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Abstract

Multi-agent trajectory prediction is essential in au-
tonomous driving, risk avoidance, and traffic flow control.
However, the heterogeneous traffic density on interactions,
which caused by physical laws, social norms and so on,
is often overlooked in existing methods. When the density
varies, the number of agents involved in interactions and
the corresponding interaction probability change dynami-
cally. To tackle this issue, we propose a new method, called
Density-Adaptive Model based on Motif Matrix for Multi-
Agent Trajectory Prediction (DAMM), to gain insights into
multi-agent systems. Here we leverage the motif matrix to
represent dynamic connectivity in a higher-order pattern,
and distill the interaction information from the perspectives
of the spatial and the temporal dimensions. Specifically, in
spatial dimension, we utilize multi-scale feature fusion to
adaptively select the optimal range of neighbors participat-
ing in interactions for each time slot. In temporal dimen-
sion, we extract the temporal interaction features and adapt
a pyramidal pooling layer to generate the interaction prob-
ability for each agent. Experimental results demonstrate
that our approach surpasses state-of-the-art methods on au-
tonomous driving dataset.

1. Introduction

Multi-agent trajectory prediction is becoming increasingly
attractive not only in academia but also in industry [18], par-
ticularly for automatic system [57], safety planning [63] and
traffic flow control [28]. Existing methods [12, 19, 24, 34,
43, 57] often neglect the influence of varying traffic den-
sity on interactions between a target agent and its neigh-
bors. They often treat all vehicles (agents) in the same scene
equally, leading to the lack of adaptability. More exactly, it
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(a) High density (b) Low density
Figure 1. The impact of heterogeneous traffic density in High-
Density (1a) and Low-Density (1b) scenes. Here the star repre-
sents the target agent, the circles depict the selection ranges of
neighbors and the numbers in the flags indicate agent ID. This
highlights the significant influence of agent density on their in-
teraction behaviors. Importantly, the range and interaction proba-
bility vary as the density changes across different time steps and
among distinct agents.

lacks of multi-scale neighbor selection and dynamic inter-
action analysis. Specifically, they do not adaptively choose
participating neighbors and assume a constant interaction
probability between the target agent and its neighbors.

To demonstrate the impact of heterogeneous traffic den-
sity and the necessity of density-adaptive method, we pro-
vide a visualization in Figure 1. When selecting multi-
scale neighbors spatially, in high-density scenarios (Figure
1a), agents cluster closely due to space limitations, leading
to fewer occurrences of interaction behaviors such as lane
changes and overtaking maneuvers. Consequently, a small
neighbor range (yellow circles) is used to model interac-
tions with the target agent (red star). In contrast, a broader
range is utilized in low-density situations (Figure 1b). For
dynamic interaction probability in temporal dimension sub-
sequent to neighbors selection, the interaction probabilities
of neighbors (green flags with numbers) are unequal, and
these probabilities may change in the subsequent moment
due to variations in neighbors’ velocity, position and other
factors. For example, ID.1 has a higher probability to in-
teract with the target agent than ID.3, yet the interaction
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sequence might change in the next time step.
In this paper, we propose an innovative model called

Density-Adaptive Model based on Motif Matrix for Multi-
Agent Trajectory Prediction (DAMM). With the aid of motif
matrix, our model effectively captures the dynamic of in-
teraction (further elaboration can be found in Section 3.2).
Based on the motif matrix, our model consists of two es-
sential components: spatial and temporal adaptation. In the
Adaptive Spatial Interaction (ASI) block, we select neigh-
bor ranges adaptively by considering multi-scale features.
We then aggregate the motif matrix in the temporal dimen-
sion to capture the underlying interactions between the tar-
get agent and its neighbors. This process is akin to select-
ing nodes in a graph network. In the Adaptive Temporal
Interaction (ATI) block, we determine the probability of in-
teraction between agents based on the selections made in
the ASI block. Higher probabilities during interaction with
neighbors result in greater assigned weights. These varying
weights constitute the edges in a graph network. Finally,
the features of nodes and edges generated by ASI and ATI
are input into the Graph Attention Network (GAT) [47] to
extract attentive interaction features.

To summarize, the main contributions of this paper are:
1. Our model tackles the challenge of heterogeneous traffic

densities, enabling dynamic capture of interaction fea-
tures in neighbor selection and interaction probability.

2. We use motif matrix to achieve higher-order connectivity
in clustering complex networks for fine-grained interac-
tion modeling.

3. The results indicate that our model significantly en-
hances performance, with improvements of up to
19.77% in ADE (average displacement error) and 2.38%
in FDE (final displacement error).

2. Related work
Trajectory Prediction. The methods for trajectory pre-
diction can be broadly classified into four categories [18].
These include: (i) Physics-based methods, e.g., single tra-
jectory [29], Monte Carlo [5] and Kalman filtering [41];
(ii) Classic machine learning methods, e.g., Gaussian pro-
cess [22], dynamic Bayesian network [21], hidden Markov
model [3] and support vector machine [40]; (iii) Deep learn-
ing methods, for instance, sequential network [48], gener-
ative model [20] and graph neural networks (GNN) [42];
and (iv) Reinforcement learning methods, e.g., deep inverse
reinforcement learning [55], inverse reinforcement learning
[1] and generative adversarial imitation learning [58].
Model of Multi-Agent. Multi-agent models play a cru-
cial role in vehicle trajectory prediction by describing the
relationship and influence between vehicles, which is a sig-
nificant component of interaction. In SMART [44] sim-
ulates diverse trajectories in the top view and proposes a

novel method that generates diverse predictions while con-
sidering scene semantics and multi-agent interactions. Grin
[26] proposes a conditional deep generative model that in-
tegrates advancements in GNN. GroupNet [52] introduces
a trainable multi-scale hypergraph to capture pairwise and
group-wise interactions at multiple group sizes. Despite
these advancements, current methods don’t consider the im-
pact of density on interaction, here we model for varying
density for adaptive describe the interaction between agents.
Heterogeneous Traffic Density. Heterogeneous traffic
flow density refers to the distribution of vehicles with dif-
ferent characteristics, such as sizes or speeds, within a spe-
cific area or road network. The impact of heterogeneous
traffic density on vehicle trajectory prediction mainly in-
cludes these aspects: Firstly, it increases interaction com-
plexity [8, 31, 51]. Furthermore, it causes changes in
driving behavior, such as car-following and lane-changing
[25, 35]. Besides, it causes changes in traffic flow [30, 39].
Therefore, accurate vehicle trajectory prediction requires
accounting for heterogeneous traffic density. However, ex-
isting methods focus only on the before and after states
without a dynamic process. So we model this process adap-
tively in spatial and temporal dimensions, which captures
the interaction changes caused by varying density.

3. Preliminary
3.1. Problem Formulation

In a traffic scenario with N agents, referred to as vehi-
cles Vi for i ∈ N = {1, · · · , N}, the history trajectory
X of Vi over time steps t ∈ [−t−, 0] is represented as
Xi = (p

−t−
i , · · · , p0i ), and the future trajectory Y over time

steps t ∈ [1, t+] is represented as Yi = (p1i , · · · , p
t+
i ). Each

state p∗i is characterized by four dimensions, encompassing
the agent’s positions (x, y), speed, and heading.

We aim to predict the distribution of future trajectories
p(Y |X,Z) based on history trajectory X and feature infor-
mation Z. For the future behavior of each agent, we intro-
duce a set of latent variables of agent i as Φ = {Φi}i∈N ,
and rewrite the future trajectory distribution as

p (Y |X,Z) =
∑

i
[p (Y |Φi, X, Z) · p (Φi|X,Z)]

≜
∑

i
pD · pθ,

with [Φi =Φsi ∪ Φti ] ∧ [Φsi ∩ Φti ̸= ∅] ,

(1)

where Φsi corresponds to spatial features and Φti represents
temporal features. We employ the Conditional Variational
AutoEncoder (CVAE) framework for accuracy and general-
ization. For further details, please refer to Appendix 7.

3.2. Motif matrix

Dynamic capturing and describing of interactions among
agents are crucial, involving the separation of agents inter-
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acting with the target from the rest. This process resembles
graph clustering. We utilize a network clustering frame-
work known as network motifs [33] to portray this interac-
tion at a higher-order pattern.

In this section, we utilize an unweighted and undi-
rected network graph [59] G = (V,E) with a node set V
(card (V ) = N ) and an edge set E. The matrix A rep-
resents the adjacency matrix [50] corresponding to G. A
graph cut is necessary to segregate the neighboring agents
that interact with the target agent, forming a subgraph S
(S & V ) from the remaining set. Conversely, the set S
(S = V \ S) includes few neighbors interacting with the
target agent. The cut of a node set S is denoted as cut(S),
representing the number of edges with one endpoint in S
and the other in the complementary set S [4]. The set S
is considered a cluster [13] within graph G. Here, we em-
ploy a framework for identifying network clusters to gain
insights into agents’ interactions.

The complexity of agent interactions cannot be ade-
quately captured [45] by simple connections. Therefore,
we employ higher-order connectivity patterns to dynami-
cally cluster complex networks [61] based on the adjacency
matrix A. The matrix B encodes the edge pattern among
the N nodes, with B being a binary matrix of size k × k
(k ⩽ N ), and A ⊂ {1, · · · , N} is a set of anchor nodes.
The network motifs are defined as:

Definition 1 [56] Let χA be a selection function that takes
the subset of a k−tuple indexed by A, set (·) be the op-
erator that takes an (ordered) tuple to an (unordered) set,
specifically

set {(v1, · · · , vN )} = {v1, · · · , vN} .

The set of motifs denotes by M (B,A) is defined as

M̃ (B,A) = {(set (v) , set [χA (v)]) | v ∈ V, Av = B} ,

where Av is the k × k adjacent matrix on the subgraph
included by the k nodes of the ordered vector v.

We denote M as the “motif matrix”, as defined in Defi-
nition 1, capturing higher-order interactions among agents.
The motif matrix is computed by considering agents’ inter-
actions as edges and systematically scanning the network
to identify all instances of 3-node subgraphs. The method
for connecting these subgraphs is illustrated in Figure 2.
For example, in the Agent Graph (left part) the rectangle
abed, where the side lengths are be = 1, de =

√
3 and

(ef⊥be) ∧ (ef = be), the contact range is
√
3. Notably,

when considering ‘a’ as a target agent, the length ae = 2
exceeds the limit of

√
3 thus a and e are not connected. The

matrix A records these connection relationships.
Since we focus solely on unidirectional interactions from

neighbors to the target agent, we choose the 10th1 motif

Figure 2. The process of transitioning from an adjacency matrix A
to a motif matrix M . The set {a, b, c, d, e, f} represents different
agents. The 10th1 indicates the chosen type, where the pink circle
corresponds to the target agent. Elements in M indicate the count
of duplicated edges within all triangles, with modifications high-
lighted in red. For instance, the edge ac is present in two triangles,
resulting in M1,3 = M3,1 = 2.

type as depicted in Figure 2. The motif matrix M is ob-
tained from agents’ positions (x, y) in spatial and temporal
dimensions, denoted as Ms,t. Section 4 details the specific
decomposition.

4. Methodology
4.1. Overview of Framework

Our model, Density-Adaptive Model based on Motif Matrix
for Multi-Agent Trajectory Prediction (DAMM, Figure 3),
consists of Adaptive Spatial Interaction (ASI) block and
Adaptive Temporal Interaction (ATI) block. We sequen-
tially treat each agent i in the scenes as the target agent in
our model and focus the interaction between the target agent
Vi and its neighbors {Vj}Nj ̸=i. As illustrated in Figure 3, we
separate the neighbors interaction with target agent and uti-
lize the motif matrix to describe this connectivity. Next, we
decompose the model into spatial and temporal dimension.
In the spatial dimension (ASI), we determine the agents in-
volved in the interaction process by adaptively selecting the
radius range. In the temporal dimension (ATI), we sort the
interaction probabilities after making the spatial selections.
After obtaining features from these blocks, we incorporate
additional features to form node and edge features, which
are then input into the Graph Attention Network (GAT). Ul-
timately, various trajectories are obtained using GAT.

Prior models concentrate on static interactions, while
our emphasis is on capturing dynamic density changes, al-
lowing for higher-order connectivity to extract features for
modeling heterogeneous traffic density.

4.2. Adaptive Spatial Interaction

In the ASI block (Figure 4a), it is of particular significance
to determine which neighbors interact with the target agent

1Higher-order organization of complex networks [4].
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Figure 3. The DAMM model is composed of a spatial block (termed ASI) and a temporal block (termed ATI), modeling the process of
interaction between target agent and its neighbors using density adaptation. ASI determines the range (pink dotted circle) for multi-scale
neighbors selection, while ATI reflects the dynamic interaction analysis (where numbers represent interaction probabilities). Features from
ASI and ATI are integrated and processed by the GAT to predict various trajectories (where number denotes generation probability).

(a) Adaptive Spatial Interaction (b) Adaptive Temporal Interaction

Figure 4. The Adaptive Spatial Interaction (ASI) block and Adaptive Temporal Interaction (ATI) block. The symbol Φ∗ denotes features
from different blocks, with β and α are the coefficients corresponding to the features in each block.

within the ranges. To address this, we acquire fusion fea-
tures β derived from both motif matrix and agent, subse-
quently integrating them with each agent feature φi. These
features constitute a subset of the node of the GAT.

To achieve this, we must obtain the motif matrix Ms,t in
the spatial dimension like Ms,∗. Subsequently, we erase the
temporal dimension and obtain a motif matrix M̂s for each
radius as:

M̂s ≜
∑

t
Ms,t (s = s1, · · · , S), (2)

here, s represents the range for selecting neighbors, ranging
from s1 to S. In this context, we obtain the motif matrices
in the spatial dimension as M̂s1 , . . . , M̂S .

To extract primary features φM̂
s from the motif matrix

M̂s, we utilize the Spatial Pyramid Pooling (SPP) network
[17] to aggregate the features from each M̂s into a unified

dimension. This process is encoded by

φM̂
s = LN

{
FC
[
SPP

(
M̂s

)]}
, (3)

with Fully-Connected (FC) layer and Layer Normalization
(LN). For fusing features from both agents and motif matri-
ces in the spatial dimension, we utilize a multi-head atten-
tion mechanism. Specifically, queries Q concatenate agents
feature while keys K and values V capture information
from different motif matrices. The formulation of this pro-
cess for each agent i can be described as follows:

MultiHead (Qi,Ks, Vs)

=
[
WQ (φi;φG) ,W

KφM̂
s , WV φM̂

s

]
,

(4)

where i ∈ N and W ∗ represents corresponding weight ma-
trix. We use a semicolon to denote concatenation, while a
comma represents components of a vector in this paper.
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The feature of each agent φi and the global feature φG

in Eq. (4) are obtained via

φi = LSTM [MLP (Xi)] ,

φG = MLP [PointNet (X1; · · · ;XN )] .
(5)

Here LSTM and MLP represents Long Short Term Mem-
ory and Multi-Layer Perceptron respectively. We employ
PointNet [38] to maintain consistent dimensions for agents
across various scenes. To mitigate the influence of large dot
product values, we use scaled dot-product attention, that is

βi,s = MultiHead (Qi,Ks, Vs)

= (head1; · · · ; headh)WO,

with headk = Attention
(
QiW

A
k ,KsW

A
k , VsW

A
k

)
.

In order to mitigate the information loss of motif ma-
trix feature φM̂

s due to SPP in Eq. (3), we apply three sta-
tistical functions: maximum, minimum, and median (us-
ing the first three letters for brevity) to βi, derived from
{βi,s1 , · · · , βi,S}. Then, we combine the original features
with the statistical features through

βM̂
i = MLP (βi,s1 ; · · · ;βi,S ;βi,max;βi,min;βi,med) . (6)

Finally, the decomposed feature of agent i in the spatial
dimension is represented as Φsi = βM̂

i ⊙φi. The symbol⊙
represents the Hadamard product. This feature Φsi consti-
tutes a portion of the node features in the GAT. More detail
information about the GAT can be found in Appendix 8 due
to space limitations.

4.3. Adaptive Temporal Interaction

In ATI block (Figure 4b), our goal is to identify the neigh-
bors that exert a more significant influence on the target
agent following filtration from ASI block. To achieve this,
we must derive an optimal coefficient α through feature fu-
sion to aggregate matrices M̃∗ as

∑
αM̃∗. In this context,

we necessitate a subset of edge features for the GAT.
As in Section 4.2, here our objective is to extract the tem-

poral feature from the motif matrix Ms,t like M∗,t. The
motif matrix M̃t at each time step can be obtained using an
approach analogous to that in Eq. (2):

M̃t,≜
∑

s
Ms,t (t = t1, · · · , T ) ,

here T is the horizon of the trajectory sequence, and t1 is the
initial time step. We integrate the features of M̃∗ through

φM̃ = LN
{

MLP
[
SPP

(
M̃t1

)
; · · · ;SPP

(
M̃T

)]}
. (7)

In contrast to Eq. (3), we extract the features simultane-
ously. We aggregate φM̃ and its statistical functions as Eq.
(6) to prevent information loss as follows:

αM̃ = MLP
(
φM̃ ;φM̃

max;φ
M̃
min;φ

M̃
med

)
.

The weighting of the temporal motif matrix is determined
by both the global trajectory feature φG and the resulting
temporal motif features αM̃ , which are obtained from the
reweighting network via

αM̃ = (αt1 , · · · , αT )← Reweighting
(
φG;α

M̃
)
.

Finally, the decomposed feature of agent i in the temporal
dimension is computed as follows: Φti =

∑T
t=t1

αtM̃t.
This Φti contributes to the edge features in the GAT. For
additional details, please refer to Appendix 8.

4.4. Training the Loss

Our loss function consists of three components: distance
loss LDIS, selection binary loss LSEL, and binary cross-
entropy loss LKLD. For each agent i, the LDIS term quan-
tifies the distance between the predicted trajectory Yi and
the ground truth (the actual lane for the agent’s driving) us-
ing the L2 norm. As we generate multiple trajectories using
the optional top−k configuration, we employ Binary Cross
Entropy (BCE) loss:

LSEL = BCE {gm, softmax [MLP (φi;φGAT ;φL)]} ,

where gm is the one-hot vector of the ground truth lane.
The symbol φ∗ represents the feature, with the subscript i
denote the features of agents, GAT net, and lanes.

LKLD ensures the similarity of the latent features sam-
pled from the prior and the posterior through Kullback-
Leibler divergence. The overall loss function is a weighted
sum of the three components:

Loss = LDIS + λ1LSEL + λ2LKLD, (8)

where (λ1, λ2) are trade-off parameters. Typically, λ2 in-
creases with the number of training epochs.

5. Experiments
5.1. Fundamental Information

Our method is evaluated on two real-world datasets:
nuScenes [6] and Argoverse [9], and they offer trajectories
for each target agent. NuScenes comprises 245,414 trajec-
tory instances, predicting a 6-second future trajectory based
on a 2-second past trajectory. Argoverse provides 323,557
scenarios, predicting a 3-second future trajectory from a 2-
second past trajectory. For further details on the datasets
and experimental setup, please refer to Appendix 9. We
employ two widely recognized metrics to quantitatively as-
sess the model: Average Displacement Error (ADEK) and
Final Displacement Error (FDEK) for evaluating the top K
predictions. These metrics are prevalent in trajectory pre-
diction and are compared to each other [7].

14826



Table 1. Baseline comparisons on the nuScene and Argoverse datasets†

Method ADE1 FDE1 ADE5 FDE5 ADE10 FDE10 Method ADE1 FDE1 ADE6 FDE6

AgentFormer [57] - - 1.86 3.89 1.45 2.86 AutoBot [16] - - 0.89 1.41
LDS-AF [32] - - 2.06 4.60 1.66 3.58 MP++* [46] 1.62 3.61 0.79 1.21

THOMAS [15] - 6.71 1.33 - 1.04 - THOMAS [15] 1.67 3.59 0.94 1.44
PreTraM [53] - - 1.70 4.15 1.45 3.22 HiVT [62] 1.60 3.53 0.77 1.17

Aware [60] 5.58 11.47 - - 1.67 2.66 Aware [60] 1.61 3.54 0.86 1.31
MUSE-VAE [23] - - 1.38 2.90 1.09 2.10 LTP [49] 1.62 3.55 0.83 1.30
GOHOME [14] - - 1.42 - 1.15 - GOHOME [14] 1.70 3.68 0.89 1.29

GATraj [10] - - 1.87 4.08 1.46 2.97 ADAPT [2] 1.59 3.50 0.79 1.17
Real-Time [27] 3.56 8.63 1.60 3.34 1.23 2.32 R-Pred [11] 1.58 3.47 0.76 1.12

Context-Aware [54] 3.54 8.24 1.59 3.28 - - FRM [36] - - 0.82 1.27
DAMM 2.84 6.59 1.39 3.14 1.02 2.05 DAMM 1.57 3.42 0.76 1.29

† The underline and bold number represent the best results in the baseline and global respectively.

Figure 5. The upper, middle, and lower rows represent the trajectory cases generated by K = 1, 5, and 10, respectively. Each row depicts
the predicted trajectory of the target agent (light blue box) and neighboring agents (gray box). The predicted future trajectories are shown
in various cases, with start points in blue and end points in red. The ground truth trajectory is represented in black for clarity.

5.2. Results

Quantitative Results. We assess the performance of the
proposed model alongside existing methods when K =
1, 5 and 10. the results in Table 1 highlight the best-
performing methods in red bold and the second best meth-
ods in blue underline. Our model outperforms other meth-
ods in predicting agent trajectories.

In the nuScenes dataset, ADE1 improved from 3.54 to
2.84, a 19.77% increase in performance, while FDE10 im-
proved from 2.10 to 2.05, a 2.38% boost. In the Argoverse
dataset, we observed a maximum improvement of 9.52% in
ADE (K = 6) and 4.37% in FDE (K = 1).

Our model markedly reduces errors in both ADE and
FDE, particularly excelling in ADE, demonstrating its sta-
bility in predicting distant future positions. This proficiency
is attributed to the design of DAMM, effectively captur-
ing dependencies by dynamically extracting and describing
higher-order features for any agent at previous time steps
while predicting the agent’s future position.

Prediction Example. Figure 5 demonstrates the effec-
tiveness of our model in generating precise and realistic
multi-agent trajectory predictions for K =1, 5 and 10.

The upper showcase the case K = 1. The results clearly
demonstrate that the DAMM model is capable of generating
trajectories that closely match the real trajectory, without
any instances of trajectories deviating from the road. This
indicates the effectiveness of our approach in modeling the
dependencies between the agents and the environment.

The middle and lower are generated by K = 10 and 15,
which reflect the multi-agent trajectory distribution. These
trajectories strike a balance between accuracy and diversity
and enable us to better understand the range of possible out-
comes for the given scene. The results illustrate the profi-
ciency of our model in capturing scene context and simulat-
ing interactions to produce precise and various trajectories.
At present, there’s no additional filtering or extraction of
lane information. Enhancing this aspect constitutes a cen-
tral focus for our upcoming endeavors.
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Table 2. Ablation study conducted on nuScenes. The percentage means the values greater than M1.

M∗ STMM ATI ASI ADE1/FDE1 Percentage ADE5/FDE5 Percentage ADE10/FDE10 Percentage

M1 × × × 3.05/7.12 - 1.44/3.25 - 1.10/2.14 -
M2

√
×

√
2.98/6.91 2.30%/2.95% 1.42/3.16 1.39%/2.77% 1.08/2.04 1.82%/4.67%

M3
√ √

× 2.97/6.97 2.62%/2.11% 1.41/3.23 2.08%/0.62% 1.09/2.09 0.91%/2.34%
M4

√ √ √
2.84/6.59 9.89%/7.44% 1.39/3.14 3.47%/3.38% 1.09/2.05 0.91%/4.21%

5.3. Ablation Studies

5.3.1 Impact of Block

Table 2 shows the evaluation results of each component
of the DAMM model, including a traditional interaction
method M1 (using adjacent matrix instead of Spatial-
Temporal Motif Matrix), only spatial adaptive (method
M2), only temporal adaptive (method M3), and the com-
plete model DAMM (method M4).

Interaction without Motif Matrix. This section presents
the results obtained equitable extraction of features from all
agents using the adjacency matrix. For M1, the FDE1 met-
ric is 7.12, which is 0.41 higher than the minimum baseline
value of 6.71. However, this approach for feature extrac-
tion is inappropriate and results in unrealistic outcomes in
real-world scenarios. This underscores the importance of
our proposed adaptive model, which considers the varying
inaccurate probabilities between different agents.

Effects of ASI block. The effectiveness of the ASI block
in reducing trajectory prediction errors compared to M1

through adaptive neighbors selection is clearly demon-
strated by the 4.67% increase in FDE10. This is because
density changes are a chronic and relatively steady process,
which requires more time to reflect the advantages of radius
ranges. With multi-scale fusion, the model can better cap-
ture the spatial density features of the scene and adaptively
adjust the neighbor radius for each agent, resulting in more
accurate trajectory predictions.

Effects of ATI block. This experiment is designed to as-
sess the ASI block’s performance in predicting interaction
probability. The results demonstrate that the ASI block out-
performs M1 with improvements in ADE by 0.08 and FDE
by 0.15 when predicting the top 1 trajectory. As the num-
ber of trajectory predictions increases, the prediction error
becomes smaller and smaller, due to the increased diversity
generated by the interaction and more options for calcula-
tion and correction of the model.

Adaptive Spatial-Temporal. It is evident that jointly
modeling the temporal and spatial dimensions in an adap-
tive manner leads to superior performance compared to sin-
gle model (compare to M1, M2 and M3). This finding con-
firms the significance of agent interactions in trajectory pre-

Figure 6. Density comparison with Context-Aware [54] visualiza-
tion results. We represent our method with solid lines in green and
red, while [54] is depicted with dashed lines in blue and gray.

diction, and our proposed method effectively handles het-
erogeneous traffic density. The most significant improve-
ment in each metric is observed when K = 1, resulting in a
performance increase of 6.89% and 7.44%, respectively.

5.3.2 Density

To present the results with clarity regarding density, we
employ the metric “number of agents per unit area”. As
illustrated in Figure 1, it is defined as a circle given by
Density = ns/πd

2
max, where ns represents the number of

agents in the s-th scene, and dmax is the maximum distance
between the target agent and its neighbors.

In this context, we categorize the density of the test set
in the nuScenes dataset into five intervals ranging from 0.01
to 1.14, as illustrated in Figure 7. We visually demonstrate
our method by comparing it with Context-Aware [54], and
the results are presented in Figure 6.

When K = 1, our method consistently demonstrates a
significant reduction in displacement error, with an average
improvement of 1.8 in ADE1 and 3.7 in FDE1. With K = 5,
our metrics perform well over most of the intervals, partic-
ularly in the second interval, where there is a remarkable
29.58% improvement in ADE5 and a 22.00% improvement
in FDE5. It’s worth noting that in the fourth and fifth in-
tervals, our metrics are inferior to those of [37], but they
remain competitive. This is due to the fact that Figure 7 re-
veals that the last two intervals account for only 6.59% of
the total density range.
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Figure 7. The number of scenes at various densities. The interval
is divided by five, marked by a vertical line with numbers on it.

5.3.3 Multi-Scale

In our proposed method, we take into account multi-scale
interactions among agents in the ASI block. Here, we
present the results in Table 3 with single neighbor selec-
tion ranges RS compare with ours RO. In this setup RS , we
set the neighbor radius to 50m.

Table 3. Comparisons between single-scale RS and multi-scale
RO methods. The ↑% indicates the percentage increase in values
compared to RS .

Metric ADE1 FDE1 ADE5 FDE5 ADE10 FDE10

RS 3.12 7.48 1.49 3.36 1.17 2.49
RO 2.84 6.59 1.39 3.14 1.02 2.05
↑% 8.80% 8.96% 6.88% 6.26% 12.89% 7.57%

Significantly, the observed errors in this configuration
are noticeably greater than those in our proposed model RO.
The results show that without employing multi-scale, the
errors are more substantial compared to when it is utilized.
Through multi-scale neighbor selection, we achieve an aver-
age improvement of 0.27 in terms of the metric value, which
translates to a 8.56% improvement in percentage.

5.3.4 Impact of Loss

To assess the effectiveness of the loss functions Eq. (8), we
present the results for each component in Table 4. Here,
A1 represents LDIS, A2 represents LDIS and LSEL, A3 rep-
resents LDIS and LKLD and A4 represents all loss functions.
Compared to the A1 experiment, the metrics of the other
settings demonstrate improvements, resulting in an average
increase of 31.54% in ADE and 32.47% in FDE. For further
details on this section, please refer to Appendix 10.

5.4. Failure Cases

Here, we showcase instances of failures in Fig.8. The fail-
ure cases consider more realistic situations, such as turns to
avoid collisions.

Table 4. Ablation study of Loss.

A∗ ADE1 FDE1 ADE5 FDE5 ADE10 FDE10

A1 2.99 6.81 2.34 5.40 1.93 4.30
A2 2.52 5.61 2.52 5.81 2.32 5.23
A3 3.42 7.98 1.77 4.00 1.29 2.65
A4 2.84 6.59 1.39 3.14 1.02 2.05

Figure 8. Some failure cases.

Our model precisely predict trajectories in compliance
with traffic regulations, exemplified by a vehicle’s straight
trajectory perfectly aligning with our predictions. Varia-
tions in velocity lead to slight deviations in our forecasts.
Prioritizing safety, our model predicts essential maneu-
vers, including deceleration and evasive actions, to ensure
that the projections accurately mirror realistic reactions to
evolving traffic situations, even when this involves straying
from lane lines.

6. Conclusion

In this paper, we propose a density-adaptive model utiliz-
ing the motif matrix to capture interaction features in sce-
narios with heterogeneous traffic density. By decompos-
ing the model in both spatial and temporal dimensions, it
offers a detailed description of the interaction process, re-
sulting in more accurate and diverse future trajectories for
multi-agents. Experimental results on established bench-
marks demonstrate the superior performance of our frame-
work compared to state-of-the-art methods across various
metrics. In the future, this approach harbors significant po-
tential for widespread applications in autonomous vehicles.
On an individual vehicle level, it supports safe decision-
making and route optimization. From a macro perspective,
it aids in traffic control and accident reduction.

Acknowledgement. The study was funded by the Na-
tional Natural Science Foundation of China (U21B2090,
62102207), National Key Research and Development
Program of China (2023YFB4301900), Shenzhen Sci-
ence and Technology Plan Project Key Technical Tack-
ling Project (JSGG20220831094604008), Guangzhou Sci-
ence and Technology Plan Project Key Field RD Project
(202206010056) and Major Key Project of PengCheng Lab-
oratory (PCL2023A08). Computing support was provided
by Pengcheng Cloudbrain.

14829



References
[1] Rushdi Alsaleh and Tarek Sayed. Modeling pedestrian-

cyclist interactions in shared space using inverse reinforce-
ment learning. Transportation research part F: traffic psy-
chology and behaviour, 70:37–57, 2020. 2

[2] Görkay Aydemir, Adil Kaan Akan, and Fatma Güney. Adapt:
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