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Abstract

Logit knowledge distillation attracts increasing attention
due to its practicality in recent studies. However, it of-
ten suffers inferior performance compared to the feature
knowledge distillation. In this paper, we argue that exist-
ing logit-based methods may be sub-optimal since they only
leverage the global logit output that couples multiple se-
mantic knowledge. This may transfer ambiguous knowl-
edge to the student and mislead its learning. To this end,
we propose a simple but effective method, i.e., Scale De-
coupled Distillation (SDD), for logit knowledge distilla-
tion. SDD decouples the global logit output into multi-
ple local logit outputs and establishes distillation pipelines
for them. This helps the student to mine and inherit fine-
grained and unambiguous logit knowledge. Moreover, the
decoupled knowledge can be further divided into consis-
tent and complementary logit knowledge that transfers the
semantic information and sample ambiguity, respectively.
By increasing the weight of complementary parts, SDD can
guide the student to focus more on ambiguous samples, im-
proving its discrimination ability. Extensive experiments
on several benchmark datasets demonstrate the effective-
ness of SDD for wide teacher-student pairs, especially in
the fine-grained classification task. Code is available at:
https://github.com/shicaiwei123/SDD-CVPR2024

1. Introduction
Knowledge distillation is a general technique for assisting
the training of “student” networks via the knowledge of
pre-trained “teacher” networks [5]. Depending on the loca-
tion of transferred knowledge, distillation methods are di-
vided into two categories: logit-based distillation [7] and
feature-based distillation [13]. Due to the computational
efficiency [24] and ability to handle heterogeneous knowl-
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Figure 1. Image visualization on ImageNet. (a) The top line shows
some misclassified samples of class 6 in ResNet34. The bottom
line displays their corresponding predicted class and sample. (b)
Illustrates the intuitive model for scale decoupling.

edge [16], logit distillation has gained increasing attention
in recent years.

To date, many logit distillation methods have been pro-
posed and can be broadly categorized into two groups.
The first group aims to extract richer logit knowledge by
introducing multiple classifiers [23, 26] or through self-
supervision learning [18]. The second group aims to op-
timize the knowledge transfer by techniques like dynamic
temperature [19] or knowledge decoupling [20, 22, 24].
While these methods achieve good results, we argue they
could lead to sub-optimal results as they solely rely on the
global logit knowledge of the whole input.

Specifically, the whole image usually couples the infor-
mation of multiple classes and leads to misclassification.
On one hand, two classes may belong to the same super-
class, sharing similar global information in their samples.
Illustrated in the first column of Fig. 1(a), both classes 5 and
6 belong to the superclass ”fish” and exhibit similar shapes.
Additionally, as shown in the second column of Fig. 1(a),
a scene may encompass information from multiple classes,
such as classes 6 and 983, creating a logit output that is
semantically mixed. Consequently, the global logit output
fuses diverse and fine-grained semantic knowledge. This
may transfer the ambiguous knowledge to the student and
mislead its learning, resulting in sub-optimal performance.

To this end, we propose the SDD method to assist the
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logit distillation by decoupling the logit output at the scale
level. Specifically, as shown in Fig. 1(b), SDD decouples
the logit output of the whole input into the logit outputs of
multiple local regions. This helps acquire richer and unam-
biguous semantics knowledge. Then SDD further divides
the decoupled logit outputs into consistent and complemen-
tary terms according to their class. Consistent terms be-
long to the same class as the global logit output, transfer-
ring multi-scale knowledge of the corresponding class to
students. Complementary terms belong to classes different
from the global logit output, preserving sample ambiguity
for the student and avoiding overfitting to ambiguous sam-
ples. Finally, SDD performs the distillation among all these
logit outputs to transfer comprehensive knowledge from the
teacher to the student, improving its discrimination ability
to ambiguous samples.

In total, we summarize our contributions and the differ-
ences from the existing approaches as follows:

• We reveal a limitation of classic logit distillation resulting
from the coupling of multi-class knowledge. This hin-
ders students from inheriting accurate semantic informa-
tion for ambiguous samples.

• We propose a simple but effective method, i.e., SDD, for
logit knowledge distillation. SDD decouples the global
logit output as consistent and complementary local logit
output and establishes the distillation pipeline for them
to mine and transfer richer and unambiguous semantic
knowledge.

• We present extensive experiments on several benchmark
datasets, demonstrating the effectiveness of SDD for a
wide range of teacher-student pairs, particularly in fine-
grained classification tasks.

2. Related Work

2.1. Feature-based Distillation

. The feature-based distillation is first proposed in Fit-
nets [13], in which the student is trained to mimic the out-
put of the intermediate feature map of the teacher directly.
Since then, a variety of other methods have been proposed
to extend the fitnets by matching the features indirectly. For
example, AT [8] distills the attention map of the sample
feature from a teacher to a student. Besides, some meth-
ods are further proposed to transfer the inter-sample rela-
tion, such as RKD [10], SP [15], and reviewKD [3]. While
these methods achieve good results, their performance usu-
ally degrades when handling teacher-student pairs with het-
erogeneous architecture, especially those with different lay-
ers [1, 11]. Therefore, this paper pays attention to the logit-
based distillation that has good generalization for heteroge-
neous knowledge distillation

2.2. Logit-based Distillation

. The logit-based distillation is originally proposed by Hin-
ton [7], in which the student is trained to mimic the soft logit
output of the teacher. Then several methods are proposed
to promote its performance. FN [19] introduces the L2-
norm of the feature as the sample-specific correction fac-
tor to replace the unified temperature of KD. SSKD [18]
trains extra classifiers via the self-supervision task to ex-
tract “richer dark knowledge” from the pre-trained teacher
model. KDExplainer [20] proposes a virtual attention mod-
ule to improve the logit distillation by coordinating the
knowledge conflicts for discriminating different categories.
WSLD [25] analyzes soft labels and distributes different
weights for them from a perspective of bias-variance trade-
off. SSRL [21] transfers the knowledge by guiding the
teacher’s and student’s features to produce the same output
when they pass through the teacher’s pre-trained and frozen
classifier. SimKD [2] transfers the knowledge by reusing
the teacher’s classifier for the student network. In addi-
tion, the latest DKD [24] proposes the decoupled knowl-
edge distillation that divides the logit knowledge into target
knowledge and non-target knowledge. NKD [22] further
proposes to normalize the non-target logits to equalize their
sum. However, all of them only focus on the global logit
knowledge with mixed semantics, transferring the ambigu-
ous knowledge to the student.

3. Method
In this section, we revisit the conventional KD and then de-
scribe the details of the proposed scale-decoupled knowl-
edge distillation.

Notation. Given an image input x, let T and S de-
note the teacher and student networks, respectively. We
split these networks into two parts: (i) one is the convo-
lutional feature extractor fNet, Net = {T, S}, then the fea-
ture maps in the penultimate layer are denoted as fNet(x) ∈
RcNet×hNet×wNet , where cNet is the number of feature
channels, hNet and wNet are spatial dimensions. (ii) An-
other is the projection matrix WNet ∈ RcNet×K , which
project the feature vector extracted from fNet(x) into K
class logits zlNet, l = 1, 2, ...,K. Then, let fNet(j, k) =
fNet(x)(:, j, k) ∈ RcNet×1×1 denotes the feature vector at
the location (j, k) of the fNet(x). According to the recep-
tive field theory in [6, 12], fNet(j, k) can be regarded as
the representation of the region (tx, ty, tx + d, ty + d) in x,
where tx = d ∗ j, ty = d ∗ k and d is the downsampling
factor between the input and the final feature map.

3.1. Conventional Knowledge Distillation

The concept of knowledge distillation is first proposed in [7]
to distill the logit knowledge from the teacher to the student
by the following loss,
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Figure 2. Illustration of the conventional KD (a) and our SDD (b). Compared with the conventional KD that only considers the global
logit knowledge via global average pooling, SDD proposes to capture the multi-scale logit knowledge via the multi-scale pooling so that
the student can inherit the fine-grained and unambiguous semantic knowledge from the teacher.



LKD = KL(σ(PT )∥σ(PS)) (1)

PT = WT

hT−1∑
j=0

wT−1∑
k=0

1

hTwT
fT (j, k) (2)

PS = WS

hS−1∑
j=0

wS−1∑
k=0

1

hSwS
fS(j, k) (3)

where σ(.) is the softmax function and KL(., .) means the
KL divergence.

Due to the linearity of fully connected layer, PT and PS

can be rewrite as follows,
PT =

hT−1∑
j=0

wT−1∑
k=0

1

hTwT
LT (j, k) (4)

PS =

hS−1∑
j=0

wS−1∑
k=0

1

hSwS
LS(j, k) (5)

where LT = WT fT (x) and LS = WSfS(x) mean the logit
output maps of teacher and student, respectively.

From the above equations, we can see that the con-
ventional logit-based distillation only leverages the average
logit output that mixes different local logit knowledge cal-
culated from different local feature vectors, such as LT 11.
However, as shown in Fig. 1(a), different local outputs usu-
ally contain distinct semantic information. Simply fusing
them in a logit output would transfer ambiguous knowl-
edge to the student and mislead its learning. Consequently,

conventional logit-based distillation usually leads to sub-
optimal performance.

To overcome this limitation, we propose the SDD that
decouples the logit output at the scale level to mine richer
and unambiguous logit knowledge for student learning.

3.2. Scale Decoupled Knowledge Distillation

In this section, we describe the proposed SDD in detail.
As shown in Fig. 2(b), the SDD consists of two parts:
multi-scale pooling, and information weighting. Specifi-
cally, given the logit output maps of teacher and student,
i.e. LT and LS , multi-scale pooling runs the average pool-
ing on different scales to acquire the logit output of differ-
ent regions of the input image. Compared with the conven-
tional KD that only considers global logit knowledge, this
helps preserve fine-grained knowledge with clear semantics
for the student. Then, we establish the knowledge distilla-
tion pipeline for the logit output at each scale. Finally, in-
formation weighting increases the weight of the distillation
loss for the local logit that has inconsistent classes with the
global logit. This guides the student network to pay more
attention to the ambiguous samples whose local and global
categories are inconsistent.

Specifically, the multi-scale pooling splits the logit out-
put map into cells at different scales and performs average
pooling operations to aggregate the logit knowledge in each
cell. Let C(m,n) denotes the spatial bins of the nth cell at
mth scale, Z(m,n) denotes the input region corresponding
to this cell, πT (m,n) ∈ RK×1×1 denotes the logit output
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of the teacher for region Z(m,n), which is the aggregated
logit knowledge of this cell,

πT (m,n) =
∑

j,k∈C(m,n)

1

m2
LT (j, k) (6)

where (j, k) means the coordinate of the logit output in
C(m,n). And the paired logit output of the student for the
same region Z(m,n) is the πS(m,n) ∈ RK×1×1,

πS(m,n) =
∑

j,k∈C(m,n)

1

m2
LS(j, k) (7)

where m and n are as same as those in πT (m,n). For
each paired logit output, the distillation loss D(m,n) that
transfers the logit knowledge at the region Z(m,n) from
the teacher to the student is defined as follows,

D(m,n) = LD(σ(πT (m,n)), σ(πS(m,n))) (8)

where LD(., .) denotes the conventional logit-based distil-
lation loss, such as the KL divergence in [7] and the de-
coupling loss in [24]. By traversing all the scales m in
M = {1, 2, 4, ..., w} and their corresponding cells Nm ={
1, 4, 16, ..., w2

}
, we can get the final SDD loss as follows,

LSDD =
∑
m∈M

∑
n∈Nm

D(m,n) (9)

Besides, we can further divide the decoupled logit out-
puts into two groups via their classes. One is the consistent
terms that belong to the same class with the global logit
output. Another is the complementary terms that belong
to different classes from the global logit output. Here, the
consistent terms transfer the multi-scale knowledge of cor-
responding classes to students. The complementary terms
preserve the sample ambiguity for the student. Specifically,
when the global prediction is right while the local predic-
tion is wrong, the inconsistent local knowledge encourages
the student to preserve the sample ambiguity, avoiding over-
fitting the ambiguous samples. On the other hand, when
the global prediction is wrong while the local prediction is
right, inconsistent local knowledge can encourage the stu-
dent to learn from similar components among different cat-
egories, alleviating the bias caused by the teacher.

Here, we introduce independent hyper-parameters for
complementary terms to control the level of regularization
and LSDD can be rewritten as follows,

LSDD = Dcon + βDcom (10)

where Dcon and Dcom denotes the loss sum of consistent
and complementary logit knowledge respectively.

Finally, combined with label supervision, the total train-
ing loss for the student to leverage multi-scale patterns from
the teacher to improve its performance is defined as follows,

L1 = LCE + αLSDD (11)

where LCE(., .) denotes the label supervision loss for the
task at hand, and α is a balancing factor.

Compared with conventional KD: Particularly, LSDD
will degenerate into conventional distillation loss consider-
ing global logit knowledge when m = wT = hT , n = 1.
Thus, the conventional knowledge distillation loss can be
regarded as a term of the SDD loss, covering the entire im-
age (0,0,w ∗ d,w ∗ d). It encourages the student to learn the
contextual information of the whole image from the global
logit output of the teacher. Besides, when m < wT = hT ,
SDD further calculates the logit output at local scale loss
to preserve the fine-grained semantic knowledge. These
terms guide the student to inherit diverse and clear seman-
tics knowledge from the teacher, enhancing its discrimina-
tion ability to the ambiguous samples.

Compared with multi-branch KD: Multi-branch KD,
such as ONE [26] and DCM [23], usually consists of mul-
tiple classifiers and fuses their logit output as the teacher
knowledge to guide the training of the student. This intro-
duces additional structure complexity. In contrast, although
SDD introduces multi-scale pooling to generate multi-scale
features, it calculates the multi-scale logit output via the
same classifier. In other words, SDD is still the single-
branch method and does not introduce any extra structural
and computational complexity.

Compared with DKD: DKD [24] decouples the logit
knowledge as the target class and non-target class knowl-
edge, which is conducted on the class scale and performed
after calculating the logit output. In contrast, SDD decou-
ples the logit knowledge as multi-scale knowledge, which
is conducted on the spatial scale and performed before cal-
culating the logit output. In particular, DKD can also be
embedded in SDD and achieves better performance (see Ta-
ble 2, Table 4).

4. Experiments
4.1. Experimental Setups

Datasets. We conduct the experiments on the CI-
FAR100 [9], CUB200 [17], and ImageNet [4]. Here, CI-
FAR100 and ImageNet are used for the evaluation of clas-
sic classification tasks. CUB200 is used for the evaluation
of fine-grained classification tasks, which includes 200 dif-
ferent species of birds.

Implementation Details. As described in Section 3.2,
the LD used for LSDD can be implemented with arbitrary
logit-based loss. Here, for a fair comparison with previous
logit-based methods and to study the effectiveness of the
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Teacher ResNet32x4 WRN40-2 WRN40-2 ResNet50
79.42 75.61 75.61 79.34

Student MobileNetV2 VGG8 MobileNetV2 ShuffleNetV1
64.6 70.36 64.6 70.50

FitNet 65.61 70.98 65.12 72.03
SP 67.52 73.18 66.34 71.28

CRD 69.13 73.88 68.89 75.70
SemCKD 68.99 73.67 68.34 75.56

ReviewKD - - - -
MGD 68.13 73.33 68.55 74.99

KD 67.72 73.97 68.87 75.82
SD-KD 68.84(+1.12) 74.44(+ 0.57) 69.81(+0.94) 76.87(+1.05)
DKD 68.98 74.13 69.33 77.01

SD-DKD 70.08(+1.1) 74.58(+0.45) 70.13(+0.8) 78.11(+1.1)
NKD 68.81 73.80 68.85 76.22

SD-NKD 69.59(+0.78) 74.34(+0.54) 70.04(+1.19) 76.95(+0.73)

Table 1. Performance of model compression on the CIFAR-100 dataset. Here, the teacher and student with different network structures
and layers. Specifically, the layers of ResNet32x4, WRN40 2, and ResNet50 are 4, 4, and 3 while the layers of MobileNetV2, VGG8, and
ShuffleNetV1 are 3, 3, and 4, respectively.

SDD, we use the same losses used in the KD, DKD, and
NKD methods and denote these implementations as SD-KD
SD-DKD, and SD-NKD, respectively.

SDD has three hyper-parameters, scale set M , balance
parameters α and β The detailed analysis of M , and β
can be seen in the ablation study. Specifically, M is set
as {1, 2, 4} for the distillation tasks with different architec-
tures, and {1, 2} for the distillation tasks with similar archi-
tectures. β is set as 2.0. As for the α, for a fair comparison
with previous logit-based methods, we follow the same set-
ting used in the original KD, DKD, and NKD methods. In
particular, since the sum of multi-scale logit distillation loss
could be high and lead to a large initial loss, we utilize a
30-epoch linear warmup for all experiments.

Training details. For CIFAR100 and CUB200, our im-
plementation follows the practice in CRD [14]. teachers and
students are trained for 240 epochs with SGD. The batch
size is 64, the learning rates are 0.01 for ShuffleNet and
MobileNet-V2, and 0.05 for the other series (e.g. VGG,
ResNet, and WRN). The learning rate is divided by 10 at
150, 180, and 210 epochs. The weight decay and the mo-
mentum are set to 5e-4 and 0.9. The weight for distillation
loss follows the same weight for KD, DKD, and NKD for a
fair comparison.

For ImageNet, we train the models for 100 epochs. As
the batch size is 512, the learning rate is initialized to 0.2
and divided by 10 for every 30 epochs. Weight decay is 1e-
4. The weight for distillation loss follows the same weight
for KD, DKD, and NKD for a fair comparison.

4.2. Comparison Results

Results on the teacher and student with different net-
work structures and layers. As shown in Table 1, SDD
consistently contributes to significant performance gains
for multiple classical logit distillation methods. Specif-
ically, SDD increases the performance of ResNet32x4-
MobileNetV2, WRN40-2-MobileNetV2, and ResNet50-
ShuffleNetV1 by nearly 1% for KD, DKD, and NKD.
These results show the effectiveness of the proposed SDD
method in dealing with the teacher and student with dif-
ferent network structures and layers. Moreover, some con-
ventional KD even outperforms the state-of-the-art feature-
based methods in some teacher and student pairs, such as
WRN-2 and VGG8 as well as ResNet50 and ShufleNetV1.
These results show the superiority of logit distillation and
the necessity of improving logit knowledge distillation.
Here, the result of the ReviewKD method is ‘-’ since it can-
not handle such scenarios.

Results on the teacher and student with different net-
work structures but the same layer. As shown in Table 2,
SDD improves the performance of multiple classical logit
distillation methods by 0.5%∼2.23% on the CIFAR 100
dataset. Besides, even for the large-scale ImageNet dataset,
SDD also brings 0.5%∼1.74% performance improvement
as shown in Table 4. In general, for most teacher-student
pairs, SDD can contribute to more than 1% performance
gain on small or large-scale datasets, demonstrating its ef-
fectiveness in dealing with the teacher and student with dif-
ferent network structures but the same layer. Besides, the
proposed SD-DKD outperforms all the feature-based dis-
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Teacher ResNet32x4 WRN40-2 ResNet50 VGG13 ResNet32x4 ResNet50
Acc 79.42 75.61 79.34 74.64 79.42 79.34

Student ShufleNetV1 ShufleNetV1 MobileNetV2 MobileNetV2 ShufleNetV2 VGG8
Acc 70.50 70.50 64.6 64.6 71.82 70.36

FitNet 73.54 73.73 63.16 63.16 73.54 70.69
RKD 72.28 72.21 64.43 64.43 73.21 71.50
SP 73.48 74.52 68.08 68.08 74.56 73.34

PKT 74.10 72.21 66.52 66.52 74.69 73.01
CRD 75.11 76.05 69.11 69.11 75.65 74.30

WCoRD 75.77 76.32 70.45 69.47 75.96 74.86
SemCKD 76.31 76.06 68.69 69.98 77.02 74.18

ReviewKD 77.45 77.14 69.89 70.37 77.78 75.34
MGD 76.22 75.89 68.54 69.44 76.65 73.89

KD 74.07 74.83 67.35 67.37 74.45 73.81
SD-KD 76.30(+2.23) 76.65(+1.82) 69.55(+2.10) 68.79(+1.42) 76.67(+2.32) 74.89(+1.08)
DKD 76.45 76.70 70.35 69.71 77.07 75.34

SD-DKD 77.30(+0.85) 77.21(+0.51) 71.36(+1.01) 70.25(+0.54) 78.05(+0.98) 75.86 (+0.52)
NKD 75.31 75.96 69.39 68.72 76.26 74.01

SD-NKD 76.34(+1.03) 76.81(+0.85) 70.25(+0.86) 69.50(+0.82) 77.07(+0.81) 74.62(+0.61)

Table 2. Performance of model compression on the CIFAR-100 dataset. Here, the teacher and student with different network structures but
the same layer.

Teacher Student KD SD-KD DKD SD-DKD NKD SD-NKD
Top1 73.31 69.75 70.66 71.44(+0.84) 71.70 72.02(+0.32) 71.96 72.33(+0.37)
Top5 91.43 89.07 89.88 90.05 90.41 91.21 91.10 91.31

Table 3. Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-34 as the teacher and ResNet18 as the student.

tillation methods, including the state-of-the-art method Re-
viewKD and MGD. This further confirms the superiority of
SDD.

Results on the fine-grained classification task. As
shown in Table 5, SDD improves the performance of mul-
tiple classical logit distillation methods by 1.06%∼6.41%.
These results demonstrate that the proposed SDD achieves
more remarkable performance gains on such a task where
different classes have small discrepancies. The reason may
be that fine-grained classification tasks have a stronger de-
pendence on fine-grained semantic information than con-
ventional classification tasks since different classes have
similar global information. At the same time, the SDD can
enable the model to capture local information. This demon-
strates the potential of the proposed SDD for distilling fine-
grained classification models.

4.3. Ablation Study

The ablation studies are conducted on CIFAR-100
by using the heterogeneous teacher-student pair

ResNet32x4/ShuffleNetV1 and homogeneous pair
ResNet32x4/ResNet8x4, respectively.

Effect of the decoupled logit knowledge. As shown in
Table 6, the fusion of consistent and complementary logit
knowledge improves the performance of conventional KD
by 3.30% and 2.23% for homogeneous and heterogeneous
teacher-student pairs, respectively. This demonstrates the
effectiveness of decoupling the global logit knowledge into
multiple semantic-independent logit knowledge. Besides
both consistent and complementary logit knowledge con-
sistently improve the performance of conventional KD for
homogeneous and heterogeneous teacher-student pairs, re-
spectively, verifying their effectiveness.

Effect of different decoupled scales. We set different
scale sets M for the LSDD to study the effect of local logit
knowledge at different scales. Specifically, each scale m in
M means the logit knowledge of region Z(m,n) is utilized.
For a fair comparison, we take the model only using the
global knowledge as the baseline, namely M = {1}. The
results are shown in Table 7.
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Teacher Student KD SD-KD DKD SD-DKD NKD SD-NKD
Top1 76.16 68.87 70.50 72.24(+1.74) 72.05 73.08(+1.03) 72.58 73.12(+0.54)
Top5 92.86 88.76 90.34 90.71 91.05 91.09 90.80 91.11

Table 4. Top-1 and top-5 accuracy (%) on the ImageNet validation. We set ResNet-50 as the teacher and MobileNet-V1 as the student.

Teacher ResNet32x4 ResNet32x4 VGG13 VGG13 ResNet50
Acc 66.17 66.17 70.19 70.19 60.01

Student MobileNetV2 ShuffleNetV1 MobileNetV2 VGG8 ShuffleNetV1
Acc 40.23 37.28 40.23 46.32 37.28

SP 48.49 61.83 44.28 54.78 55.31
CRD 57.45 62.28 56.45 66.10 57.45

SemCKD 56.89 63.78 68.23 66.54 57.20
ReviewKD - 64.12 58.66 67.10 -

MGD - - - 66.89 57.12

KD 56.09 61.68 53.98 64.18 57.21
SD-KD 60.51(+4.42) 65.46(+3.78) 59.80(+5.82) 67.32(+3.14) 60.56(+3.25)
DKD 59.94 64.51 58.45 67.20 59.21

SD-DKD 62.97(+3.43) 65.58(+1.06) 64.86(+6.41) 68.67(+1.47) 60.66(+1.45)
NKD 59.81 64.0 58.40 67.16 59.11

SD-NKD 62.69(+2.88) 65.50(+1.5) 64.63(+6.23) 68.37(+1.21) 60.42(+1.31)

Table 5. Performance on the CUB200 dataset. Here, we conduct experiments on three different teacher-student types, the same structure
and layer (VGG13-VGG8), different structures while the same layer (ResNet32x4-ShffleNetV1 and VGG13-MobileNetV2), and different
structures and layers (ResNet32x4-MobileNetV2 and ResNet50-ShuffleNetV1).

ResNet32x4-
ResNet8x4

ResNet32x4-
ShuffleNetV1

N/A 73.33 74.07
Consistent 75.14 75.88

Complementary 74.79 75.10
Fusion 76.63 76.30

Table 6. Performance of the SDD method that uses different de-
coupled logit knowledge on the teacher-student pairs with homo-
geneous and heterogeneous network structures. ‘N/A’ denotes the
result of the conventional KD.

For the teacher-student pair of ResNet32x4 and
ShuffleNetV2, SDD achieves the best results when
M = {1, 2, 4}. In contrast, the teacher-student pair of
ResNet32x4 and ResNet8x4 reaches the best results when
M = {1, 2}. This indicates that the teacher-student pair
with heterogeneous structures needs more fine-grained se-
mantic knowledge than the teacher-student pair with ho-
mogeneous structures. This may be because the struc-
ture heterogeneity is not conducive for students to imitate
the teacher’s knowledge. Besides, because the loss LSDD

accumulates for all scales, too many scales for homoge-

neous teacher-student pairs will bring redundant informa-
tion since their feature maps are similar. This prevents stu-
dents from capturing key scales and degrades their perfor-
mance. Therefore, scale set M of SD-KD, SD-DKD, and
SD-NKD is set as {1, 2, 4} for the distillation tasks with
structure discrepancy, and {1, 2} for the distillation tasks
with similar structures.

ResNet32x4-
ResNet8x4

ResNet32x4-
ShuffleNetV1

M={1} 73.33 74.07
M={1,2} 76.63 75.10
M={1,4} 76.13 75.84

M={1,2,4} 75.74 76.30

Table 7. Performance of the SDD method that uses local logit
knowledge at different scales on the teacher-student pairs with ho-
mogeneous and heterogeneous network structures. The LD used
for LSDD is conventional logit KD loss.

Effect of β. The results are shown in Table 8. Firstly,
all β greater than 1 obtain the performance gain compared
to β = 1. This demonstrates the effectiveness of paying
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β 1 2 4 6 8
Acc 75.62 76.30 75.99 76.15 75.78

Table 8. Performance of SDD method with different β on
ResNet32×4 and ShuffleNetV1.

more attention to ambiguous samples. Besides, the model
achieves the best performance when β = 2. Thus, we set β
as 2.0 in the experiments.

Training efficiency. We assess the training time of state-
of-the-art distillation methods to evaluate the efficiency of
SDD. As shown in Table 9, the training time of SD-KD is
the same as the KD and less than the feature-based methods.
This is because SDD calculates the multi-scale logit output
via the same classifier, introducing no extra structural com-
plexity. These results demonstrate the computational effi-
ciency of SDD.

Methods CRD ReviewKD KD SD-KD

Times(ms) 41 26 11 11

Table 9. Training time (per batch) vs. accuracy on CIFAR-100.
We set ResNet32×4 as the teacher and ResNet8×4 as the student.

Visualizations. We present visualizations from three
perspectives (with setting teacher as ResNet32x4 and the
student as ResNet8x4 on CIFAR-100). (1) Fig. 3 shows the
difference of correlation matrices of the global logits of stu-
dent and teacher. Different from the DKD method, SD-KD
provides a similar difference map as the KD. This indicates
that the improvement of SDD does not come from better
imitating the global logit output of the teacher. (2) To study
the mechanism of SDD, we visualize the inter-class distance
map via t-SNE projection in Fig. 4. We can see that the rep-
resentations of SD-KD are more separable than KD, show-
ing the proposed SSD can enhance the discriminative abil-
ity of students. (3) In addition, we further visualize some
cases that can be classified correctly by the student trained
with SD-KD while misclassified by the student trained with
conventional KD (Fig. 5). From the figure, we can see that
the samples misclassified by the KD model are exactly the
ambiguous samples that seem similar in the global seman-
tics. These results verify our proposition that SDD can help
the student acquire the fine-grained semantic information of
local regions to regularize global knowledge, improving its
discrimination ability to the ambiguous samples.

5. Conclusion
This paper revisits conventional logit-based distillation and
reveals that the coupled semantic knowledge in global logit
knowledge limits its effectiveness. To overcome this limita-
tion, we propose Scale-Decoupled Knowledge Distillation

Figure 3. Difference of correlation matrices of student and teacher
logits of KD (left) and SD-KD (right).

Figure 4. t-SNE of features learned by KD (left) and SD-KD
(right).

Figure 5. Some examples that can be classified correctly by the
student trained with SD-KD while misclassified by the student
trained with conventional KD.

(SDD), which decouples the global logit output into multi-
ple local logit outputs. We establish knowledge-transferring
pipelines for these outputs to transfer fine-grained and un-
ambiguous semantic knowledge. In addition, we can further
divide the decoupled knowledge into consistent and com-
plementary parts that transfer the semantic information and
sample ambiguity, respectively. SDD can guide the student
to pay more attention to ambiguous samples by increasing
the weight of complementary parts, improving its discrim-
ination ability for ambiguous samples. Extensive experi-
ments on several benchmark datasets demonstrate the ef-
fectiveness of SDD across a range of teacher-student pairs,
particularly in fine-grained classification tasks.
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