [32, 66]. It uses an encoder to map the input into a
compressed, meaningful representation, and a decoder to
reconstruct the input from this representation to be as close
as possible to the original. This simple autoencoding con-
cept underpins many unsupervised representation learning
algorithms across domains [19, 29, 33, 43, 78]. By forc-
ing the model to compress then reconstruct the input, au-
toencoders discover useful structural representations of the
data. For example, Neural De-Rendering [82] is a gener-
alized autoencoder that utilizes a deterministic rendering
function as the decoder and maps images into structured
and disentangled scene descriptions. Inspired by its name
“de-rendering”, we name our approach “De-Diffusion”.

A specific type of autoencoder, VQ-VAE [63, 75] or dis-
crete VAE [62], is designed to learn discrete, structured
representations in the latent space. This can be especially
useful for modeling data with categorical or symbolic at-
tributes. These methods are now widely adopted in multi-
modal models to tokenize images [21, 62, 64, 86]. How-
ever, VQ-VAE’s latent space is hidden and often entangled,
requiring adaptive fine-tuning for downstream tasks. De-
Diffusion also utilizes a discrete latent space. In contrast,
we directly encode images into a sequence of text, which is
directly interpretable. SPAE [87] and LQAE [51] are two
recent approaches that encode images into the vocabulary
space of a fixed LLM. They jointly learn the encoder and
decoder from scratch. Consequently, although the latent
space is discrete text, it tends to act as a “cipher code” that
only the co-trained decoder can interpret. This limits gen-
eralization to human understanding and off-the-shelf LLMs
and text-to-image models. In contrast, De-Diffusion utilizes
a pre-trained text-to-image diffusion model as the decoder,
obtaining interpretable text as the latent representation.

How many words is an image worth? The adage “a pic-
ture is worth a thousand words” means that still images can
convey complex and sometimes multiple ideas more effec-
tively than a mere verbal description. The question, how
many words is an image worth, is constantly explored by the
computer vision community [22, 24, 25, 49]. For example,
“An image is worth 16 x 16 words”, or ViT [20], proposes to
take the image patches as tokens (words) and process these
tokens by Transformers [76], which has become one of the
standard vision backbones now. In this sense, our work can
also been seen as “An image is worth 75 words”, for we
encode input images into a sequence of 75 tokens.

Several prior works also explore to use text to represent
images [9, 84] and combine with LLMs. However, these
works rely on multiple captioning and classification mod-
els, whose outputs are concatenated to be the text repre-
sentation. Their performance is heavily dependent on the

captioning and classification models, and we demonstrate
in Sec. 4 that even human-annotation COCO captions can
lack the extensive details covered in De-Diffusion text.

Vision-language models. The breakthrough in NLP [11,
19, 36, 37, 57, 60, 80], especially their abilities to do few-
shot learning, has inspired a large body of vision-language
work. A family of vision-language models is based on con-
trastive learning [28], where images and text are projected
in to a same embedding space [40, 42, 47, 58, 59, 85, 90].
De-Diffusion differs from contrastive models as we encode
image as text, instead of deep embeddings. Another fam-
ily of vision-language models fuses vision and language
models by jointly training them with large-scale image-text
data[4, 14, 45,50, 55, 62, 85, 88]. In contrast, De-Diffusion
takes a modular design with text as the representation, by-
passing the heavy cost image-text data collection and jointly
training large-scale vision and language models.

3. Method
3.1. De-Diffusion for Text Representation

Autoencoder. Autoencoding is one of the classical meth-
ods for representation learning [32, 66]. An autoencoder
first encodes an input x into a latent representation z, then
decodes z back to Z for reconstruction. Both the encoder
and the decoder are optimized so that the reconstructed in-
put Z is as similar as possible to the original input z. By do-
ing so, the compressed representation z preserves the infor-
mation in the input. Since no more supervision is required
except the input itself, autoencoding is an unsupervised ap-
proach without the heavy burden of human annotation.

Text as the latent representation. While autoencoders can
learn compressed representations z that preserve useful in-
formation, it is difficult to use the latent z for downstream
tasks without any additional training, let alone direct human
interpretation. In this work, we propose to encode the input
image into text. Practically, the encoder compresses each
image into a sequence of BPE-encoded text tokens [69],
where each token can take on a discrete value from the vo-
cabulary. To faithfully reconstruct the image from the latent
text, the text must precisely and comprehensively capture
the semantic concepts present in the image, making a inter-
face representation, in contrast to image captions that only
focus on the most visually salient information.

Text-to-image diffusion as the decoder. One potential
concern is that the encoder might still encrypt the images
into a cipher code that only the decoder can decipher, mak-
ing human interpretation challenging. This is particularly
likely when the encoder and the decoder are jointly trained.
To mitigate this concern [51], we introduce a pre-trained
text-to-image diffusion model as the decoder, and dub our
method as “De-Diffusion”.
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Figure 2. Architecture of De-Diffusion. The overall structure
is an autoencoder, with (i) a pre-trained text-to-image diffusion
model as the decoder, (ii) text as the latent representation, and
(iii) a image-to-text encoder. Lock and unlock denote frozen and
learnable weights, respectively. We use Gumbel-softmax [41, 53]
for discrete text tokens.

Text-to-image diffusion models, as the name suggested,
learn the relationship between text and images from a large
dataset of image-text pairs and excel at converting texts into
highly detailed images. They already establish the projec-
tion from descriptive text to image, and we unpack this en-
capsulated knowledge by employing a frozen text-to-image
diffusion model as the decoder. As illustrated in Fig. 2, the
text-to-image diffusion model consists of a CLIP text en-
coder [59] and a U-Net [65], and the codebook is then nat-
urally the vocabulary of the CLIP text encoder.

When training De-Diffusion, we freeze the parameters of
the text-to-image diffusion decoder. In each mini-batch, we
expose the decoder with one randomly sampled noise level
for each sample. This resembles the training procedure for
diffusion models [34], except the parameters are fixed and
the text conditions are outputs of the image-to-text encoder
instead of the training data.

Image-to-text encoder. The encoder maps the input image
into text. It starts with an image backbone that extracts im-
age features, followed by an attentional pooler [38, 85] that
turns the features into output text tokens. The image back-
bone can be a pre-trained and frozen model that excels at
image feature extraction. It can also be randomly initial-
ized, supervised by the reconstruction objective during De-
Diffusion training. We ablate the two choices in Tab. 4d.

The attentional pooler projects n learnable queries to n
text tokens by a few Transformer blocks [76]. Each Trans-
former block consists of a self-attention layer over all the
queries, a cross-attention layer to gather features from the
image backbone, and an MLP layer. After the Transformer
blocks, a linear layer projects the queries to discrete text to-
kens from the vocabulary of CLIP text encoder, in order to
connect to the diffusion decoder. The n queries are posi-
tional sensitive, meaning that each query corresponds to a
specific position in the CLIP text encoder. The n output text
tokens, together with the special tokens [S0S] and [E0S], are
then fed into the diffusion decoder. We ablate the effect of
n, the number of text tokens, in Tab. 4a.

Optimization. Same as other autoencoders, the training
objective of De-Diffusion is to minimize the reconstruc-

tion error between the input image and the reconstruction
from the pre-trained diffusion model. Practically, both the
loss function and the noise variance schedule strictly fol-
low those of the decoder, i.e., the pre-trained diffusion
model [34]. The training data of De-Diffusion only includes
images, without human annotations or text descriptions.

Our model can be viewed as a special discrete autoen-
coder with discrete text tokens as the latent. Similar to
other discrete autoencoders [62, 63, 75], we use Gumbel-
softmax [41, 53] as the continuous relaxation to back-
propagate the gradients from the decoder through the dis-
crete latent. The relaxation becomes tight as the tempera-
ture 7 — 0. We find that an annealing schedule of tempera-
ture 7 is important for stable training.

To increase the information density and readability, we
exclude all the punctuation in the vocabulary, which ac-
counts for around 6% of the original vocabulary of CLIP
text encoder. As a result, only word tokens and number to-
kens are allowed. We ablation this design choice in Tab. 4b.

3.2. Implementation Details

Text-to-image diffusion model. The text-to-image diffu-
sion model used for De-Diffusion training is based on Ima-
gen [67]. The U-Net has 600M parameters with an embed-
ding dimension of 256 and input resolution of 64 x64. The
text encoder is from OpenCLIP ViT-H/14 [15]. The training
data is WebLlI [14], an image-language dataset built from
public web images and texts. We use v-prediction as the
objective [68], a batch size of 2048, and train for 3M steps.
For reference, this text-to-diffusion model achieves an FID
of 5.37 on 30K 64 x64 MS-COCO 2014 validation images.

Image backbone and attentional pooler. We utilize a pre-
trained CoCa ViT-L model with input resolution 288 x288
as the image backbone, and freeze it during De-Diffusion
training [20, 85]. This CoCa model is pre-trained on JFT-
3B [72] and ALIGN datasets [42]. Our attentional pooler
is equipped with 75 queries, in addition to the [SOS] and
[EOS] tokens to fully utilize the 77 context length defined
by CLIP text encoder [15, 59]. The attention pooler has five
Transformer blocks which are always randomly initialized.

Training of De-Diffusion. The De-Diffusion training data
also comes from WebLlI [14], while only the images but not
the text are used. The broad domain coverage of WebLlI
enables zero-shot and few-shot evaluations of De-Diffusion
on downstream applications in the next section (Sec. 4). For
memory efficiency, we use the Adafactor optimizer [70] and
a weight decay ratio of 0.01. We train with a batch size of
2048 for 500K steps. The learning rate starts at 3e-4 and is
annealed to 3e-6 with cosine decay [52], along with a 10K
step warmup [26]. The Gumbel-softmax temperature be-
gins from 2.0 and is exponentially annealed to 0.3 through
the entire schedule, which we find is sufficient.
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Figure 3. Evaluating different captioning methods by text-to-
image reconstruction. The text-to-image model is a Stable Dif-
fusion v2-base model [64]. We report FID ({) on 30K MS-COCO
(2014) validation split with 256 x256 images. De-Diffusion ob-
tains better FID than human-annotated COCO captions, BLIP-
2 [46] (fine-tuned on MS-COCO), and PalLI-X [12] (a multi-task
captioning model). Numerical results are provided in the Supp.

4. Experiments and Applications

In this section, we introduce several applications of De-
Diffusion text, ranging from transferable prompts for text-
to-image tools and few-shot vision-language understanding.
To demonstrate the versatility of De-Diffusion text across
different tasks and domains — that is, its ability to serve as a
strong cross-modal interface — all the applications use text
from a single De-Diffusion model detailed in Sec. 3.2.

4.1. Transferable Text-to-Image Prompt

Since De-Diffusion encodes an input image into text and
decode it by a text-to-image diffusion model, it is trivial
for De-Diffusion text to serve as a prompt suggestion to re-
construct an image by this specific text-to-image diffusion
decoder. Furthermore, we demonstrate that De-Diffusion
text is transferable to other unseen decoders, i.e., text-to-
image tools, such as Imagen [67], Stable Diffusion [64]
and Midjourney [3]. This suggests that De-Diffusion text
is not over-fitted to a single text-to-image decoder but gen-
eralizable across different text-to-image frameworks, which
is crucial to make a cross-model interface.

We quantitatively evaluate the ability of De-Diffusion
text to transfer to other text-to-image diffusion models and
compare with traditional captioning methods. To do this,
we develop a benchmark that uses a third-party pre-trained
text-to-image model to reconstruct an image from either
De-Diffusion text or captions. Specifically, we first obtain
De-Diffusion text and captions for a given image. Both are
then input into the third-party text-to-image model to syn-
thesize the corresponding image. We compare the synthe-
sized image to the original. Text containing more precise
and comprehensive descriptions allows the model to pro-
duce images more similar to the original. By evaluating

the similarity between the original and the synthesized, we
quantify the precision and comprehensiveness of methods.

We use the pre-trained Stable Diffusion v2-base [64] as
a generic text-to-image generator, whose weights and train-
ing data are oblivious to both De-Diffusion and caption-
ing methods. We measure the similarity between origi-
nal and synthesized 256x256 images using FID (Frechet
Inception Distance) [30] on 30K images from MS-COCO
2014 validation split [13]. Image generation utilizes dif-
ferent classifier-free guidance [35] scales from 1.5 to 8.0,
along with 50 steps of DDIM sampling [71].

We evaluate De-Diffusion, human captions and two
state-of-the-art image captioning methods, plotted in Fig. 3:

() Human-annotated captions from MS-COCO provide
a strong FID baseline of 8.08 at guidance scale 3.0. We syn-
thesize new images using the longest of the five annotated
captions, which we find works best. Other options to utilize
human captions are discussed in the Supp.

(i) BLIP-2 refers to its ViT-g OPT 2.7B variant [46],
which is fine-tuned on MS-COCO. As one of the state-of-
the-art captioning methods, BLIP-2’s FID curve is close to
that of human-annotated captions.

(#ii) PaLI-X [12] performs fine-tuning on multiple cap-
tion datasets, instead of solely on MS-COCO. As a result,
its FID curve is higher than that of BLIP-2.

(iv) De-Diffusion is trained with solely web images, but
not MS-COCO images or any human-annotated captioning
data. It has an indirect access to noisy web image-language
pairs through the pre-trained diffusion model. However,
De-Diffusion achieves the lowest FID of 6.43 at guidance
3.0, significantly better than the human-annotated captions.

These results indicate that De-Diffusion text precisely
and comprehensively verbalizes image details, allowing it
to effectively transfer to other text-to-image tools. We pro-
vide more qualitative results in the Supp.

4.2. Multi-Modal Few-Shot Learner

We next show that De-Diffusion can convert an off-the-
shelf LLM, which is never trained on vision-language data,
to perform open-ended vision-language task by simply
prompting the LLM with few-shot examples, and no adap-
tive training is required.

LLMs exhibit surprising generalization ability with few-
shot learning, adapting to new tasks from just a few an-
notated task-specific examples without any further train-
ing [11]. However, these powerful models are limited to
text. Since then, methods have emerged to enable multi-
modal capabilities by encoding images into the word em-
bedding space [59, 74] or training a new module to connect
vision and language embeddings [4, 46]. However, these
approaches have downsides — not only would they introduce
prohibitively heavy computational costs due to joint train-
ing with enormous language models like 540B PaLM [17],
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trainable VQAv2 OKVQACOCO
methods LLM params. shotftest-dev val  test
BLIP-2 ViT-g [46]  FlanT5xx. 108M 0 [65.07 4597 -
LENS [9] FlanT5xx. 0 0626 433 -
AnyMAL ViT-G [55] Llama27s - 0642 426 959
PICa-Full [84] GPT-3 0 116|561 480 -

IDEFICS-80B [45]
IDEFICS-80B [45]
IDEFICS-80B [45]
Flamingo-80B [4]

Llamassg 4B 0| 600 452 918
Llamagsg 14B 4| 636 524 1103
Llamagss 14B 32| 659 57.8 116.6
Chinchilla;og 10B 0 | 56.3 50.6 84.3
Flamingo-80B [4]  Chinchillazos 10B 4 | 63.1 57.4 103.2
Flamingo-80B [4] Chinchilla;os 10B 32| 67.6 57.8 113.8
De-Diffusion ViT-L PaLM 2-S 135M 0 | 63.9 514 634
De-Diffusion ViT-L PaLM 2-S 135M 4 | 64.0 535 87.1
De-Diffusion ViT-L PaLM 2-S 135M 32| 63.1 533 920
De-Diffusion ViT-L PaLM2-L 135M 0 | 67.2 57.0 88.5
De-Diffusion ViT-L PaLM2-L 135M 4 | 67.9 58.2 100.3
De-Diffusion ViT-L PaLM 2-L 135M 32| 684 60.6 103.7

Table 1. Vision-language few-shot learning. We report VQA
accuracy [6] for visual question answering on VQAv2 [27] and
OKVQA [54] in the open-ended setting, and CIDEr [77] for MS-
COCO image captioning [13]. The Bold denotes the top perfor-
mance and the underlined denotes the second-best in each column.
t in-domain COCO images are used for training.

VQAvV2 OKVQA
methods 0-shot 4-shot 32-shot|0-shot 4-shot 32-shot
BLIP-2 OPT, 7, caption [46]| 63.1 63.0 62.8 | 58.5 57.6 59.1
Human caption [13] 63.1 632 63.6 |59.0 589 60.1
De-Diffusion ViT-L 652 66.0 662 | 57.0 582 60.6

Table 2. Compare to other captions on the val split of VQAv2
and OKVQA. BLIP-2 represents the top captioning model. Hu-
man captions are from MS-COCO annotations. PaLM 2-L is used.

but the visual embeddings also bind to a specific language
model such that changing the language model requires re-
training. This limits the flexibility of these multi-modal
models to keep pace with rapid progress in LLMs.

Unlike previous methods based on deep embeddings,
De-Diffusion encodes images into text that any language
model can readily comprehend. This allows off-the-shelf
language models to ground images by simply interleav-
ing task instructions and De-Diffusion text in any order,
as Fig. 1 shows. Using text as a cross-modal interface,
De-Diffusion empowers off-the-shelf language models with
multi-modal abilities. We next demonstrate that this mod-
ular approach achieves state-of-the-art performance on dif-
ferent multi-modal few-shot learning benchmarks, thanks to
the comprehensive image context provided by De-Diffusion
text, and seamless integration with advanced reasoning abil-
ities provided by the LLMs.

Multi-modal few-shot learning. We follow the evalua-
tion protocol of Flamingo [4] to assess few-shot learn-

ing on three vision-language tasks including VQAv2 [27],
OKVQA [54] and MS-COCO caption [13]. De-Diffusion
text for the support images is interleaved along with their
questions, answers, and captions to form prompts for the
LLMs. The LLM’s completion is considered a correct an-
swer only if it exactly matches the ground truth. More de-
tails are in the Supp. Results are shown in Tab. 1.

Thanks to the modular nature of De-Diffusion text, we
are able to couple the same set of De-Diffusion text with dif-
ferent language models, PaLM 2-S and PalLM 2-L [5] with-
out multi-modal training. The performance of De-Diffusion
text paired with PalLM 2-L increases from zero-shot to 32-
shot setup on all three tasks. However, when coupled with
PalLM 2-S, the 32-shot performance slightly decreases on
two VQA benchmarks compared to using four shots. We
hypothesize this is because smaller language models like
PalLM 2-S benefit less from long context [81], e.g., the
around 3600-token prompts for 32 shots.

De-Diffusion text paired with PaLM 2-L matches other
methods on MS-COCO captioning, and establishes new
state-of-the-art results on two VQA benchmarks for all
zero-shot, 4-shot, and 32-shot settings. Meanwhile, De-
Diffusion training is also more lightweight in both data and
computation. Data-wise, De-Diffusion only uses images,
unlike Flamingo and its followups [4, 8, 45] using mas-
sive interleaved web text and images, or BLIP-2 [46] which
needs human annotations. Computation-wise, De-Diffusion
not only uses far fewer parameters (135M in De-Diffusion
vs. 10B in Flamingo-80B), but its training also does not
involve inference with frozen LLMs like 70B-parameter
Chinchilla [36] in Flamingo. Instead, it only requires frozen
600M U-Net and CLIP text encoder (Sec. 3.2).

Our results suggest that LLMs, without any multi-modal
training, can make grounded inferences for vision-language
tasks using just text descriptions of images. The benefits of
language models are more pronounced on challenging sit-
uations requiring reasoning and commonsense knowledge,
such as Outside Knowledge VQA (OKVQA) [54]. As the
examples in Fig. 4 show, LLMs can answer non-trivial vi-
sual questions that demand both De-Diffusion image con-
text and commonsense knowledge.

On the other hand, the results suggest that De-Diffusion
text comprehensively captures semantic elements in im-
ages, which language models can leverage to perform VQA
and captioning. In Tab. 2, De-Diffusion text outperforms
the state-of-the-art captioning method BLIP-2 [46] and even
human-annotated captions on VQAv2 [27]. It also surpasses
both on OKVQA [54] given 32 shots. This suggests the
strength of De-Diffusion text in providing rich context.

Open-ended one-shot classification. We follow the proto-
col from Frozen [74] to evaluate open-ended one-shot im-
age classification on minilmageNet [79]. We interleave De-
Diffusion text for the support images along with their real
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reference image

[LLM prompt] Answer the question given the context.

Image context: a colcandidenverlanticcloseup former recent train train parked traditionenclosed metrotram in a
red livery it on railroad platform containing wearing a a yellowpolsurround a knob beside platform near a under
platform shelter right there and roof shadows and platform and tracks etc wore worn worn maumaroon brown
white stripes markings contentworn yellow yellow stripes train pretoria namibia railway platform train operator
worn brown windows platform platform

Image question: What other big vehicle is often painted about the same shade as this vehicle? Short answer:

[LLM completion] fire truck.

[GT answers] firetruck, fire truck

Figure 4. VQA with an off-the-shelf LLM, where De-Diffusion text of the reference image is inserted after “Image context” in the LLM
prompt. The LLM then completes the prompt to answer the visual question. De-Diffusion text provides abundant visual details, e.g., red
livery of the train. We use PaLM 2-L [5] as the LLM. Samples are from OKVQA [54].

reference image

[Chatbot prompt] Image context: an landsapiccinemageneric photograph dog labrador aus white creamy
labrador retriever lying lying resting threshold lying an onto slate footpath pathway street milan ositalian
retristreet stil relating called an cream dog shown sleeping sleeping beside near an blue left bicycle bicycle left
crowded street left tyre and umbrella blurry beige brown monochrome left left towards and sitting among people
street gray walls alley mostly brown buildings street blur street pathway street.

What is amusing about this image?

[ChatGPT-3.5] The amusing aspect of the image seems to be the juxtaposition and contrast between the serene
and peaceful scene of the Labrador retriever peacefully resting on the slate footpath, and the busy, crowded, and
somewhat chaotic background of a bustling street in Milan.

[Bard] The amusing thing about the image is the juxtaposition of the sleeping dog and the busy street. The dog
is completely relaxed and oblivious to the hustle and bustle around it. The contrast between the two creates a
sense of humor.

Figure 5. Multi-modal dialogue with off-the-shelf text-only chatbots, where De-Diffusion text is inserted after “Image context” in the

text prompt for ChatGPT-3.5 and Bard.

methods LLM w/o induction w/ induction
P>M>F[39] - 95.3

Frozen [74] Frozen [74] 0.9 33.8
LQAE [51] GPT3.5[11] 1.0 45.9
SPAEpam [87] PalLM 2-L [5] 23.6 67.0
De-Diffusion Llama279p [73] 64.8 87.9
De-Diffusion PalLM 2-S [5] 66.4 88.6
De-Diffusion PalLM 2-L [5] 71.8 97.0

Table 3. Open-ended 5-way 1-shot cls. on minilmageNet, where
only the exact class names predicted by the LLM are considered
correct. Task induction is introductory text explaining the classifi-
cation task and providing expected class names at the start of the
prompt. Previous best in the closed form is de-emphasized.

class names as prompts for the LLM. The text generated by
the LLM is used as the prediction.

We evaluate in an open-ended fashion, where only
generating the exact class name is considered correct.
There is also an option of task induction, which is in-
troductory text explaining the classification task and pro-
viding expected class names at the beginning of the
prompt, e.g., “Classify the context into dog
or cat.” More details are in the Supp.

The results are shown in Tab. 3. Task induction largely
increases performance because it helps the language model

to generate the exact class names required for open-ended
evaluation. With three different LLMs, LLaMA-70B [73],
PalLM 2-S and PalLM 2-L [5], De-Diffusion significantly
outperforms previous methods. PaLM 2-L inference with
task induction achieves 97.0% accuracy, even surpassing
the previous closed-form state-of-the-art of 95.3% system-
atically. These results suggest De-Diffusion excels at ver-
balizing class names of main objects in images.

4.3. Multi-Modal Dialogue

Chatbots such as ChatGPT-3.5 [57] and Bard [ 1] are LLM-
based models that engage users with conversational inter-
actions. They have demonstrated impressive advances in
natural language understanding, generation, and conversa-
tional capabilities. These chatbots can engage in remark-
ably human-like dialogue, answer follow-up questions, and
perform helpful tasks. However, as language models, they
lack grounding in the visual world. In Fig. 5, we demon-
strate that De-Diffusion text can provide this missing visual
grounding. By incorporating De-Diffusion descriptions of
images into the conversational context, chatbots can lever-
age the rich visual details captured in the text. This allows
them to answer challenging questions that require complex
reasoning and commonsense knowledge. Furthermore, we
find De-Diffusion text transfers across different chatbots.
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tokens | FID] acc. punctuation ‘ FIDJ acc.
5 9.19 97.8 v 6.85 96.8
15 [ 742 976 X 6.43 97.0
45 | 695 97.0
75 1643 97.0

(a) Number of tokens. (b) Excluding punctuation.

blocks | FID] acc. arch. init. # steps | FID] acc.
3 6.85 96.6 ViT-Base CoCa 300K | 6.84 92.6
5 6.43 97.0 ViT-Large CoCa 300K | 6.43 97.0
9 6.76 93.1 ViT-Large rand 300K | 14.6 67.2
ViT-Large rand 500K | 11.0 72.2

(c) Pooler depth. (d) Image backbone.

Table 4. De-Diffusion ablation experiments. We evaluate text-to-image reconstruction FID (}) on MS-COCO (2014) validation split
using 256256 images with Stable Diffusion v2-base. We report the best FID across guidance scales. We also report open-ended 5-way
1-shot classification accuracy on minilmageNet. Default settings are marked in gray .

4.4. Ablation

In this section, we ablate different design choices of De-
Diffusion. By default, the encoder is a frozen CoCa pre-
trained ViT-Large model, and we train De-Diffusion for
300K steps. For text-to-image reconstruction, we use FID
on Stable Diffusion v2.0-base, the same setting as Fig. 3,
reporting the lowest FID across guidance scales. For few-
shot learning, we use 5-way 1-shot classification accuracy
on minilmageNet with task induction, identical to Tab. 3.

Number of tokens. De-Diffusion text by default uses up
all 75 tokens from the CLIP text encoder context. In
Tab. 4a, we show performance using 5, 15, and 45 tokens.
With more tokens, reconstruction with Stable Diffusion im-
proves, with FID decreasing from 9.19 to 6.43. This aligns
with our intuition that longer text descriptions as prompts
lead to better text-to-image reconstruction. Interestingly,
few-shot classification accuracy decreases from 97.8% to
97.0% with longer text. This suggests when context length
is limited, De-Diffusion prioritizes the most salient seman-
tic concepts, usually the image classes. This aligns with
the training objective of De-Diffusion to find the most rep-
resentative text latent to minimize reconstruction error of
autoencoding. With longer context, De-Diffusion text in-
cludes more comprehensive but subtle concepts beyond the
classes, important for reconstruction but not classification.

Excluding punctuation. We use the 49K token vocabulary
of CLIP as the codebook of latent representations. This
naturally results from using the CLIP text encoder for the
text-to-image diffusion model. However, we exclude punc-
tuation from the vocabulary, which accounts for around 6%
of the original tokens. By excluding these, we can devote
more of the limited 75 latent tokens to content words, allow-
ing more semantic concepts to be expressed. In Tab. 4b, we
vary these choices. Excluding punctuation improves recon-
struction FID on Stable Diffusion from 6.85 to 6.43, sug-
gesting better transferability of De-Diffusion text to other
text-to-image models, likely due to the use of more content
words. On the other hand, few-shot accuracy on minilm-
ageNet only drops 0.2%, showing punctuation has a small
influence on few-shot learning ability when using LLMs.

Pooler depth. Tab. 4c varies the depth, i.e., number of
Transformer blocks, in the attentional pooler of the image-
to-text encoder. Too few layers may limit its ability to cap-
ture all the necessary semantics. But too many layers could
overfit to the specific text-to-image diffusion model and hurt
generalizability. Experiments suggest that with as few as
three Transformer blocks, the attentional pooler can effec-
tively transform image features from the pre-trained CoCa
backbone into De-Diffusion text. With five blocks, we ob-
tain the best performance on both reconstruction FID with
Stable Diffusion and few-shot accuracy on minilmageNet.

Image backbone. Tab. 4d varies different image back-
bone architectures. Increasing the frozen pre-trained CoCa
backbone size from ViT-Base to ViT-Large largely im-
proves performance, reducing reconstruction FID from 6.84
to 6.43, and improving few-shot accuracy from 92.6% to
97.0%. We also explore a randomly initialized backbone
optimized by the De-Diffusion objective. With 300K train-
ing steps, this obtains an FID of 14.6 and few-shot accu-
racy of 67.2%. Performance increases with a longer S00K
schedule. Though still behind pre-trained CoCa backbones,
training from scratch achieves 72.2% few-shot accuracy on
minilmageNet, surpassing prior methods like SPAE with
PalLM 2-L at 67.0%.

5. Conclusion

We propose De-Diffusion, an autoencoder whose latent is
text representation. By employing a pre-trained text-to-
image diffusion model as the decoder, we obtain content-
preserving and semantically meaningful textual descrip-
tions for the input images. We then apply De-Diffusion
text into text-to-image reconstruction, where De-Diffusion
text surpasses human-annotated captions, and combine with
advanced LLMs to perform multi-modal few-shot learn-
ing, where we surpass large-scale vision-language models.
Our results suggest that text representation, like how it con-
nects human perception and cognition, can serve as a strong
cross-modal interface for multi-modal tasks.
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