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Abstract

Distillation strategies are currently the primary ap-
proaches for mitigating forgetting in class incremental
learning (CIL). Existing methods generally inherit previ-
ous knowledge from a single teacher. However, teachers
with different mechanisms are talented at different tasks,
and inheriting diverse knowledge from them can enhance
compatibility with new knowledge. In this paper, we pro-
pose the MTD method to find multiple diverse teachers
for CIL. Specifically, we adopt weight permutation, fea-
ture perturbation, and diversity regularization techniques
to ensure diverse mechanisms in teachers. To reduce time
and memory consumption, each teacher is represented as
a small branch in the model. We adapt existing CIL dis-
tillation strategies with MTD and extensive experiments on
CIFAR-100, ImageNet-100, and ImageNet-1000 show sig-
nificant performance improvement. Our code is available
at https://github.com/HaitaoWen/CLearning.

1. Introduction

Continual learning is crucial for intelligent machines to
adapt to various environments [6, 23]. Class incremental
learning (CIL) as one of the most challenging scenarios, re-
quires the model to incrementally learn a sequence of tasks
without task identification [45]. However, when traditional
learning strategies are applied in such a setting, it often in-
curs the catastrophic forgetting of old tasks [31, 38].

Distillation strategies are essentially functional regular-
ization methods [16, 46], which encourage the input-output
mapping of the model to be invariant and are the most direct
approaches to incremental learning. LwF [25] is the pioneer
in distilling the output logits of the teacher to the student,
similar distillation strategies are also used in iCaRL [37]
and BiC [52]. In addition, existing CIL methods also distill
the intermediate features of the model, such as LUCIR [17],
PODNet [8], GeoDL [42], and AFC [19]. Multiple teachers
can provide diverse knowledge that is beneficial for training
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Figure 1. The diagram of MTD for finding diverse teachers from a
basic model. Each teacher is represented as a small branch. Based
on the properties of diverse teachers, weight permutation is used
to teleport parameters from basic W1 in one low-loss region to
W 1

2 in another low-loss region, feature perturbation is adopted to
perturb the input xl of the permuted branch by adding δ sampled
from the normal distribution N p0, Iq, and diversity regularization
is applied to orthogonalize embeddings x1,L and x2,L of teachers.

the student [13]. Some work has introduced multi-teacher
distillation to CIL in recent times. DT-CIL [4] maximizes
the mutual information between the student and two teach-
ers, which are trained on old and new classes respectively.

To analyze the multi-teacher distillation in CIL and find
what properties should teachers have, we first conduct pre-
liminary experiments considering two teacher generation
methods: “Oracle”, where teachers are completely trained
with different random seeds; “PFT”, where teachers are ob-
tained by finetuning on the memory of previous tasks with
a periodic learning rate. Through effectiveness analysis, we
find that improving diversity between teachers while main-
taining prediction quality can improve CIL performance.
Although multi-teacher distillation is beneficial for CIL,
one problem must be faced to apply it, how to effectively
find diverse teachers. Instead of directly retraining multiple
teachers using different random seeds [18, 24], different ini-
tialization or architectures [53], and different data [4, 51],
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we propose MTD for effectively finding diverse teachers
from a basic model, Figure 1 shows the diagram.

Diverse teachers mean that they have different responses
to the same inputs, i.e., they use dissimilar mechanisms for
making their predictions. Furthermore, [29] demonstrates
that the lack of linear connectivity [9, 11] between mod-
els implies they use dissimilar mechanisms. The lack of
linear connectivity means that model parameters are in dif-
ferent low-loss regions and blocked by the high-loss ridge
[47]. We analyze the properties of “Oracle” by visualizing
loss landscapes in Figure 4, which confirms this inference.
To find diverse teachers from a basic model instead of re-
training, the problem before us is how to transform the ba-
sic model parameters from one low-loss region to another
low-loss region. There are generally several transforma-
tions in parameter space, including translation [22], rota-
tion [49], scaling [49, 54], and permutation [35]. We choose
weight permutation to transform parameters as it can invari-
antly teleport parameters from one region to another region
[3, 10, 43]. However, the invariance between teleported pa-
rameters and original parameters conflicts with our intended
diversity. This drives us to explore the region around the
teleported parameters along a different optimization trajec-
tory compared with the original parameters for breaking in-
variance. To this end, we apply the feature perturbation for
teleported parameters. In addition, Figure 6 shows that the
cosine similarities between embeddings of teachers found
by “Oracle” tend to be mutually orthogonal. Therefore, we
propose diversity regularization to minimize the absolute
cosine similarities between embeddings of teachers.

To reduce time and memory consumption, most of the
feature extraction layers are shared among teachers, each
teacher has a specific prediction branch containing layers
that are the same as the structure of the basic model, but the
parameters are different from each other. Finally, our main
contributions can be summarized as follows:
• We find that improving diversity between teachers while

maintaining prediction quality can improve performance;
• We find two properties of diverse teachers: parameters of

teachers are in different low-loss regions, and embeddings
of teachers tend to be mutually orthogonal;

• We propose MTD including weight permutation, feature
perturbation, and diversity regularization based on the
properties of “Oracle” to effectively find diverse teachers;

• We adapt existing CIL distillation strategies with MTD
and extensive experiments on various benchmarks show
significant performance improvement.

2. Related Work

2.1. Class Incremental Learning

The existing CIL methods can be generally divided into
three categories. Memory replay stores a small amount of

representative samples for each old class and replays them
in the new task. iCaRL [37] selects samples that are close
to the average embeddings. Mnemonics [26] parameter-
izes exemplars and uses the bilevel optimization to make
exemplars approximate old data as much as possible. CIM
[30] adaptively downsamples non-discriminative pixels to
save more compressed exemplars in fixed-size memory.
Knowledge distillation transfers knowledge from the previ-
ous model to the new model to mitigate forgetting. iCaRL
[37] and BiC [52] distill the output logits on old classes.
LUCIR [17] adopts the cosine distillation loss between old
and new embeddings. PODNet [8] proposes pooled fea-
ture distillation to balance old and new classes. GeoDL
[42] further constrains the cosine similarities between em-
beddings along the geodesic path in the manifold of fea-
ture subspaces. AFC [19] adaptively distills old features ac-
cording to their importance. DT-CIL [4] uses two teachers
trained on old and new classes respectively for distillation.
Dynamic structure assigns a sub-network or a new indepen-
dent network for each task. AANet [27] uses stable blocks
and plastic blocks, and adaptively weights features of these
two types of blocks to balance old and new tasks.

2.2. Multi-Teacher Distillation

Inheriting diverse knowledge from multiple teachers can
improve the generalization of the student model [13, 50].
The study of multi-teacher distillation involves three as-
pects. How to find multiple teachers. [18, 24] train the basic
model multiple times with different random seeds to obtain
teachers. [51] trains models with different types of data to
obtain teachers. [53] uses teachers that have different ini-
tialization or architectures from the basic model. However,
retraining models from scratch is time-consuming. [41] in-
jects noise into the logits of the basic model to simulate
multiple teachers. [32] exploits stochastic blocks and skip
connections to generate teachers. How to represent multiple
teachers. Similarly, [24, 51, 53] represent multiple teachers
in the form of independent models, which makes them time-
and-memory consuming. [32, 41] obtain multiple teachers
within a single basic model and are lightweight. Besides,
[15, 44] adopt the structure of multiple branches to repre-
sent teachers. How to learn from multiple teachers. The
most direct way is to distill the average output response of
teachers [18, 44, 53]. [39, 51] further distill the sum of out-
put responses weighted by normalized coefficients. [32, 41]
randomly select one output response of teachers for each
training iteration. In addition, due to significant differences
between intermediate features of teachers, [33] use nonlin-
ear layers to transform the features of the student to find
more general solutions.

We review additional related work about weight permu-
tation and discuss the differences and similarities between
our work and existing work in Section 7 of supplementary.
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3. Analyzing Multi-Teacher Distillation in CIL
Class incremental learning (CIL) requires a model Ftpxq

to continually learn a sequence of T tasks associated with
training data tDtu

T
t“1, where t is the task identity. The

model Ft is composed of a classifier Gt and a embed-
ding extractor containing L layers’ F , i.e., Ft “ Gt ˝

Ft,L˝¨ ¨ ¨˝Ft,1, correspondingly, their parameters form a set
Wt “ tθt,W t,L, . . . ,W t,1u. The data Dt “ tpxt, ytqu is
a set of samples with the input x and the label y. Under the
settings of CIL, classes between different tasks are not over-
lapped, i.e., tyku X tyi‰ku “ H and t is not known during
both the training and testing phases [45]. Memory replay
and knowledge distillation are effective strategies to miti-
gate forgetting [8, 19, 26, 37]. The accumulated episodic
memory of t learned tasks is denoted as Mt. When learn-
ing task t, the final model Ft´1 of task t ´ 1 is generally
taken as the teacher of the current (student) model Ft. The
distillation loss between output logits of teacher and student
models for an input x „ DtYMt´1 measured by Kullback-
Leibler (KL) divergence can be formalized as follows,

Lklpxq “ KLpF1:ct´1

t´1 pxq}F1:ct´1

t pxqq, (1)

where ct´1 “ | Y
t´1
k“1 tyku| is the number of learned classes

after task t ´ 1 and the superscript 1 : ct´1 means KL di-
vergence is only computed from the 1-st logit to the ct´1-th
logit. We omit the operation of softmax [17, 37] for a brief
description. Then, the loss of task t with Lkl is,

Lt “ Lother ` λLkl, (2)

where Lother denotes the sum of other losses, such as cross-
entropy (CE) loss [37], NCA loss [12], pooled feature dis-
tillation loss [8], or cosine embedding loss [17], and λ is the
coefficient for Lkl.

3.1. Preliminary Experiments

To study the effectiveness of multi-teacher distillation in
CIL and find important properties for performance improve-
ment, we conduct preliminary experiments considering two
basic multi-teacher finding methods: “Oracle” and “PFT”.
The “Oracle” method generates teachers by training incre-
mental models with different random seeds, which is similar
to [18, 24]. For example, we use three teachers for task t,
the first teacher is the final model of task t ´ 1, denoted as
Ft´1,1 – Ft´1, the other two teachers are the final model
of task t ´ 1 in other two CIL processes respectively con-
trolled with different random seeds, denoted as F˚

t´1,2 and
F˚

t´1,3. These three teachers are independently and com-
pletely trained, their predictions are of high quality and their
mechanisms have significant differences (please see Figure
5) compared with other teacher finding methods [32, 41].
The “PFT” method is the abbreviation for “Periodic Fine-
Tuning”, which finetune Wt´1 with a periodic learning rate
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Figure 2. Testing accuracy curves of multi-teacher finding meth-
ods “Oracle” and “PFT” applied in CIL on the benchmark CI-
FAR100 B50-5S (Section 5). PODNet [8] is chosen as the base-
line. Each experiment is run 3 times, and results are reported with
mean and standard deviation.

on the memory Mt´1, the learning rate γ is defined as,

γ “
γmax

2
psinp

2πi

N
`

3π

2
q ` 1q, (3)

where γmax is the maximum learning rate in a period, i is
the index of current iteration, and N is the total iterations
in a period. Figure 3 shows the learning rate curve when
γmax “ 10´2 and N “ 100. When γ increases, the

0 100 200 300
i

0

1

γ

×10−2

start sample sample

Figure 3. Illustration of the periodic learning rate. The oscillation
of the learning rate helps parameters break free of the start point.
Teachers are sampled at γ “ 0.

parameters W will be pushed away from the low-loss re-
gion around Wt´1. When γ decreases, the parameters W
will fall back to the low-loss region again. The larger the
γmax is, the more oscillating of the optimization trajectory
and possibly enhances the diversity between teachers. Fi-
nally, the “PFT” method samples the parameters at γ “ 0
as teachers, denoted as Ft´1,1,Ft´1,2 . . . ,Ft´1,n. We take
PODNet [8] as the baseline and use each method to gener-
ate two additional teachers (i.e., three teachers). The knowl-
edge of teachers is integrated by averaging their output log-
its, i.e.,

F t´1pxq “
1

n

n
ÿ

i“1

Ft´1,ipxq, (4)
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Figure 4. The loss landscape on the subspace spanned by parameters found by “Oracle”, i.e., Wt,1, W˚
t,2, and W˚

t,3. The parameters Wt,2

and Wt,3 found by “PFT” are further projected to the subspace. The loss of each point in the subspace is evaluated on t learned tasks. We
detail the loss landscape drawing in Section 8 of supplementary.

where n is the number of teachers. The knowledge is trans-
ferred to the student model by applying Equation (1) and
replacing Ft´1 with F t´1.

3.2. Effectiveness Analysis

Figure 2 shows the results of these two methods adapting to
PODNet on CIFAR-100 for 5 steps of incremental learning
(i.e., B50-5S setting, Section 5). Since the knowledge of
teachers is transferred through the output logits, we con-
duct effectiveness analysis from two aspects: the quality
and diversity of teacher predictions. The prediction qual-
ity of teacher i is measured by the average accuracy on t
learned tasks, i.e., Ai,t “ |Si,t|{Kt, where Si,t is the set of
correctly predicted testing samples, and Kt is the number
of testing samples in t learned tasks. To measure diversity,
we define the prediction difference matrix Dt “ pdijqnˆn,

dij “
|Si,t| ´ |Si,t X Sj,t|

t
, (5)

where n is the number of teachers, t is the number of
learned tasks. Different prediction mechanisms will have
different responses to the same inputs, and the larger dij is,
the more diversity that teacher i has compared with teacher
j. To simplify the analysis, we report the average accuracy
and average difference matrix of teachers during CIL,

T A “
1

n

n
ÿ

i“1

1

T ´ 2

T´1
ÿ

t“2

Ai,t, D “
1

T ´ 2

T´1
ÿ

t“2

Dt, (6)

where T is the total number of tasks, the reason why the
sum range is from 2 to T ´ 1 is that teachers are generated
only after learning these tasks. Figure 5 shows T A and D of
teachers generated by “PFT” and “Oracle”. By comparing
Figures 2 and 5, we can conclude that:
• When γmax increases from 10´5 to 10´2, the diversity

between teachers also increases and the performance of
baseline method PODNet also gets improved. This indi-
cates that improving diversity between teachers can im-
prove CIL performance.
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Figure 5. The average accuracy T A and average difference matrix
D of teachers found by “Oracle” and “PFT” with different γmax.

• When γmax further increases from 10´2 to 0.5, the diver-
sity between teachers further increases, but the CIL per-
formance of baseline decreases. This is because the ac-
curacy of teachers (i.e., T A) has decreased significantly.
Teachers obtained by “Oracle” have high diversity and ac-
curacy, resulting in higher CIL performance. Therefore,
the prediction quality of teachers should be maintained
while improving diversity.

3.3. Properties of Oracle
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Figure 6. Cosine similarities between embeddings of teachers
found by “PFT” and “Oracle”. The horizontal axis is the value of
similarity, and the vertical axis is the percentage of embeddings.

To find diverse teachers, we study the properties of teach-
ers obtained by “Oracle” from two perspectives. From the
parameter space, we visualize the loss landscape on the
subspace spanned by parameters found by “Oracle” and
project parameters found by “PFT” to the subspace to dis-
cover the spatial positional relationship between them, Fig-
ure 4 shows these loss landscapes from task 2 to task 5.
From the feature space, we calculate the cosine similarities
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between embeddings of two teachers found by “Oracle”,
and the similarities between embeddings of two teachers
found by “PFT” to discover the special feature relationship
between them, Figure 6 shows the results of statistics. We
can conclude that:
• The parameters found by “PFT” almost overlap together,

and the parameters found by “Oracle” are in different
low-loss regions, which are blocked by high-loss ridges.

• The embeddings of teachers found by “PFT” have high
consistency in direction in feature space, and the embed-
dings of teachers found by “Oracle” tend to be mutually
orthogonal.

In the next section, we will adopt corresponding techniques
based on the properties of “Oracle” to find diverse teachers.
We also provide the cosine similarities between intermedi-
ate features of teachers in Section 9 of supplementary.

4. Finding Diverse Teachers via MTD
To reduce time and memory consumption, teachers in our
proposed MTD method are represented as small predic-
tion branches and most of the feature extraction layers are
shared. Take the ResNet-32 model [14] as an example, we
first copy the last two stages of layers and the classifier in
the original model as the branch of a teacher and use the
feature outputted by the third to last stage as input to the
branch. To find diverse and high-quality teachers, we apply
the following three techniques and an optimization strategy
to branches.

4.1. Weight Permutation

As illustrated in Figure 4, parameters found by “Oracle”
are in different low-loss regions and blocked by high-loss
ridges [47]. This can naturally be achieved by weight per-
mutation. Weight permutation can teleport parameters from
one low-loss region to another low-loss region, the tele-
ported parameters and the original parameters are equiv-
alent to each other in terms of output [10, 43]. Denote
the initial branch model as B containing M layers and
a specific classifier, which are copies of the last M lay-
ers and the classifier in the original model F , i.e., B “

G ˝ FL ˝ ¨ ¨ ¨ ˝ FL´M`1. The calculations for consecutive
layer l and layer l ` 1 in B can be generally formalized as
follows [40],

xl`1 “ Fl`1 ˝ Flpxl´1q “ σrW l`1σpW lxl´1qs, (7)

where xl´1 is the output of layer l ´ 1, σ is an element-
wise nonlinear activation function, W l and W l`1 are the
parameters of Fl and Fl`1, respectively. The input of the
branch model is xL´M , which is bridged from output of
the pL ´ Mq-th layer in original model, i.e.,

xL´M “ FL´M ˝ ¨ ¨ ¨ ˝ F1pxq. (8)

We omit the bias term in layers and the task identity sub-
script t of parameters for a brief description.

Weight permutation reorders the positions of parameters,
which can implemented by the permutation matrix. The
permutation matrix P l for W l P Rmˆd is obtained by per-
muting the columns of the identity matrix I P Rmˆm, and
the set of permutation matrices for layer l is formalized as,

Πl “ tP “ ppijqmˆm|pij P t0, 1u,

P1m “ PT1m “ 1mu,
(9)

where 1m P Rmˆ1 is the all-ones vector and |Πl| “ m!. A
permutation matrix is also an orthogonal matrix, i.e.,

PTP “ PPT
“ I. (10)

To apply the permutation matrix P l to parameters W l and
keep the output invariant, we can reformulate Equation (7)
as follows,

xl`1 “ σrW l`1σpPT
l P lW lxl´1qs

“ σrW l`1P
T
l σpP lW lxl´1qs.

(11)

Considering there are also permutations in layer l ´ 1 and
layer l ` 1, the parameters of layer l and layer l ` 1 after
applying permutation to layer l are changed to,

W 1
l`1 “ P l`1W l`1P

T
l , W 1

l “ P lW lP
T
l´1. (12)

The permuted branch B1 “ G ˝ F 1
L ˝ ¨ ¨ ¨ ˝ F 1

L´M`1 is ob-
tained by permuting M layers in B (except the classifier G),
where the permutation matrix P l of layer l is randomly cho-
sen from Πl and l P tL´M ` 1, . . . , L´ 1u. If we need to
find n teachers, we can randomly permute the initial branch
B for n ´ 1 times to obtain different permuted branches
(we already have the original model as a teacher). Finally,
these n´1 branches are equivalent to the initial branch, i.e.,
B1
ipxL´M q “ BpxL´M q,@xL´M , i P t2 . . . , nu, where

i “ 1 is reserved for the original model.

4.2. Feature Perturbation

Although weight permutation teleports parameters to an-
other low-loss region, the equivalence between the tele-
ported parameters and the original parameters conflicts with
our intended diversity. To break equivalence, the optimiza-
tion trajectories of different branches should be different,
and the most direct and simplest way is to make branches
have different inputs. To avoid repetitively extracting fea-
tures from different original inputs x, we perturb the in-
put (the bridged features from the original model) of each
branch, i.e.,

xi,L´M “ xL´M ` αδi, δi „ N p0, Iq, (13)

where N p0, Iq is the normal distribution, α is the scaling
factor, and i P t2, . . . , nu. We also considered the mixup of
features, however, it is susceptible to feature degradation,
especially for a long sequence of incremental learning.
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4.3. Diversity Regularization

As illustrated in Figure 6, the embeddings of diverse teach-
ers found by “Oracle” tend to be mutually orthogonal. This
phenomenon is consistent with the definition of diversity,
diverse teachers should have different responses to the same
inputs as much as possible. To improve the diversity be-
tween teachers, we try to minimize the absolute cosine sim-
ilarities between embeddings of teachers. Denote the em-
bedding of teacher i as xi,L, which is the output of the
penultimate layer in permuted branch B1

i for the perturbed
input xi,L´M , i.e.,

xi,L “ F 1
i,L ˝ ¨ ¨ ¨ ˝ F 1

i,L´M`1pxi,L´M q. (14)

The diversity regularization loss Ldr is defined as,

Ldr “
1

C2
n

n´1
ÿ

i“1

n
ÿ

j“i`1

|xT
i,Lxj,L|

}xi,L}}xj,L}
, (15)

where C2
n is the number of 2-combinations for n teachers.

Please note that x1,L “ FL ˝ ¨ ¨ ¨ ˝ F1pxq is the embedding
of the original model without feature perturbation.

4.4. Adaptation and Optimization

To seamlessly adapt to existing CIL methods, we embed the
optimization of branches for finding teachers in the phase
of class-balanced finetuning [8, 19], i.e., in addition to fine-
tuning the classifier Gt of the original model Ft on the ac-
cumulated memory Mt, we also optimize the parameters
of the permuted branches B1

t,i, i P t2, . . . , nu on Mt. As
concluded in Section 3.2, the prediction quality of teachers
should be maintained while improving diversity, we apply
two distillation losses for branches. Denote the average out-
put logits of branches and the original model as

Btpxq “
1

n
rFtpxq `

n
ÿ

i“2

B1
t,ipxi,L´M qs. (16)

The first loss Lp aims to transfer knowledge from the pre-
vious teachers to the current teachers,

Lp “ KLpB1:ct´1

t´1 pxq}B1:ct´1

t pxqq, (17)

where ct´1 is the number of learned classes after task t´ 1.
The second loss Lc aims to transfer knowledge from the
current model to the current teachers,

Lc “ KLpF̂ct´1`1:ct
t pxq}Bct´1`1:ct

t pxqq, (18)

where F̂t is the original model before finetuning. In addi-
tion, the classification loss Lcs of branches and the original
model is denoted as,

Lcs “ CEpFtpxq, yq `

n
ÿ

i“2

CEpB1
t,ipxi,L´M q, yq, (19)

where CE is the cross entropy loss [17, 37, 52], which can
be replaced by the NCA loss [8, 19]. Finally, the total loss
in the phase of class-balanced finetuning is,

Ltotal “ Lcs ` βLp ` ηLc ` ρLdr, (20)

where β and η are coefficients for balancing between previ-
ous and current knowledge, ρ is the coefficient for diversity
regularization. After finding multiple teachers, for adapting
MTD to the learning of task t, we apply Equation (1) and
replace Ft´1 with Bt´1 without feature perturbation, i.e.,
the input of each branch in Equation (16) is xL´M .

5. Experiments
In this section, we adapt existing CIL distillation strategies
with MTD for comparison experiments and conduct analyt-
ical experiments to study the effectiveness and properties of
each technique in MTD. Next, we introduce the basic set-
tings of experiments.

Benchmarks. There are three datasets used to construct
benchmarks: 1) CIFAR-100 contains 100 classes and each
class has 500 training samples and 100 testing samples with
the image size 32 ˆ 32 [21]. 2) ImageNet-1000 contains
1000 classes and each class has about 1500 training sam-
ples and 50 validation samples [7]. 3) ImageNet-100 is
built by selecting 100 classes from ImageNet-1K according
to a fixed random seed 1993. We apply two settings for
constructing benchmarks. First, the dataset is divided into
two parts, each part contains half of the classes, one part is
taken as the first (basic) task, and the other part is further
equally divided into S-step tasks, i.e., the total number of
tasks is T “ N ` 1, where N P t5, 10, 25u. Under this set-
ting, we denote CIFAR100 for 10-step tasks as “B50-10S”.
Second, the dataset is directly and equally divided into T
tasks, where T P t5, 10, 20u. Under this setting, we denote
CIFAR-100 for 10 tasks as “B0-10T”.

Evaluation Metric. Same as existing work [8, 17, 19,
37], we adopt the average incremental accuracy to evaluate
the performance of each CIL method. The definition is,

A “
1

T

T
ÿ

t“1

At, (21)

where At is the testing accuracy on all learned tasks after
learning task t. A better method should have a higher A.

We describe the implementation details, including model
architecture, and hyperparameter settings in Section 10 of
supplementary. It should be emphasized that we use MTD
to obtain only one additional teacher, which is a small
branch compared with the original model, in all compari-
son experiments, i.e., the total number of teachers is n “ 2.

5.1. Comparison Experiments

We choose PODNet [8] and AFC [19] as the adaptation
methods for MTD. We report two types of results, “MTD-
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Method CIFAR-100 ImageNet-100 ImageNet-1000
Ap%qÒ S=5 10 25 5 10 25 5 10 25

BiC: [52] 59.36 54.20 50.00 70.07 64.96 57.73 62.65 58.72 53.47
Mnemonics: [26] 63.34 62.28 60.96 72.58 71.37 69.74 64.63 63.01 61.00

GeoDL: [42] 65.14 65.03 63.12 73.87 73.55 71.72 65.23 64.46 62.20
iCaRL [37] 57.83(˘0.10) 52.63(˘0.10) 49.02(˘0.13) 64.75 58.80 52.46 51.60 47.42 41.03
LUCIR [17] 63.47(˘0.34) 60.75(˘0.29) 57.79(˘0.34) 71.93 69.43 63.52 66.13 61.63 54.05
AANet [27] 65.97(˘0.41) 64.08(˘0.44) 60.44(˘0.45) 77.98 74.70 68.65 68.87 65.65 60.07
PODNet [8] 65.07(˘0.28) 62.93(˘0.14) 59.45(˘0.28) 76.32 73.54 63.05 68.33 65.35 58.62
w/ MTD-S 66.55(˘0.16) 64.18(˘0.30) 59.61(˘0.14) 77.75 74.66 67.38 69.20 66.63 61.40
w/ MTD-T 67.64(˘0.21) 65.58(˘0.20) 60.94(˘0.22) 78.47 75.43 68.54 69.65 67.21 62.19
AFC [19] 65.94(˘0.08) 64.29(˘0.31) 62.33(˘0.35) 77.27 75.47 72.41 69.07 66.85 63.40
w/ MTD-S 66.92(˘0.06) 65.38(˘0.10) 62.74(˘0.26) 77.82 76.26 73.73 69.62 67.42 64.20
w/ MTD-T 67.40(˘0.02) 65.69(˘0.14) 62.81(˘0.18) 77.85 76.13 72.92 70.40 68.15 65.01

Table 1. Comparison results on CIFAR-100 B50, ImageNet-100 B50, and ImageNet-1000 B500. “MTD-S” denotes the student Ft. “MTD-
T” denotes teachers Bt. : denotes the results are referenced from [42]. The experiments on CIFAR-100 are run with 3 random seeds and
results are reported with mean and standard deviation. Same as existing work, experiments on ImageNet are run with a fixed seed 1993.

S” is the results that the student achieves, i.e., the original
model Ft, and “MTD-T” is the results that teachers achieve,
i.e., the average logits of teachers Bt (Equation 16). Tables
1 and 2 show the comparison results on benchmarks with
different settings.

Results on CIFAR-100. We apply “B50” and “B0” set-
tings to CIFAR-100 benchmarks. Table 1 shows the results
under the “B50” setting. It can be seen that MTD can con-
sistently improve PODNet and AFC for different steps of
incremental learning. For example, MTD-T can improve
PODNet by 2.57%, 2.65%, and 1.49% for 5, 10, and 25
steps respectively, and improve AFC by 1.46%, 1.4%, and
0.48% for 5, 10, and 25 steps respectively. Table 2 shows
the results under the “B0” setting. Compared with more sta-
bility required in the setting of “B50”, “B0” requires more
plasticity [28]. MTD can still improve PODNet and AFC in
this setting. For example, MTD-T improves AFC by 1.15%,
0.74%, and 0.68% for 5, 10, and 25 steps respectively.

Results on ImageNet. Table 1 shows the results on
ImageNet-100 under the “B50” setting and ImageNet-1000
under the “B500” setting. It can be seen that MTD-T can
improve PODNet by 2.15%, 1.89%, and 5.49% for 5, 10,
and 25 steps respectively, and MTD-S improves AFC by
0.55%, 0.79%, and 1.32% for 5, 10, and 25 steps respec-
tively. When “AFC w/ MTD” learning tasks for 10 and 25
steps, the student exceeds the teachers, which indicates that
the ensemble of teachers does not always achieve better per-
formance. The results on ImageNet-1000 show that MTD-
T can improve PODNet by 1.32%, 1.86%, and 3.57% for 5,
10, and 25 steps respectively, and improve AFC by 1.33%,
1.3%, and 1.61% for 5, 10, and 25 steps respectively.

We compare the existing dual-teacher distillation method
DT-CIL [4] in section 11.1 of supplementary.

Method CIFAR-100
Ap%qÒ T=5 10 20

iCaRL [37] 56.10(˘0.07) 51.15(˘0.19) 47.81(˘0.07)
LUCIR [17] 62.95(˘0.16) 56.54(˘0.12) 50.17(˘0.64)
AANet [27] 63.95(˘0.22) 55.37(˘0.21) 48.00(˘0.41)
PODNet [8] 63.43(˘0.21) 55.59(˘0.06) 48.20(˘0.22)
w/ MTD-S 64.60(˘0.08) 57.48(˘0.25) 48.92(˘0.28)
w/ MTD-T 65.11(˘0.07) 57.94(˘0.48) 49.92(˘0.40)
AFC [19] 64.19(˘0.25) 57.50(˘0.52) 50.41(˘0.31)
w/ MTD-S 64.79(˘0.13) 58.01(˘0.24) 50.71(˘0.37)
w/ MTD-T 65.34(˘0.13) 58.24(˘0.14) 51.09(˘0.32)

Table 2. Comparison results on CIFAR-100 B0. Experiments are
run 3 times and reported with mean and standard deviation.

5.2. Analytical Experiments

Ablative Studies. There are three techniques in MTD,
weight permutation, feature perturbation, and diversity reg-
ularization. We take PODNet [8] as the baseline and grad-
ually add each technique to the baseline to study the effec-
tiveness. Table 3 shows the ablative results on CIFAR-100
B50. It can be seen that feature perturbation and diversity
regularization can consistently improve performance under
different settings. Weight permutation brings certain im-
provements, but relatively small. We think that this is be-
cause our permutation matrices are random, although pa-
rameters found by “Oracle” are blocked by the high-loss
ridge, and random permutation can also separate parame-
ters by the high-loss ridge (please see Figure 7), but random
permutation may not necessarily be consistent with the sep-
aration pattern of parameters found by “Oracle”.

Effects of the Number of Teachers. More teachers may
bring more diverse knowledge. We increase the number of
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Figure 7. The loss landscape on the subspace spanned by parameters generated by weight permutation, i.e, Wt,1, W 1
t,2, and W 1

t,3, where
Wt,1 is the original parameters, W 1

t,2 and W 1
t,3 are permuted parameters. These three parameters are blocked by the high-loss ridges and

equivalent to each other in terms of output. To break equivalence, we apply the feature perturbation and diversity regularization to branches
(W 1

t,2 and W 1
t,3) to make their trajectories different each other for improving diversity between them. On the right of each subfigure, we

show the optimization trajectories of permuted parameters in the subspace, the upper and lower trajectories tend to be different. The black
point is the start point of the trajectory, and the red point is the endpoint (i.e., the final teacher) of the trajectory.

CIFAR-100
FP WP DR S “5 10 25

65.07(˘0.28) 62.93(˘0.14) 59.45(˘0.28)
✓ 66.76(˘0.14) 64.33(˘0.11) 59.61(˘1.48)
✓ ✓ 66.99(˘0.23) 64.39(˘0.29) 59.74(˘0.10)
✓ ✓ 67.53(˘0.08) 65.50(˘0.34) 60.74(˘1.08)
✓ ✓ ✓ 67.64(˘0.21) 65.58(˘0.20) 60.94(˘0.22)

Table 3. Ablative results of weight permutation (WP), feature per-
turbation (FP), and diversity regularization (DR) on CIFAR-100
B50 taking PODNet as baseline. We run experiments 3 times and
report the results of MTD-T with mean and standard deviation.

teachers to study if CIL performance can be improved. The
left of Figure 8 shows the results of MTD-S with different
numbers of teachers. It can be seen that we only need to add
one teacher to achieve the best performance, i.e., n “ 2.
When the number of teachers is n ą 2, the performance
gradually decreases. We think this is due to two reasons.
First, the ensemble of knowledge from teachers by averag-
ing logits is crude, and this is still a challenge for exist-
ing work to effectively ensemble knowledge from teachers
[13, 50]. Therefore, as the number of teachers increases, it
becomes difficult to ensemble knowledge. Second, the right
of Figure 8 shows the average prediction difference matri-
ces under different numbers of teachers. It can be seen that
the diversity between teachers gradually decreases as the
number of teachers increases. However, Section 3.2 shows
that diversity is crucial for improving performance.

Visualization of Loss Landscape and Optimization
Trajectory. To check whether the parameters are in dif-
ferent low-loss regions before and after permutation, and
whether the optimization trajectories between teachers are
different, we visualize the loss landscapes and optimization
trajectories of teachers in Figure 7. By comparing with Fig-
ure 4, we can find that MTD mimics the properties of “Or-
acle” in parameter space. In addition, by relating Figure 7
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Figure 8. Left: Average incremental accuracies of MTD-S under
different numbers of teachers. Right: Prediction difference matri-
ces of teachers under different numbers of teachers.

to the difference matrix when n “ 3 in the right of Figure
8, we can find that optimizing along different trajectories in
parameter space results in different prediction mechanisms.

6. Conclusion

In this paper, we investigated the multi-teacher distillation
in CIL. We found two key properties of diverse teachers: pa-
rameters are in different low-loss regions and embeddings
tend to be mutually orthogonal. Then, we proposed MTD
including weight permutation, feature perturbation, and di-
versity regularization to find diverse teachers. Finally, ex-
tensive experiments show MTD can significantly improve
performance. One limitation of our method is permutation
matrices are random, which may not be consistent with the
real separation pattern in “Oracle”. A promising approach
is to find permutation matrices or the operator of teleporta-
tion in a data-driven way, we leave this in our future work.
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