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Abstract

Neural 3D reconstruction from multi-view images has
recently attracted increasing attention from the community.
Existing methods normally learn a neural field for the whole
scene, while it is still under-explored how to reconstruct a
target object indicated by users. Considering the Segment
Anything Model (SAM) has shown effectiveness in segment-
ing any 2D images, in this paper, we propose NTO3D, a
novel high-quality Neural Target Object 3D (NTO3D) re-
construction method, which leverages the benefits of both
neural field and SAM. We first propose a novel strategy to
lift the multi-view 2D segmentation masks of SAM into a
unified 3D occupancy field. The 3D occupancy field is then
projected into 2D space and generates the new prompts for
SAM. This process is iterative until convergence to sepa-
rate the target object from the scene. After this, we then
lift the 2D features of the SAM encoder into a 3D feature
field in order to improve the reconstruction quality of the
target object. NTO3D lifts the 2D masks and features of
SAM into the 3D neural field for high-quality neural tar-
get object 3D reconstruction. We conduct detailed exper-
iments on several benchmark datasets to demonstrate the
advantages of our method. The code will be available at:
https://github.com/ucwxb/NTO3D.

1. Introduction

The neural field has made significant progress over the past
few years and become one of the most popular 3D represen-
tations. The pioneering Neural Radiance Field (NeRF) [28]
and its variants [2, 8, 30, 43, 59] learn coordinate-based neu-
ral networks to predict the density and color from multi-
view images and use volume rendering to conduct novel
view synthesis. NeuS [47] improves the 3D reconstruction
quality of NeRF by representing a surface with a Signed
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Figure 1. Overview of NTO3D. First, a user selects a reconstruc-
tion target in the scene. Then, our NTO3D utilizes a 3D occu-
pancy field iteratively to merge the multi-view 2D segmentation
masks into 3D space. NTO3D further lifts the features of the SAM
encoder into a 3D SAM features field and optimizes the feature
field together with other fields. Finally, the user can obtain a high-
quality 3D reconstruction model of the target object with NTO3D.

Distance Function (SDF). They also developed a new vol-
ume rendering method to train the neural SDF representa-
tion. Many studies are proposed to improve the reconstruc-
tion quality and reduce the training cost [44, 52]. However,
existing methods usually learn a neural field for the whole
scene, ignoring the reconstruction of a target object in the
scene, which can be indicated by end users on the fly.

Although traditional techniques such as in-hand scan-

ning [51] have been proposed for target 3D object recon-
struction, it is still non-trivial for neural 3D reconstruction
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methods since we need to obtain the multi-view consis-

tent target object segmentation, which is labor-intensive and

time-consuming.

Recently, the Segment Anything Model (SAM) [20] has
shown great potential for zero-shot segmentation, which
can be used to segment a target object out of the scene.
However, with a single prompt, SAM can only obtain the
2D segmentation of a single-view image, other than multi-
view images. In addition, how to leverage the features of
SAM to improve the reconstruction quality is still under-
explored to the best of our knowledge.

To address the above issue, we propose NTO3D, a novel
high-quality Neural Target Object 3D (NTO3D) reconstruc-
tion method that fully leverages the benefits of both neural
field and SAM. Specifically, to separate the target object
from the neural field, we first train a 3D occupancy field
to merge the multi-view 2D segmentation masks. Our 3D
occupancy field is based on the following assumptions: (1)
If a pixel is foreground, then at least one of the positions
passed through the ray is foreground. (2) If a pixel is back-
ground, then all the positions passed through the ray are
background. We design a corresponding loss based on the
assumptions to optimize the 3D occupancy field, lifting the
2D masks to a unified 3D occupancy field. The 3D occu-
pancy field is then projected into 2D space and generates
the new prompts for SAM. This process is iterative until
convergence to finally segment the target object out of the
scene.

After this, in order to improve the reconstruction quality
of the target object, we further lift the features of the SAM
encoder into a 3D feature field. We add a lightweight out-
put head to the neural field for learning the 3D features of
SAM and use volume rendering to render the 2D features.
The rendered 2D features are directly supervised by the 2D
features of SAM. By lifting the 2D features of SAM, our
method can reconstruct a more accurate 3D model for the
target object.

Our main contributions are summarized as follows:

* We propose NTO3D, a novel method that iteratively lifts
the 2D masks of SAM into a unified 3D occupancy field,
segmenting the target object out of the neural field. With
our method, users can easily reconstruct any target objects
by prompting in a single view.

* To boost the reconstruction quality, we further present a
tactful strategy to lift the 2D features of SAM into a 3D
feature field.

* We conduct detailed experiments on DTU, LLFF, and
BlendedMVS datasets, where NTO3D surpasses the
state-of-the-art reconstruction methods, demonstrating
the advantages of our approach.

2. Related Work

Neural Implicit Representation. Neural implicit represen-

tation has recently become prevailing in computer vision
and graphics. This representation utilizes coordinate-based
neural networks to represent a field, which can encode con-
tinuous signals of arbitrary dimensions at arbitrary resolu-
tions. Neural implicit representation has shown promising
results in shape reconstruction [1, 6, 11, 24, 25, 34, 35, 58],
novel view synthesis [16, 21, 23, 27, 37, 38, 41, 42, 46]
and multi-view 3D reconstruction [15, 17, 22, 31, 57]. In
particular, Neural Radiance Fields (NeRF) [28] learn a con-
tinuous volume density and radiance field from multi-view
images. After training, it can render images from arbitrary
views via volume rendering. To improve the surface re-
construction quality of NeRF, NeuS [47] utilizes a Signed
Distance Function (SDF) to represent a surface. Voxurf
and NeRF2Mesh[44, 52] are proposed to reduce the train-
ing cost and improve the reconstruction quality. However,
how to effectively reconstruct a target object with neural im-
plicit representation is still under-explored, as it is difficult
to obtain multi-view consistent target object segmentation.
Though SA3D [5] achieve neural rendering of target objects
with SAM, it fails to impose geometry constraints for neu-
ral reconstruction. In this paper, we proposed a unified 3D
occupancy field to effectively segment a target object out of
the neural field.

Image Segmentation. Great efforts have been made
for different segmentation tasks such as semantic segmenta-
tion [7], instance segmentation [45], and panoptic segmen-
tation [19]. Various models have also been developed for
segmentation, including encoder-decoder structures [36],
dilated convolutions [60], pyramid structures [63] and trans-
formers [53]. Recently, the Segment Anything Model
(SAM) [20] and its variants [48, 61] have demonstrated
strong zero-shot generalization ability, enabling 2D seg-
mentation for diverse real-world target objects. However,
SAM is currently limited to 2D segmentation of a single
image, which is insufficient for multi-view consistent target
object segmentation. Moreover, utilizing features of SAM
for improving the 3D reconstruction quality remains under-
explored. In this study, we lift the 2D masks and features of
SAM into the 3D neural field for high-quality neural target
object 3D reconstruction.

3D Reconstruction. The problem of 3D reconstruction
has been extensively studied in computer vision with nu-
merous methods proposed for various applications. Tra-
ditional RGB-based methods usually rely on multi-view
stereo techniques to predict the depth from posed im-
ages [9, 40]. Recent learning-based methods aggregate
multi-view information to learn the 3D representation of
the scene [54, 55]. With the development of neural im-
plicit representation, current methods start to represent the
3D scene with various neural fields [27, 47]. Plenty of meth-
ods are also proposed for reconstructing various specific ob-
jects such as 3D faces [3, 4], bodies [64], and hands [49].
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Apart from RGB cameras, many methods are proposed to
use more cameras for 3D reconstruction. For example,
KinectFusion [12] enables a user to rapidly create detailed
3D reconstruction by holding and moving a standard RGB-
D camera. VoxelHashing [32] improves the regular grid
data structure of KinectFusion with a simple spatial hash-
ing scheme that compresses space. AutoRecon [50] lever-
ages self-supervised 2D vision transformer features and re-
construct decomposed neural scene representations with de-
composed point clouds, to achieve accurate object recon-
struction and segmentation. Although 3D reconstruction is
a well-studied problem, how to reconstruct a certain object
indicated by users on the fly is still a difficult problem. By
leveraging the benefits of both neural fields and SAM, our
method enables users to easily reconstruct any target objects
by prompting in a single view.

3. Method

In this section, we first briefly review neural object 3D
reconstruction.  Subsequently, we proceed to elaborate
on the pipeline of the proposed Neural Target Object 3D
(NTO3D). Finally, we further elucidate the novel designs
incorporated in NTO3D.

3.1. Preliminaries

Recent neural object 3D reconstruction works such as
NeRF [28] and NeuS [47] both learn coordinate-based neu-
ral networks to represent the scene. NeRF constructs a
mapping function from spatial location z € R? and view
direction d € R? to color ¢ € R? and volume density
o. Different from NeRF, NeuS replaces the density field
with a signed distance field. We can extract the geometry
surface S of the scene by the zero-set of the SDF values
S = {z € R3|fsqr(x) = 0}, where fsqf is the signed dis-
tance function. Based on the signed distance function, we
can further calculate the opaque density p and opacity val-
ues «. Finally, the pixel color Cofa ray ¢ can be computed
by the classical volume rendering function:

C(t) = ZT(ma(ti)(ti) (1)

where n is the number of sample points along one ray and T’
represents the discre_te accumulated transmittances, which
is defined as T; = H};ll(l — o).

3.2. Overall Pipeline

As shown in Fig. 2, our method consists of two stages. In
the first stage, we train the neural field of the scene on multi-
view images. The users can then indicate the prompts of a
target object in a single view. We use SAM to obtain the
segmentation of this view and initialize the 3D occupancy
field. The 3D occupancy field can generate coarse masks for

other views and further aggregate to the prompts of SAM.
Precise masks of other views can be generated by SAM to
refine the initialized 3D occupancy field. This process is
iterative until the 3D occupancy field converges.

In the second stage, after segmenting the target object
out of the scene, we can obtain the precise 2D masks of
the target object in all views. We then leverage the features
of SAM to improve the reconstruction quality of the target
object, by distilling the 2D features of the SAM encoder
into the 3D feature field. We will present the two stages in
the following sections.

3.3. Stage-1: Segmentation by 3D Occupancy Field

In this section, we introduce a 3D occupancy field to lift 2D
segmentation masks from different views into 3D space as
shown in Fig. 3. The 3D occupancy field can be used to
identify foreground and background voxels and generate a
unified 3D segmentation mask of the target object. By con-
structing the 3D occupancy field, we can also obtain multi-
view consistent 2D masks within a short time.

Given a coarse 2D mask rendered by the 3D occupancy
field, we use SAM to refine it. Although SAM supports a
variety of prompts as input, including points, boxes, masks,
and text, we use points and boxes as prompts, which works
better and saves computational memory. We compute the
K-means clustering centers and minimum bounding rectan-
gles of a 2D coarse mask as prompts. Then SAM encodes
image I and prompts P = (Point, Bozx) as features and
decodes features into more precise masks Mg 4s. The pro-
cess can be formulated as:

Mgan = Decpr(Ency(I), Encp(P)) 2)

where Ency, Encp, and Dec); are the image encoder,
prompts encoder, and mask decoder in SAM, respectively.
Mg 4 will be used as the label to supervise the learning of
the 3D occupancy field.

Given a ray r(t) = o + t - d with camera position o
and view direction d, the corresponding 2D segmentation
is defined as M (r). In the box of the scene, the majority
of voxels belong to the background, with only a small por-
tion belonging to the foreground. Therefore, the relations
between the pixel-level segmentation M and the 3D occu-
pancy field M, are based on the following two assumptions:
(1) If a pixel belongs to the foreground, then at least one
of the positions passed through the ray is foreground. (2)
If a pixel belongs to the background, then all the positions
passed through the ray are background. With the above as-
sumptions, we can simply apply maximization operation to
formulate the relations between n points along the ray r:

M(r) = fs(max({Mo(r(t;))-wrepli € {1,...,n})) 3)

where f, indicates the sigmoid function and w,.(,) repre-
sents point-wise weights, which are in stop-gradients from
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Figure 2. The overall pipeline of NTO3D. First, the user specifies the target object to be reconstructed and sends prompts to SAM for
segmentation on the initial view. With multi-view images as input, we train the 3D occupancy field iteratively to lift cross-view masks
into 3D space. When the 3D occupancy field converges to high-quality masks of the target objects, we finetune the pre-trained neural field
based on the masked images and distill SAM encoder features into 3D space to obtain better reconstruction quality.
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Figure 3. The illustration of the 3D occupancy field. Implicit inter-
action between multiple rays to decide which point is foreground
or background. For a background ray, all points on it belong to
the background. For a foreground ray, at least one point on it is
foreground.

the SDF field. Then we can train the 3D occupancy field by
the binary cross-entropy loss:

L, = Lpce(Msan, M) 4

By minimizing the above loss function, we can transfer
the foreground segmentation of SAM to a unified 3D oc-
cupancy field. The above process is iterative until the 3D
occupancy field converges. As shown in Fig. 4, at the be-
ginning of the iteration, the rendered 2D coarse masks may
exhibit defects since the 3D occupancy field does not con-
verge. However, the refined 2D precise masks are mostly
correct due to the proper prompting of SAM. After several

Iteration 1 Iteration 2 Iteration 3 User provide prompt

Figure 4. Mask iteratively lifting illumination, in which M, rep-
resents masks generated by 3D occupancy field and Msan in-
dicates masks provided by SAM base on prompts. Given users’
prompts of specific objects, the 3D occupancy field renders a
coarse mask in another view, which leads to bad prompts for SAM
and defective masks. But the 3D occupancy field lifts 2D masks
from all views into 3D space and efficiently corrects its false judg-
ments of voxels in other views. With the iterative training, M, and
M s anr begin to shrink and finally converge to the same.

iterations, the 3D occupancy field can correct erroneous pre-
dictions, ensuring multi-view consistent 2D masks.

3.4. Stage-2: Refinement by 3D Feature Field

As a foundation segmentation model, SAM possesses the
ability to surpass most previous segmentation models and
contains abundant knowledge. To better leverage the fea-
tures of SAM, we add a lightweight output branch to the
neural field, lifting the features of the SAM encoder into
3D space. With the encoder of SAM, we can obtain feature
maps Ency(I) with 256 x 256 resolutions corresponding
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to the input images. Then this branch takes the 3D point
position, geometry features, and color features as input and
outputs the features f(¢;) of each 3D point. Similar to color,
volume rendering can be used to render the 3D feature field
into the 2D image as:

F(t) = Z T(t;)a(t;) f(:) (5)

To optimize the 3D SAM feature field f, we adopt the L1
loss between the rendered features F'(¢) and SAM encoder
features Ency(I):

L= %ZHF(T) —Enc,(I)H1 ©6)

As for the color branch and SDF branch, we follow the
previous work and adopt photometric loss and Eikonal
loss [11] to supervise their training respectively, which can
be defined as:

) @)

Finally, we minimize the weighted sum of the above losses:

Liotar = Le + AeiwLeir + )\fo + ALy (8)

4. Experiments

We conduct extensive experiments to evaluate the effective-
ness of the proposed method for neural 3D target object
reconstruction. We first describe the experimental settings
and then compare our method with the SOTA approaches on
the DTU dataset [ 13]. We also provide the qualitative analy-
sis on the LLFF dataset [26]. We further conduct a compre-
hensive ablation study to evaluate the contribution of each
component. Due to the space limitation, we provide more
reconstruction results on the BlendedMVS dataset [56] in
the supplementary material.

4.1. Experimental Settings

Datasets. For Quantitative comparison, following the
previous works [47], we evaluate our proposed method on
the selected 15 scenes from the DTU dataset. Specifically,
there are 64 or 49 images with 1600 x 1200 image resolution
in each scene. Since the DTU dataset provides ground truth
foreground masks, we first compare the segmentation gen-
erated by NTO3D and baselines. Then we evaluate the ren-
dering and reconstruction quality from two aspects: training
with mask supervision (w/ mask) and without mask super-
vision (w/o mask). For Qualitative comparison, following

the previous work [27], we show visualizations on 9 chal-
lenging scenes from the LLFF dataset. There are 20 to 62
images with a fixed image resolution of 1008 x 756 in each
scene, and we randomly select 1/8 of the entire images to
construct the test set. Since LLFF does not contain ground
truth foreground masks, we first manually annotate a target
object in the scene and compare the visual quality.
Implementation Details. We follow the implementation
details specified in NeuS [47] and Instant-NSR [62]. we
adopt the network architecture of Instant-NSR, which con-
sists of two MLPs and the multi-resolution hash table to
encode SDF and color, respectively. We utilize the Adam
optimizer [18] with (51, 82) = (0.9,0.999) to update our
neural networks, and the learning rates warm up from O to
1 x 1073 in the first Sk iterations and then controlled by the
linear decay scheme to the latest learning rate of 1 x 1075,
We set the number of rays to 4096 and sample 80 points
for each ray. We first train the neural field of the scene and
then learn the 3D occupancy field with 1k interval itera-
tions. Finally, we finetune NTO3D for 20k iterations along
with the 3D feature field. All experiments are conducted
on NVIDIA 3090 GPUs. More implementation details are
reported in the supplementary material.

4.2. Quantitative Comparison

In this section, we first report the comparison of gener-
ated segmentation masks. We compare against the seg-
mentation masks generated by SPIn-NeRF [29], ISRF [10]
and SA3D [5]. We also compare a simple baseline named
Prompts Projection: We directly project prompts from a
view to other views and use SAM to generate the 2D masks
based on the projected prompts. Then we report the com-
parisons of neural rendering and reconstruction. We com-
pare our method with IDR [57], NeRF [27], COLMAP [39],
UNISUREF [33], and NeuS [47]. We also compare a sim-
ple baseline named Post-processing Segmentation: We first
reconstruct the whole scene and then use ground truth 2D
masks provided by DTU to segment the desired object. It
should be noted that NTO3D is designed for neural recon-
struction similar to NeuS based on the SDF field, while
ISRF, SPIn-NeRF and SA3D [5] are all designed for neural
rendering based on the density field. To make a fair com-
parison, we first project the 2D foreground masks of ISRF,
SPIn-NeRF and SA3D to 3D space and segment the 3D tar-
get object based on the reconstruction of NeusS.
Segmentation Comparison. As shown in Tab. 1, after it-
erative training, NTO3D achieves high segmentation mask
quality. On one hand, the precise mask generated by SAM
guides the 3D occupancy field in distinguishing foreground
and background voxels effectively. On the other hand, the
3D occupancy field aggregates the multi-view 2D segmen-
tation masks, enabling the generation of cross-view prompts
even with only a single view annotated by users.
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Table 1. Quantitative comparisons on masks generated by our iterative training. M, represents masks generated by 3D occupancy field.
M s ans represents masks generated by SAM with prompts from 3D occupancy field. For baselines, M pyo;, Misrr, Mprno and Msa3p
indicate masks from simply prompts projection, ISRF, DINO used by SPIn-NeRF and SA3D. Mean represents the average IoU.

Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 | Mean
Mpyoj 0.541 0.598 0.512 0495 0.555 0582 0.509 0317 0407 0.687 0.631 0.547 0.521 0.498 0.432 | 0.522
Misgr | 0.846  0.765 0.715 0558 0.717 0.787 0.687 0.692 0231 0.578 0.761 0.687 0.641 0.690 0.549 | 0.660
Mprno | 0941 0961 0952 0972 0945 0959 0.943 0.897 0934 0.932 0937 0976 0.937 0.957 0.925 | 0.945
Msasp | 0.852 0946 0934 0.954 0921 0897 0.936 0.841 0947 0.942 0940 0909 0.919 0961 0.946 | 0.923
M, 0935 0951 0963 0975 0982 0983 0.963 0974 0979 0.962 0955 0.943 0925 0.937 0.967 | 0.960
Msan | 0962 0986 0.991 0991 0.991 0986 0971 0.984 0987 0.992 0.965 0.990 0.990 0.968 0.984 | 0.983

Table 2. Quantitative comparisons with other methods on the task of novel view synthesis. Mean represents the average value of PSNR
and SSIM.

Scan ID ‘24 37 40 55 63 65 69 8 97 105 106 110 114 118 122 ‘Mean

PSNR(NeuS)
PSNR(NeRF)

Train w/o mask setting
23.46 26.01 28.34 22.41 14.99 16.66 24.09 15.37 19.87 15.10 26.74 24.73 28.91 35.92 35.20
21.13 23.00 18.91 22.97 25.55 12.7 22.76 25.19 28.54 35.29 18.31 17.91 21.44 21.48 22.68

23.85
22.52

SSIM(NeuS)
SSIM(NeRF)

0.876 0.611 0.911 0.903 0.897 0.744 0.844 0.840 0.856 0.826 0.838 0.871 0.914 0.968 0.972
0.791 0.860 0.817 0.853 0.921 0.798 0.829 0.938 0.932 0.960 0.757 0.742 0.826 0.781 0.821

0.858
0.842

PSNR(NeuS)
PSNR(Ours)

Train w/ mask setting
28.38 23.75 30.47 29.52 29.83 32.29 29.01 32.28 28.39 29.43 32.26 36.15 30.58 36.22 33.60
28.71 26.96 30.92 31.87 34.11 32.92 31.61 36.98 28.07 33.10 35.98 36.85 32.64 37.69 37.55

30.81
33.06

SSIM(NeuS)
SSIM(Ours)

0.887 0.891 0.917 0.958 0.951 0.969 0.935 0.969 0.920 0.924 0.954 0.970 0.942 0.969 0.968
0.897 0.913 0.925 0.968 0.958 0.956 0.948 0.969 0.920 0.956 0.979 0.973 0.967 0.969 0.980

0.942
0.952
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Figure 5. Qualitative comparison on DTU. Best viewed in colors.

Rendering Comparison. We compare NTO3D with the
previous SOTA volume rendering approaches. We held out
10% of the images in the DTU dataset as the testing set and
the others as the training set. During training, we split the
baselines into two settings: train w/o ground truth masks
and w/ ground truth masks. For NTO3D, we use masks
generated by SAM after iteration lifting for training. We
compare the rendering quality on the testing set with masks

regarding PSNR and SSIM. During the test, we calculate
the metrics between prediction and masked ground truth.
As shown in Tab. 2, baselines trained without object masks
render lower quality than those trained with object masks.
Our method shows significant improvement in PSNR and
SSIM, demonstrating that our method can aggregate the
multi-view 2D segmentation masks to improve the novel
view synthesis quality of a target object.
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Table 3. Chamfer distances comparisons with other methods on the DTU dataset. COLMAP results are achieved by trim=0.

Scan ID

|24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 |Mean

Post-Segmentation

Train w/o mask setting

0.98 1.20 1.58 2.07 2.09 2.94 1.02 2.56 2.64 1.14 1.42 1.21 1.01 1.36 1.24

1.63

COLMAP 0.81 2.05 0.73 1.22 1.79 1.58 1.02 3.05 1.40 2.05 1.00 1.32 0.49 0.78 1.17| 1.36
NeRF 1.90 1.60 1.85 0.58 2.28 1.27 1.47 1.67 2.05 1.07 0.88 2.53 1.06 1.15 0.96| 1.49
UNISURF 1.32 1.36 1.72 0.44 1.35 0.79 0.80 1.49 1.37 0.89 0.59 1.47 0.46 0.59 0.62| 1.02
NeuS 1.00 1.37 0.93 0.43 1.10 0.65 0.57 1.48 1.09 0.83 0.52 1.20 0.35 0.49 0.54| 0.84
Train w/ mask setting
Prompts Projection|1.21 1.14 1.47 2.37 1.60 2.01 1.27 1.03 3.28 1.54 1.47 1.20 1.03 1.54 1.21| 1.56
ISRF 1.02 1.34 0.86 1.45 1.36 1.00 1.12 1.58 2.07 1.20 0.98 1.36 1.21 0.98 0.87| 1.23
SPIn-NeRF 0.97 1.12 0.76 0.96 1.77 1.02 1.25 1.50 2.05 0.98 0.67 1.25 0.96 0.59 0.51| 1.02
SA3D 0.95 1.09 0.82 1.03 1.63 1.23 1.14 1.41 2.13 0.95 0.73 1.29 0.99 0.72 0.56| 1.11
IDR 1.63 1.87 0.63 0.48 1.04 0.79 0.77 1.33 1.16 0.76 0.67 0.90 0.42 0.51 0.53| 0.90
NeuS 0.83 0.98 0.56 0.37 1.13 0.59 0.60 1.45 0.95 0.78 0.52 1.43 0.36 0.45 0.45| 0.77
Ours 0.82 1.14 0.60 0.35 1.01 0.53 0.63 1.31 0.86 0.73 0.51 1.15 0.45 0.42 0.46| 0.73
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Figure 6. Qualitative comparison on LLFF and fruit scene in DTU. These scenes have the following characteristics: the foreground objects
consist of multiple independent objects, and the background is more complex. Best view in colors.

Reconstruction Comparison. We also measure the recon-
struction quality with the Chamfer distances and compare
NTO3D with other methods, as shown in Tab. 3. Similar
to the rendering comparison, training without masks intro-
duces more background noises into the neural field. Simply
projecting point prompts to other views leads to bad perfor-
mance. This is because prompts projection heavily relies on
the quality of depth, while the reconstructed depth of NeuS
is not accurate enough. Therefore, SAM cannot correctly
segment the target object. With the help of the 3D occu-
pancy field and the 3D feature field, our approach reduces
the Chamfer distance to 0.73 and outperforms the baseline
methods. The results demonstrate that neural reconstruction
can benefit from the NTO3D pipeline.

4.3. Qualitative Analysis

We conduct the qualitative comparisons on DTU and LLFF
datasets. As shown in Fig. 5 and Fig. 6, we provide refer-
ence images and prompts indicated by users on the initial

view. Due to the space limitation, please refer to supple-
mentary materials for qualitative results on BlendedMVS,
which contains more complex and larger scenes.

On DTU datasets, we compare the visualization quality
of NTO3D with other methods. NeRF shows the worst visu-
alization quality since it reconstructs the whole scene. Post-
Segmentation also leads to bad performance since reproject-
ing 2D segmentation masks provided by DTU back into 3D
does not completely remove the background. ISRF offers
a tool for interactive segmentation, but masks extracted by
ISRF are sensitive to a bunch of parameters. Inappropriate
parameters result in lower-quality masks for ISRF. SPIn-
NeRF uses DINO for segmentation, which treats multi-
view inputs as a video sequence. However, the segmenta-
tion accuracy of SPIn-NeRF is worse than NTO3D. SA3D
uses an inverse rendering for mask generation but still ex-
hibits lower segmentation accuracy compared to NTO3D,
which results in worse chamfer distance. Although NeuS
contains a background model, which helps it focus on the
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foreground objects, its reconstruction results still inevitably
show the background near the target objects. Thanks to the
proposed 3D occupancy field, NTO3D can generate high-
quality masks of foreground objects without tedious anno-
tation on all views. Additionally, we can witness that the
NTO3D reconstructs higher surface quality with the help of
3D SAM feature fields.

On LLFF datasets, we choose one object for each scene
as the target object. We can see that whether the selected ob-
ject is significant or not in the scene, NTO3D can segment
the target object based on the user’s prompts and obtain im-
pressive reconstruction quality. Besides, we also provide
the results of one object among several foreground objects
in the last two columns. This further demonstrates that with
the help of NTO3D, we are able to reconstruct any target
objects of the scene.

Table 4. Ablation Study of NTO3D. CD indicates the Chamfer
distance.

Variant PSNRT SSIM{ CDJ
Instant-NSR 2994  0.8914 0.82

+ 3D Occupancy Field 3244 09319 0.76
+ 3D SAM Feature Field ~ 30.76 09136  0.78

NTO3D (our) 33.06 09520 0.73

4.4. Ablation study

Evaluation of Each Component. We study the effective-
ness of the proposed 3D occupancy field and 3D feature
field. The experiments are done on the DTU dataset and av-
erage the results of all scenes. As shown in Tab. 4, with the
aid of the 3D occupancy field, our method avoids the influ-
ence of the background and focuses on the reconstruction
of target objects. Since the SAM encoder contains abun-
dant knowledge, the 3D feature field helps to boost the re-
construction quality. With the proposed two contributions,
NTO3D can efficiently segment and reconstruct the target
object indicated by users in the scene.

Overlap Ratio Between Views. We further explore the ef-
fects of the max overlap ratio between views to study the
choice of the initial view. We conduct the experiments on
a random scene of the DTU dataset and calculate the Max
View Distance and the Max Overlap Ratio between the first
manually annotated view and other views. As shown in
Tab. 5, the final reconstruction accuracy is approximately
the same for different initial views with different overlap
ratios. Since the proposed 3D occupancy field iteratively
obtains foreground-background segmentation in 3D space,
NTO3D can avoid confusion from different views. Once
the initial view appropriately segments the target object,
NTO3D can always successfully reconstruct target objects.
Different Stages of Distilling SAM Features. We con-
duct the experiments of distilling SAM features at different
stages: 1). pretraining before the first step of our method

Table 5. Influence of overlap ratio on reconstruction quality.

Initial View ‘ 1 5% 10% 20% 30%
Max View Distance ‘ 103.63°  122.87° 108.5° 110.09° 101.49°
Max Overlap Ratio ‘ 0.471 0.149 0.500 0.250 0.322

Chamfer Distance ‘ 0.731 0.742 0.735 0.740 0.738

(denoted by pretrain). 2). iterative training for 3D occu-
pancy field (denoted by iterative). 3). finetuning on the tar-
get object (our default setting, denoted by finetune). We
conduct the experiments on a random scene of the DTU
dataset and report the mloU and chamfer distance. As
shown in Tab. 6, distilling SAM features at pretraining and
iterative training performs slightly worse than distilling at
finetuning. Without the foreground mask, SAM features
contain the background information, which might slightly
degrade the performance of target object reconstruction. In
addition, encoding images with SAM requires additional
computational cost, therefore it is unnecessary to distill
SAM features at early stages.

Table 6. Different stages of distilling SAM features.

Experiment Setting ‘ pretrain iterative finetune
mloU ‘ 0.981 0.980 0.991

Chamfer Distance ‘ 0.360 0.358 0.353

S. Limitation
Although SAM has a powerful segmentation ability, when
facing challenging scenes, it is also difficult to segment the
target object [14]. If SAM fails to segment target objects
with available prompts, our method will fail to learn the 3D
occupancy field. A possible solution is to fine-tune SAM
on challenging scenes with parameter-efficient-finetuning
(PEFT) techniques. Despite the limitations, NTO3D has
demonstrated the potential of combining large foundation
models and neural fields.
6. Conclusion
To reconstruct a certain object indicated by users on-the-fly
and boost the reconstruction quality, the paper applies the
Segment Anything Model to help 3D object reconstruction.
The proposed method Neural Target Object 3D Reconstruc-
tion (NTO3D) first leverages a 3D occupancy field to lift
the multi-view 2D segmentation masks generated by SAM.
With the help of 3D occupancy field, NTO3D is able to seg-
ment target objects and eliminate background interference.
To boost the reconstruction quality, we further propose a
3D SAM Feather Field to lift pixel-level features into voxel
space. Finally, we conduct several experiments on several
datasets and demonstrate NTO3D can obtain better recon-
struction quality. Please refer to supplementary materials
for more results.
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