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Abstract

Single-point annotation in visual tasks, with the goal of min-
imizing labelling costs, is becoming increasingly prominent
in research. Recently, visual foundation models, such as
Segment Anything (SAM), have gained widespread usage
due to their robust zero-shot capabilities and exceptional
annotation performance. However, SAM’s class-agnostic
output and high confidence in local segmentation intro-
duce semantic ambiguity, posing a challenge for precise
category-specific segmentation. In this paper, we introduce
a cost-effective category-specific segmenter using SAM. To
tackle this challenge, we have devised a Semantic-Aware In-
stance Segmentation Network (SAPNet) that integrates Mul-
tiple Instance Learning (MIL) with matching capability and
SAM with point prompts. SAPNet strategically selects the
most representative mask proposals generated by SAM to
supervise segmentation, with a specific focus on object cat-
egory information. Moreover, we introduce the Point Dis-
tance Guidance and Box Mining Strategy to mitigate inher-
ent challenges: group and local issues in weakly supervised
segmentation. These strategies serve to further enhance the
overall segmentation performance. The experimental re-
sults on Pascal VOC and COCO demonstrate the promis-
ing performance of our proposed SAPNet, emphasizing its
semantic matching capabilities and its potential to advance
point-prompted instance segmentation. The code is avail-
able at https://github.com/zhaoyangwei123/SAPNet.

1. Introduction
Instance segmentation seeks to discern pixel-level labels for
both instances of interest and their semantic content in im-
ages, a crucial function in domains like autonomous driv-
ing, image editing, and human-computer interaction. De-
spite impressive results demonstrated by various studies
[5, 11, 16, 40–42] , the majority of these high-performing
methods are trained in a fully supervised manner and heav-
ily dependent on detailed pixel-level mask annotations,
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Figure 1. Three Challenges Brought by SAM and single-MIL.
Orange dash box illustrates that semantic ambiguity in SAM-
generated masks, where it erroneously assigns higher scores to
non-object categories like clothes, despite the person being our de-
sired target. Green dash box depicts a comparison between mask
proposals using single-MIL and SAPNet. It illustrates two primary
challenges: ‘group’, where segmentation encounters difficulties
in isolating individual targets among adjacent objects of the same
category, and ‘local’, where MIL favors foreground-dominant re-
gions, resulting in overlooked local details.

thereby incurring significant labeling costs. To address this
challenge, researchers are increasingly focusing on weakly
supervised instance segmentation, leveraging cost-effective
supervision methods, such as bounding boxes [23, 27, 39],
points [14, 28], and image-level labels [21, 45].

Recently, visual foundation models, such as Segment
Anything (SAM)[22], have been widely employed by re-
searchers for their exceptional generalization capabilities
and impressive annotation performance. Numerous stud-
ies based on SAM, such as [20, 44] have emerged, building
upon the foundations of SAM to further enhance its gener-
alization capabilities and efficiency. However, these efforts
have predominantly focused on improving the annotation
performance of SAM. One limitation arises from SAM’s
lack of classification ability, resulting in class-agnostic seg-
mentation results that fail to accurately segment specific cat-
egories as desired.

To tackle the inherent semantic ambiguity in SAM and
achieve specific-category segmentation, we propose inte-
grating weak annotations with SAM, employing point an-
notations as prompts to imbue semantic information into
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SAM’s outputs. A straightforward approach involves lever-
aging SAM’s intrinsic scoring mechanism, selecting the
top-scoring mask as the corresponding label for each cat-
egory. However, when annotating object points are fed into
the SAM, its category-agnostic characteristic tends to as-
sign higher scores to parts of the object, resulting in gener-
ated mask annotations that fail to encompass the object as
a whole. In Fig. 1 orange dashed box, we aim to obtain the
‘person’ mask annotation, but SAM predicts the proposals
of ‘clothes’, ‘clothes+trousers’ and ’person’. Relying solely
on the score SAM provides is insufficient, as the highest
score corresponds to ‘clothes’ (col-2), which does not meet
our specific needs.

To address this challenge, we have proposed SAPNet,
a semantically-aware instance segmentation network de-
signed for high-quality, end-to-end segmentation. In this
study, we design a proposal selection module (PSM) using
the Multiple Instance Learning (MIL) paradigm to choose
proposals that align closely with the specified semantic la-
bel. However, the MIL-based method relies on the classi-
fication score, often leading to group and local predictions
[4, 21, 24]. In Fig. 1 green dashed box, the group issue is
evident, where two objects of the same category are often
both included when they are in close proximity. It also il-
lustrates the local issue, where the MIL classifier frequently
predicts the most discriminative region instead of the entire
object. To overcome these limitations, we have introduced
Point Distance Guidance (PDG) and Box Mining Strategies
(BMS). Specifically, we penalize the selection results by
calculating the Euclidean distances between the annotated
points of identical categories enclosed within the propos-
als. Additionally, for more localized proposals, we filter out
higher-quality proposals from their corresponding bags and
dynamically merge them in scale. By fully exploiting the
positional clues to prevent local and group prediction, we
aim to select the proposal that most effectively represents
the object category in refinement stage. The primary contri-
butions of this work can be outlined as follows:

1) We introduce SAPNet, an end-to-end semantic-aware
instance segmentation network based on point prompts.
SAPNet combines the visual foundation model SAM with
semantic information to address its inherent semantic ambi-
guity, facilitating the generation of semantically-aware pro-
posal masks.

2) We incorporate Point Distance Guidance (PDG) and
Box Mining Strategies (BMS) to prevent local and group
predictions induced by MIL-based classifiers in both the
proposal selection and refinement stages.

3) SAPNet achieves state-of-the-art performance in
Point-Prompted Instance Segmentation (PPIS), signifi-
cantly bridging the gap between point-prompted and
fully-supervised segmentation methods on two challenging
benchmarks (COCO and VOC2012).

2. Related Work
Weakly-Supervised Instance Segmentation (WSIS) of-
fers a practical approach for accurate object masks us-
ing minimal supervision. It spans a range of annotations,
from image labels to bounding boxes. Research has fo-
cused on narrowing the performance gap between weakly
and fully-supervised methods, primarily through box-level
[18, 25, 39] and image-level annotations [1, 21]. Box-
based methods have explored structural constraints to guide
the segmentation, as seen in BBTP [18], BoxInst [39],
and Box2Mask [29], and applied structural constraints to
drive segmentation, treating it as a multiple-instance learn-
ing task or enforcing color consistency based on CondInst
[40]. These approaches, while innovative, can complicate
training and sometimes neglect the object’s overall shape
due to their focus on local features and proposal generation,
like MCG [2]. Conversely, the proposal-free methods, like
IRN [1], rely on class relationships for mask production but
can falter in accurately separating instances. To preserve
object integrity, recent methods such as Discobox [23] and
BESTIE [21] integrate advanced semantic insights into in-
stance segmentation using pairwise losses or saliency cues
[30, 39, 42]. However, semantic drift remains an issue, with
mislabeling or missed instances resulting in inferior pseudo
labels [3] compromising segmentation quality.
Pointly-Supervised Detection and Segmentation (PSDS)
cleverly balances minimal annotation costs with satisfac-
tory localization accuracy. By introducing point annota-
tions, WISE-Net [24] , P2BNet [9]and BESTIE [21] im-
prove upon weakly supervised methods that suffer from
vague localizations. That only slightly increases the costs
(by about 10%) and is almost as quick as the image-level an-
notation, but that is far speedier than more detailed bound-
ing box or mask annotations. Such precision allows for
tackling semantic bias, as seen in methods like PointRend
[12], which utilize multiple points for improved accuracy,
despite requiring additional bounding box supervision. Re-
cent advancements in point-supervised instance segmenta-
tion, employed by WISE-Net and Point2Mask [28], show
that even single-point annotations can yield precise mask
proposals. WISE-Net skillfully localizes objects and selects
masks, while BESTIE enhances accuracy using instance
cues and self-correction to reduce semantic drift. Attnshift
[31] advances this by extending single points to reconstruct
entire objects. Apart from their complexity, these methods
have yet to fully demonstrate their effectiveness, indicat-
ing ongoing challenges in harnessing single-point annota-
tions for image segmentation and presenting clear avenues
for further research.
Prompting and Foundation Models. Prompt-based learn-
ing enables pretrained foundation models to adapt to vari-
ous tasks using well-crafted prompts. SAM [22], a promi-
nent example in computer vision, exemplifies robust zero-
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shot generalization and interactive segmentation across
multiple applications. Additionally, SAM-based models
like Fast-SAM [44] increases speed, HQ-SAM [20] im-
proves segmentation quality, and Semantic-SAM [26] opti-
mizes performance by training on diverse data granularities.
Foundational models, pre-trained on large datasets, help
improve generalization in downstream tasks, especially in
data-scarce scenarios. Basing on SAM, Rsprompter [8]
utilizes SAM-derived pseudo labels for improved remote
sensing segmentation, meanwhile, adaptations for medical
imaging and video tracking are explored in A-SAM [17]
and Tracking Anything [43]. Further, [10] and [19] have in-
tegrated SAM with Weakly Supervised Semantic Segmen-
tation networks to refine pseudo labels. Our research builds
upon these innovations, transforming point annotations into
mask proposals in instance segmentation to significantly en-
hancing performance.

3. Methodology

3.1. Overview

The overview of our method is illustrated in Fig. 2, SAPNet
comprises of two branches: one dedicated to the selection
and refinement of mask proposals to generate pseudo-labels
and the other employing solov2 head [42] for instance seg-
mentation supervised by the generated pseudo labels. The
central focus of our approach is the pseudo-label genera-
tion branch, exclusively utilized during the training phase,
which includes the PSM, PNPG, and PRM modules. Fol-
lowing the initial proposal inputs, the PSM employs multi-
instance learning and a point-distance penalty to identify
semantically rich proposals. Subsequently, coupled with
selected proposals from the PSM stage, the PNPG gener-
ates quality positive-negative bags to mitigate background
and locality issues, emphasizing the primary regions of in-
terest. Then, the PRM processes these bags, which se-
lects refined proposals from positive bags to improve fi-
nal box quality. Ultimately, the mask mappings derived
from these box proposals are utilized to guide the segmenta-
tion branch. This guarantees the acquisition of high-quality
category-specified mask proposals to supervise the segmen-
tation branch.

3.2. Proposal Selection Module

SAM’s limited semantic discernment causes category-
agnostic labeling, leading to inconsistent proposal quality
for the same objects. Employing these proposals directly
for segmentation supervision could introduce noise and im-
pair performance. Our goal is to design a category-specific
segmenter, which needs to select the most semantically rep-
resentative proposals for robust supervision.

Motivated by the insights from WSDDN [4] and P2BNet
[9], our proposal selection module employs multi-instance

learning and leverages labeling information to prioritize
high-confidence proposals for segmentation. In the training
phase, we leverage SAM[22] solely to generate category-
agnostic proposals. To avoid excessive memory use and
slow training, we convert them into box proposals using the
minimum bounding rectangle, and combine with depth fea-
tures F ∈ RH×W×D from the image I ∈ RH×W , serve
as input to the PSM. Utilizing our designed MIL loss, PSM
precisely predicts each proposal’s class and instance details.
It selects the highest-scoring proposal as the semantically
richest bounding box for each object, effectively choosing
higher quality mask proposals.

Given an image I with N point annotations Yn =
{(pi, ci)}Ni=1, where pi is the coordinate of the anno-
tated point and ci is the class index. We transform each
class-informative point pi into M semantic mask propos-
als, which is further converted to a semantic proposal bag
Bi ∈ RM×4. As illustrated in Fig. 2, after passing through
a 7x7 RoIAlign layer and two fully-connected layers, fea-
tures Fi ∈ RM×H×W×D are extracted from proposal bag
Bi. Like in [4] and [37], the features F serve as input for
the classification branch and instance branch, using fully-
connected layer f and f ′ to generate Wcls ∈ RM×K and
Wins ∈ RM×K . A softmax activation function over K
class and M instance dimensions yields the classification
scores Scls ∈ RM×K and instance scores Sins ∈ RM×K .

Wcls = f(F); [Scls]mk = e[Wcls]mk
/∑K

k=1
e[Wcls]mk .

Wins = f ′(F); [Sins]mk = e[Wins]mk
/∑M

m=1
e[Wins]mk . (1)

where [·]mk is the value in row m and column k of matrix.
Point Distance Guidance. SAM and MIL struggle with

distinguishing adjacent objects of the same category, of-
ten merging two separate objects into one and giving high
score. To combat this, we incorporate instance-level an-
notated point information and introduce a spatially aware
selection with a point-distance penalty mechanism.

To address the challenge of overlapping objects and
thereby enhance model optimization, we propose a strategy
specifically aimed at penalizing instances of object overlap.
For each m-th proposal within the set Bi, we define tmj = 1
to denote an overlap with any proposal in another identical
class bag Bj ; otherwise, tmj = 0. The penalty imposed in-
creases in proportion to the distance of the overlapping ob-
jects from the proposal in question. This penalty, Wdis, is
represented using the Euclidean distance between the anno-
tated points of the overlapping proposals. Subsequently, the
reciprocal of Wdis is then passed through a sigmoid func-
tion to compute the distance score Sdis for the proposal.

[Wdis]im =

N∑
j=1,j ̸=i

∥pi − pj∥ ∗ tmj .

[Sdis]im = (1/e−(1/[Wdis]im))d.
(2)
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Figure 2. The framework of SAPNet comprises two components: one for generating mask proposals and another for their utilization in
instance segmentation. The process starts with generating category-agnostic mask proposals using point prompts within a visual foundation
model. That is followed by an initial proposal selection via MIL combined with PDG. Next, the PRM refines these proposals using positive
and negative samples from PNPG, capturing global object semantics. Finally, augmented with the multi-mask proposal supervision, the
segmentation branch aims to improve segmentation quality.

Figure 3. The mechanism of the proposal selection module.
where [·]im is the value at the row i and column m in the
matrix, and d is the exponential factor.

PSM Loss. The final score S of each proposal is ob-
tained by computing the Hadamard product of the classi-
fication score, the instance score, and the distance score,
while the score Ŝ for each proposal bag Bi is obtained by
summing the scores of the proposals in Bi. The MILloss
of the PSM is constructed using the form of binary cross-
entropy, and it is defined as follows:

S = Scls ⊙ Sins ⊙ Sdis ∈ RM×K ; Ŝ =

M∑
m=1

[S]m ∈ RK .

Lpsm = CE(Ŝ, c) = −
1

N

N∑
n=1

K∑
k=1

ck log(Ŝk) + (1− ck) log(1− Ŝk)

(3)
where c ∈ {0, 1}K is the one-hot category’s label.

Utilizing the MILloss, the PSM module skillfully iden-
tifies each proposal’s category and instance. The module
selects the proposal with the highest score, marked as S,
for a specific object and identifies a bounding box enriched
with semantic information.

3.3. Positive and Negative Proposals Generator

To further refine the selection of more accurate bounding
boxes, we employ PNPG based on boxpsm selected via

PSM. That consists of two components: PPG and NPG. The
PPG is designed to generate a richer set of positive samples,
enhancing bag’s quality. Concurrently, the NPG is respon-
sible for generating negative samples, which are crucial for
assisting model training. These negative samples, includ-
ing background samples for all objects and part samples for
each, are crucial in resolving part issues and ensuring high-
quality bounding box selection. The positive sample set B+

produced by PPG and the negative sample set U generated
by NPG are utilized for training the subsequent PRM.

Positive Proposals Generator (PPG). Within this
phase, to implement adaptive sampling for the identified
bounding box, we capitalize on the boxpsm derived from
the PSM stage, coupled with the point distance penalty
score Sdis attributed to each proposal. To further elaborate,
for each boxpsm (denoted as b∗x, b∗y , b∗w, b∗h) isolated dur-
ing the PSM phase, its dimensions are meticulously recali-
brated leveraging a scale factor v and its associated within-
category inclusion score Sdis to generate an augmented set
of positive proposals (bx, by, bw, bh). The formulation is
defined as follows:

bw = (1± v/Sdis) · b∗w, bh = (1± v/Sdis) · b∗h,
bx = b∗x ± (bw − b∗w)/2, by = b∗y ± (bh − b∗h)/2.

(4)

These newly cultivated positive proposals are carefully in-
tegrated into the existing set Bi to enhance the positive in-
stances’ pool. Such enhancements are pivotal in optimizing
the training of the forthcoming PRM.

Negative Proposals Generator(NPG). MIL-based se-
lection within a single positive bag may overemphasize the
background noise, leading to inadequate focus on the ob-
ject. To solve this, we create a negative bag from the back-
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Algorithm 1 Positive and Negative Proposals Generation
Input: Tneg1,Tneg2,boxpsmfrom PSM stage, image I , positive
bags B+.
Output: Positive proposal bags B+,Negative proposal set U .

1: // Step1: positive proposals sampling
2: for i ∈ N ,N is the number of object in image I do
3: B+

i ← Bi ,Bi ∈ B;
4: B+

i = B+
i

⋃
PPG(boxi

psm);
5: end for
6: // Step2: background negative proposals sampling
7: U ← {};
8: proposals← random sampling(I) for each image I;
9: iou = IOU(proposals, Bi) for each Bi ∈ B;

10: if iou < Tneg1 then
11: U = U

⋃
proposals;

12: end if
13: // Step3: part negative proposals sampling
14: for i ∈ N ,N is the number of object in image I do
15: proposals← part neg sampling(boxi

psm) ;
16: iou = IOU(proposals, boxi

psm) ;
17: if iou < Tneg2 then
18: U = U

⋃
proposals;

19: end if
20: end for

ground proposals post-positive bag training, which helps
MIL maximize the attention towards the object.

Considering the image dimensions, we randomly sample
proposals according to each image’s width and height, for
negative instance sampling. We assess the Intersection over
Union (IoU) between these negatives and the positive sets,
filtering out those below a threshold Tneg1.

Additionally, to rectify MIL localization errors, we en-
force the sampling of smaller proposals with an IoU under
a second threshold, Tneg2, from inside boxpsm based on its
width and height, that is scored highest in PSM, as nega-
tive examples. These negative instances, partially capturing
the object, drive the model to select high-quality bounding
boxes that encompass the entire object. The PNPG is sys-
tematically elaborated upon in Algorithm1.

3.4. Proposals Refinement Module

In the PSM phase, we employ MIL to select high-quality
proposals from bag B+. However, as shown in Fig. 2, the
boxpsm outcomes derived solely from a single-stage MIL
are suboptimal and localized. Inspired by PCL [38], we
consider refining the proposals in a second phase. How-
ever, in contrast to most WSOD methods which choose to
continue refining using classification information in subse-
quent stages, we have established high-quality positive and
negative bags, and further combined both classification and
instance branches to introduce the PRM module to refine the
proposals, aiming to obtain a high-quality bounding box.

The PRM module, extending beyond the scope of PSM,

focuses on both selection and refinement. It combines pos-
itive instances from the PPG with the initial set, forming
an enriched B+. Simultaneously, it incorporates the neg-
ative instance set U from NPG, providing a comprehensive
foundation for PRM. This integration leads to a restructured
MIL loss in PRM, replacing the conventional CELoss with
Focal Loss for positive instances. The modified positive
loss function is as follows:

Lpos =
1

N

N∑
i=1

〈
cTi , Ŝi

〉
· FL(Ŝ∗

i , ci). (5)

where FL is the focal loss [32], Ŝ∗
i and Ŝi represent the bag

score predicted by PRM and PSM, respectively.
〈
cTi , Ŝi

〉
represents the inner product of the two vectors, meaning the
predicted bag score of the ground-truth category.

Enhancing background suppression, we use negative
proposals and introduce a dedicated loss for these instances.
Notably, these negative instances pass only through the clas-
sification branch for instance score computation, with their
scores derived exclusively from classification. The specific
formulation of this loss function is detailed below:

β =
1

N

N∑
i=1

〈
cTi , Ŝi

〉
, (6)

Lneg = − 1

|U|
∑
U

K∑
k=1

β · ([Scls
neg]k)

2 log(1− [Scls
neg]k).

(7)
The PRM loss consists of the MIL loss Lpos for positive
bags and negative loss Lneg for negative samples, i.e.,

Lprm = αLpos + (1− α)Lneg, (8)

where α = 0.25 by default.
Box Mining Strategy. MIL’s preference for segments

with more foreground presence and SAM’s tendency to cap-
ture only parts of an object often bring to final bounding
boxes, boxprm, the ‘local’ issue of MIL inadequately cov-
ers the instances. To improve the bounding box quality,
we introduce a box mining strategy that adaptively expands
boxselect from proposal selection in PRM, by merging it
with the original proposals filter, aiming to address MIL’s
localization challenges.

The Box Mining Strategy (BMS) consists of two primary
components: (i) We select the top k proposals from the
positive proposal bag B+, to create a set G. We evaluate
the proposals in G against boxselect based on IoU and size,
using a threshold Tmin1. Proposals larger than boxselect

and with an IoU above Tmin1 undergo dynamic expansion
through IoU consideration, which allows for the adaptive
integration with boxselect. That mitigates the ’local’ issue
and maintains the bounding box’s consistentcy to the ob-
ject’s true boundaries. (ii) Frequently, issues related to lo-
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cality can lead to an exceedingly low IoU between propos-
als and boxselect. Nonetheless, the ground truth box can
fully encompass the boxpart. Therefore, when component
(i) conditions are unmet, if a proposal can entirely encap-
sulate boxselect, we reset the threshold Tmin2. Proposals
surpassing this threshold adaptively merge with boxselect to
generate the final boxprm,used to yield Maskprm. These
two components collectively form our BMS strategy. A de-
tailed procedure of this approach will be delineated in Al-
gorithm2 of the supplementary materials.

Loss Function. After acquiring the final supervision
masks, Maskprm and the filtered Masksam in Multi-mask
Proposals Supervision(MPS) in Sec. 7 of supplementary,
we use them together to guide the dynamic segmentation
branch. To comprehensively train SAPNet, we integrate
the loss functions from the PSM and PRM, culminating in
the formulation of the total loss for our model, denoted as
Ltotal. The aggregate loss function, Ltotalcan be articulated
as:

Ltotal = Lmask + Lcls + λ · Lpsm + Lprm (9)
where, LDice is the Dice Loss [35], Lcls is the Focal
Loss[32], and λ is set as 0.25.

4. Experiment
4.1. Experimental Settings

Datasets. We use the publicly available MS COCO[33] and
VOC2012SBD [13] datasets for experiments. COCO17 has
118k training and 5k validation images with 80 common
object categories. VOC consists of 20 categories and con-
tains 10,582 images for model training and 1,449 validation
images for evaluation.

Evaluation Metric. We use mean average
precision mAP@[.5,.95] for the MS-COCO. The
{AP,AP50, AP75, APSmall, APMiddle, APLarge} is
reported for MS-COCO and for VOC12SBD segmentation,
and we report AP25,50,75. The mIoUbox is the average
IoU between predicted pseudo-boxes and GT-boxes in the
training set. It measures SAPNet’s ability to select mask
proposals without using the segmentation branch.

Implementation Details. In our study, we employed
the Stochastic Gradient Descent (SGD) optimizer, as de-
tailed in [6]. Our experiments were conducted using the
mmdetection toolbox [7], following standard training pro-
tocols for each dataset. We used the ResNet architecture
[15], pretrained on ImageNet [36], as the backbone. For
COCO, batch size was set at four images per GPU across
eight GPUs, and for VOC2012, it was four GPUs. More de-
tails of the experiment are in Sec. 8 of the supplementary.

4.2. Experimental Comparisons

Tab. 1 shows the comparison results between our method
and previous SOTA approaches [11, 16, 34, 40, 42] on

COCO. In our experiments, we provide SAM with both the
labeled points and the annotations generated by the point
annotation enhancer [9]. SAM then utilizes these inputs to
generate subsequent mask proposals for selection and su-
pervision. For fair comparison, we design two baselines:
the top-1 scored mask from SAM and MIL-selected SAM
mask proposals are used as SOLOv2 supervision, respec-
tively. Tab. 1 shows our method substantially surpasses
these baselines in performance.

Comparison with point-annotated methods. Our ap-
proach achieves a 31.2 AP performance with a ResNet-50
backbone, surpassing all previous point-annotated methods,
including BESTIE on HRNet-48 and AttnShift on Vit-B.
Our model exhibits significant improvements under a 1x
training schedule, with a 13.5 AP increase when compared
to the previous SOTA method, BESTIE. Furthermore, un-
der a 3x training schedule, SAPNet outperforms AttnShift,
which relies on large model training, with 13.4 AP , im-
provements. Importantly, our method is trained end-to-end
without needing post-processing, achieving SOTA perfor-
mance in point-annotated instance segmentation.

Comparison with other annotation-based methods.
Our SAPNet has significantly elevated point annotation,
regardless of point annotation’s limitations in annotation
time and quality compared to box annotation. Utilizing a
ResNet-101 backbone and a 3x training schedule, SAPNet
surpasses most box-annotated instance segmentation meth-
ods, achieving a 1.4 AP improvement over BoxInst. More-
over, SAPNet’s segmentation performance nearly matches
the mask-annotated methods, effectively bridging the gap
between point-annotated and these techniques.

Segmentation performance on VOC2012SBD. Tab. 2
compares segmentation methods under different supervi-
sions on the VOC2012 dataset. SAPNet reports an enhance-
ment of 7.7 AP over the AttnShift approach, evidencing a
notable advancement in performance. Thereby, it signifi-
cantly outstrips image-level supervised segmentation meth-
ods. Additionally, SAPNet surpasses box-annotated seg-
mentation methods, such as BoxInst by 3.4 AP50 and Dis-
coBox by 32.6 AP50. Further, our point-prompted method
achieves 92.3% of the Mask-R-CNN.

4.3. Ablation Studies

More experiments have been conducted on COCO to further
analyze SAPNet’s effectiveness and robustness.

Training Stage in SAPNet. The ablation study of the
training stage is given in Tab. 3. We trained solov2 using
the top-1 scored mask provided by SAM and compared it to
the two training strategies of SAPNet. In the two-stage ap-
proach, the segmentation branch and multiple-mask super-
vision of SAPNet are removed. Instead, we use the selected
mask to train a standalone instance segmentation model, as
described by [42]. The end-to-end training method corre-
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Method Ann. Backbone sched. Arch. mAP mAP50 mAP75 mAPs mAPm mAPl

Fully-supervised instance segmentation models.
Mask R-CNN [16] M ResNet-50 1x Mask R-CNN 34.6 56.5 36.6 18.3 37.4 47.2
YOLACT-700 [5] M ResNet-101 4.5x YOLACT 31.2 54.0 32.8 12.1 33.3 47.
PolarMask [16] M ResNet-101 2x PolarMask 32.1 53.7 33.1 14.7 33.8 45.3
SOLOv2 [42] M ResNet-50 1x SOLOv2 34.8 54.9 36.9 13.4 37.8 53.7
CondInst [40] M ResNet-50 1x CondInst 35.3 56.4 37.4 18.0 39.4 50.4
SwinMR [34] M Swin-S 50e SwinMR 43.2 67.0 46.1 24.8 46.3 62.1
Mask2Former [11] M Swin-S 50e Mask2Former 46.1 69.4 52.8 25.4 49.7 68.5

Weakly-supervised instance segmentation models.
IRNet [45] I ResNet-50 1x Mask R-CNN 6.1 11.7 5.5 - - -
BESTIE [21] I HRNet-48 1x Mask R-CNN 14.3 28.0 13.2 - - -
BBTP [18] B ResNet-101 1x Mask R-CNN 21.1 45.5 17.2 11.2 22.0 29.8
BoxInst [39] B ResNet-101 3x CondInst 33.2 56.5 33.6 16.2 35.3 45.1
DiscoBox [23] B ResNet-50 3x SOLOv2 32.0 53.6 32.6 11.7 33.7 48.4
Boxlevelset [27] B ResNet-101 3x SOLOv2 33.4 56.8 34.1 15.2 36.8 46.8
WISE-Net [24] P ResNet-50 1x Mask R-CNN 7.8 18.2 8.8 - - -
BESTIE† [21] P HRNet-48 1x Mask R-CNN 17.7 34.0 16.4 - - -
AttnShift [31] P Vit-B 50e Mask R-CNN 21.2 43.5 19.4 - - -

SAM-SOLOv2 P ResNet-50 1x SOLOv2 24.6 41.9 25.3 9.3 28.6 38.1
MIL-SOLOv2 P ResNet-50 1x SOLOv2 26.8 47.7 26.8 11.2 31.5 40.4
SAPNet(ours) P ResNet-50 1x SOLOv2 31.2 51.8 32.3 12.6 35.1 47.8
SAPNet(ours)∗ P ResNet-101 3x SOLOv2 34.6 56.0 36.6 15.7 39.5 52.1

Table 1. Mask annotation(M), image annotation(I), box annotation(B) and point annotation(P) performance on COCO-17 val. ‘Ann.’ is
the type of the annotation and ‘sched.’ means schedule. ∗ is the multi-scale augment training for re-training segmentation methods, and
other experiments are on single-scale training. SwinMR is Swin-Transformer-Mask R-CNN . SwinMR and Mask2Former use multi-scale
data augment strategies for SOTA.

Method Sup. Backbone AP25 AP50 AP75

Mask R-CNN [16] M R-50 78.0 68.8 43.3
Mask R-CNN [16] M R-101 79.6 70.2 45.3
BoxInst [39] B R-101 - 61.4 37.0
DiscoBox B R-101 72.8 62.2 37.5
BESTIE [21] I HRNet 53.5 41.7 24.2
IRNet [45] I R-50 - 46.7 23.5
BESTIE† [21] I HRNet 61.2 51.0 26.6
WISE-Net [24] P R-50 53.5 43.0 25.9
BESTIE [21] P HRNet 58.6 46.7 26.3
BESTIE† [21] P HRNet 66.4 56.1 30.2
Attnshift [31] P Vit-S 68.3 54.4 25.4
Attnshift† [31] P Vit-S 70.3 57.1 30.4
SAPNet(ours) P R-101 76.5 64.8 58.7

Table 2. Instance segmentation performance on the VOC2012 test
set. † indicates applying MRCNN refinement.
sponds to the architecture illustrated in Fig. 2. Our findings
indicate that our method is more competitive than directly
employing SAM (31.2 AP vs 24.6 AP ), and the visualiza-
tion of Fig. 4 shows us this enhancement. Moreover, the
end-to-end training strategy boasts a more elegant model
structure and outperforms the two-stage approach in overall
efficiency (31.2 AP vs 30.18 AP ).

Effect of Each Component. Given the limited perfor-
mance of SAM-top1, we opted for the single-MIL as our
baseline. With a preliminary selection using MIL1, we

Figure 4. The comparative visualization between SAM-top1 and
SAPNet is presented, showcasing SAM’s segmentation outcomes
in green masks and our results in yellow. The orange and red
bounding boxes highlight the respective mask boundaries.

train stage on coco sched. AP AP50 AP75

SAM-top1 1x 24.6 41.9 25.3
Two stage 1x 30.2 49.8 31.5
End to end 1x 31.2 51.8 32.3

Table 3. The experimental comparisons of segmenters in COCO
dataset, SAM-top1 is the highest scoring mask generated by SAM.

have achieved a segmentation performance of 26.8 AP . i)
Point Distance Guidance. We updated the proposal scores
from the existing MIL by integrating the PDG module into
the foundational MIL selection. This approach successfully
segments adjacent objects of the same category, improving
the segmentation performance by 0.7 points (27.5 vs 26.8).
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mil1 PDG mil2 PNPG BMS MPS mAP

✓ 26.8
✓ ✓ 27.5
✓ ✓ ✓ 27.7
✓ ✓ ✓ ✓ 29.7
✓ ✓ ✓ ✓ ✓ 30.8
✓ ✓ ✓ ✓ ✓ ✓ 31.2

Table 4. The effect of each component in SAPNet: proposal
selection module(MIL1), point distance guidance(PDG), positive
and negative proposals generator(PNPG), proposal selection mod-
ule(MIL2), box mining strategy(BMS), and Multi-mask Proposals
Supervision(MPS) in Sec. 7 of supplementary.

ii) MIL2. Building on the previous step, we incorporate
a second MIL selection module to refine the initially se-
lected boxes, resulting in a performance increment of 0.2
points. iii) PNPG. For MIL2, we devised the positive-
negative sample sets, aiming to enhance the input quality for
the PRM module and use the negative samples to suppress
background. This adjustment leads to a segmentation per-
formance boost of 2 points (29.7 vs 27.7). iv) BMS. Within
the PRM, we refine the selected boxes using BMS, push-
ing the segmentation performance up by 1.1 points (30.8
vs 29.7). v) MPS. Utilizing MPS for segmentation branch
supervision yields a 0.4-point performance improvement.

Threshold of BMS. For point refinement, there are two
constraints (described in Sec. 3.4). Tmin1 and Tmin2 are
thresholds of the Box Mining Strategy. In Tab. 5, it shows
that the two constraints together to obtain performance gain.
After multiple experiments, we have found that there is
a significant performance improvement when Tmin1 and
Tmin2 are set to 0.6 and 0.3, respectively.

Components of PNPG. Tab. 6 presents the results of a
dissected ablation study on the Positive and Negative Pro-
posals Generator(PNPG), illustrating the respective impacts
of the positive and negative examples on the model’s per-
formance. It is evident that the construction of negative ex-
amples plays a significant role in enhancing model efficacy.
Furthermore, the beneficial effects of both positive and neg-
ative examples are observed to be cumulative.

Performance Analysis. As presented in Tab. 7, we con-
ducted a statistical analysis to validate SAPNet’s capability
to address ’local’ issue and compare the outcomes selected
by the single-MIL with those obtained by SAPNet in the
absence of segmentation branch integration. Specifically,
the part problem generated by the single-MIL, where MIL
is inclined to select proposals with a higher proportion of
foreground, is exemplified in Fig. 6 of supplementary. On
this premise, we initially establish an evaluative criterion
Rv = areamask

areabox
, which is the ratio of the mask area to the

bounding box area. Subsequently, we compute Rvi for each
proposal within the proposal bag corresponding to every in-
stance across the entire COCO dataset and select the max-
imum Rvmax

to compute the mean value over the dataset,

Tmin1 Tmin2 AP AP50 AP75 AP s APm AP l

0.5 0.3 30.9 51.3 32.0 12.2 34.7 47.4
0.5 0.4 30.7 51.2 31.8 11.9 34.7 47.1
0.6 0.3 31.2 51.8 32.3 12.6 35.1 47.8
0.6 0.4 30.8 51.1 32.0 12.1 34.7 47.3
0.7 0.3 31.0 51.5 32.2 12.6 34.9 47.3
0.7 0.4 30.7 51.1 31.9 12.0 34.6 47.2

Table 5. Constraints in box mining strategy.

PNPG
AP AP50 AP75PPG NPG

29.3 49.7 30.0
✓ 29.8 50.5 30.8

✓ 30.7 51.2 31.7
✓ ✓ 31.2 51.8 32.3

Table 6. Meticulous ablation experiments in PNPG

Method Gap mIoUbox

Single-MIL 0.199 63.8
SAPNet 0.131 69.1

Table 7. Experimental analysis with part problem.

which is then designated as the threshold Trv. Ultimately,
we identify the ground truth Rvgt and objects where Rvmax

exceeds Trv and calculates the discrepancy between Rv val-
ues selected by single-MIL and SAPNet. The description is
as follows:

Gapsingle = Rvsingle −Rvgt, Gapour = Rvour −Rvgt.
(10)

Tab. 7 shows that the proposed SAPNet mitigates the
locality issue faced by the single-MIL. Furthermore, the
boxes selected via SAPNet exhibit a substantially higher
IoU with GT than those selected by the single-MIL.

5. Conclusion
In this paper, we propose SAPNet, an innovative end-to-end
point-prompted instance segmentation framework. SAPNet
transforms point annotations into category-agnostic mask
proposals and employs dual selection branches to elect the
most semantic mask for each object, guiding the segmenta-
tion process. To address challenges such as indistinguish-
able adjacent objects of the same class and MIL’s locality
bias, we integrate PDG and PNPG, complemented by a Box
Mining Strategy for enhanced proposal refinement. SAP-
Net uniquely merges segmentation and selection branches
under multi-mask supervision, significantly enhancing its
segmentation performance. Extensive experimental com-
parisons on VOC and COCO datasets validate the SAPNet’s
effectiveness in point-prompted instance segmentation.
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