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Figure 1. Visualizations of the Panacea’s capability. (a). Panoramic video generation based on BEV (Bird’s-Eye-View) layout sequence
facilitates the establishment of a synthetic video dataset, which enhances perceptual tasks. (b). Producing panoramic videos with condi-
tional images and BEV layouts can effectively elevate image-only datasets to video datasets, thus enabling the advancement of video-based
perception techniques. (c). Video generation with variable attribute controls, such as weather, time, and scene.
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Abstract

The field of autonomous driving increasingly demands
high-quality annotated training data. In this paper, we
propose Panacea, an innovative approach to generate
panoramic and controllable videos in driving scenarios,
capable of yielding an unlimited numbers of diverse, an-
notated samples pivotal for autonomous driving advance-
ments. Panacea addresses two critical challenges: ’Con-
sistency’ and ’Controllability.’ Consistency ensures tempo-
ral and cross-view coherence, while Controllability ensures
the alignment of generated content with corresponding an-
notations. Our approach integrates a novel 4D attention
and a two-stage generation pipeline to maintain coherence,
supplemented by the ControlNet framework for meticulous
control by the Bird’s-Eye-View (BEV) layouts. Extensive
qualitative and quantitative evaluations of Panacea on the
nuScenes dataset prove its effectiveness in generating high-
quality multi-view driving-scene videos. This work notably
propels the field of autonomous driving by effectively aug-
menting the training dataset used for advanced BEV per-
ception techniques.

1. Introduction
In the domain of autonomous driving, there has been a surge
of interest in Bird’s-Eye-View (BEV) perception meth-
ods, which have demonstrated significant potential across
key perception tasks including 3D detection [16, 23, 45],
map segmentation [20, 26], and 3D lane detection [6, 17].
Cutting-edge BEV perception approaches, exemplified by
StreamPETR [45], are trained on multi-view videos. As
a result, the crux of building robust autonomous driving
system lies in high-quality, large-scale annotated video
datasets. Yet, the acquisition and annotation of such data
present formidable challenges. Assembling diverse video
datasets encompassing a spectrum of weather, environmen-
tal, and lighting conditions not only poses challenges but
can occasionally entail risks. Moreover, the annotation of
video data necessitates significant resources in both effort
and cost.

Inspired by the success of leveraging synthetic street im-
ages to improve the performance of perception tasks [7,
41, 52, 57], our proposal focuses on generating synthetic
multi-view driving video data to bolster the training of
cutting-edge video-based perception methods. To miti-
gate high annotation costs, we aim to utilize BEV lay-
out sequences, which encompass 3D bounding boxes and
road maps, for the generation of corresponding videos.
Such BEV sequences can be acquired from annotated video
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datasets [4, 40, 51] or synthesized using advanced simu-
lators [11, 50, 53]. This initiative can therefore be for-
mulated as the diverse multi-view driving video generation
conditioned on BEV sequences. The effectiveness of our
generation model rests on two critical criteria: controlla-
bility and consistency. Empowering users to govern the
generated videos via input BEV sequences and descriptive
text prompts define controllability, while consistency un-
derscores temporal coherence within individual single-view
videos and coherence across multiple views.

Thanks to recent advancements in diffusion-based gener-
ative models and their extensions [13, 34, 38, 54], what was
once a formidable challenge has become more tractable. In
particular, Stable Diffusion [34] pioneers the adoption of
diffusion models within latent spaces, amplifying compu-
tational efficiency with minimal compromise in generation
quality. Extending this innovation, Video Latent Diffusion
Model [3] expands the paradigm to high-resolution video
generation by integrating temporal dimensions into estab-
lished image frameworks. Furthermore, ControlNet [54]
introduces an innovative neural architecture adept at modu-
lating pretrained diffusion models, significantly enhancing
their controllability and unlocking pathways for advanced
applications. Nonetheless, seamlessly amalgamating these
technologies to achieve panoramic and controllable video
generation remains a huge challenge.

In this paper, we present Panacea, an innovative video
generation approach tailored specifically for panoramic and
controllable driving scene synthesis. Panacea operates as
a two-stage system: the initial stage crafts realistic multi-
view driving scene images, while the subsequent stage ex-
pands these images along the temporal axis to create video
sequences. For panoramic video generation, Panacea in-
troduces decomposed 4D attention, enhancing both multi-
view and temporal coherence. Moreover, we employ
ControlNet[54] to allow for the injection of BEV sequences.
Beyond these core designs, our model retains the versatil-
ity to manipulate global scene attributes via textual descrip-
tions, such as weather, time, and scene, offering a user-
friendly interface for generating specific samples.

We apply the Panacea approach to the widely used
nuScenes dataset [4]. Comprehensive evaluations across
diverse real-world application scenarios indicate Panacea’s
proficiency in generating valuable video training instances.
Not only does it enrich existing video datasets with a
plethora of synthesized samples, but it also has the poten-
tial to elevate image-only datasets to video datasets, en-
abling the advancement of video-based perception tech-
niques. Furthermore, the exceptional generation fidelity
coupled with heightened controllability positions Panacea
as a viable candidate for real-world driving simulation.
Overall, our key contributions are two-fold:

• We introduce Panacea, an innovative approach to multi-
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view video generation for driving scenes. This two-stage
framework seamlessly integrates existing visual genera-
tion technologies while making important technical ad-
vancements to achieve multi-view and temporal consis-
tency, alongside critical controllability. These technical
enhancements play an important role in the solution’s suc-
cess.

• Through comprehensive qualitative and quantitative as-
sessments, Panacea demonstrates its proficiency in pro-
ducing high-quality driving-scene videos. Particularly
significant is the quantitative evidence highlighting the
substantial enhancement our synthesized video instances
provide to state-of-the-art BEV perception models. Our
plan to release these synthesized instances as the ”Gen-
nuScenes” dataset aims to promote further research in the
field of video generation for autonomous driving.

2. Related Work
2.1. Diffusion-based Generative Models

Recent advancements in diffusion models (DMs) have
achieved remarkable milestones in image generation [8, 28,
31, 33, 36]. In particular, Stable Diffusion (SD) [34] em-
ploys DMs within the latent space of autoencoders, striking
a balance between computational efficiency and high image
quality. Beyond text conditioning, the field is evolving with
the introduction of additional control signals [27, 54]. A
noteworthy example among them is ControlNet [54], which
incorporates a trainable copy of the SD encoder to integrate
control signals. Furthermore, some studies concentrate on
generating multi-view images. MVDffusion [42], for in-
stance, processes perspective images in parallel with a pre-
trained diffusion model.

In addition to image generation, the application of diffu-
sion models for video generation [9, 14, 21, 44, 48, 49, 59]
is gaining significant attention. MagicVideo [59] employes
frame-wise adaptors and causal temporal attention module
for text-to-video generation. Video Latent Diffusion Model
(VLDM) [3] integrates temporal layers into a 2D diffu-
sion model to produce temporally aligned videos. Make-A-
Video [37] stretches a diffusion based text-to-image model
without the necessity for text-video pairs. Imagen Video
[14] harnesses a chain of video diffusion models for gener-
ating videos according to text inputs.

Our method also falls under the category of video gener-
ation. However, unlike previous work, we focus on the cre-
ation of controllable multi-view videos within driving con-
texts, representing an innovative yet complex scenario.

2.2. Generation for Autonomous Driving

The development of Bird’s-Eye-View (BEV) representation
[19, 22, 23, 25, 45] in multi-view perception has become
a critical research area in autonomous driving. This ad-

vancement is instrumental in enhancing downstream tasks
such as multi-object tracking [29, 55], motion prediction
[29], and planning [15, 18]. Recently, Video-based BEV
perception methods [22, 23, 30, 45] have become the main-
stream. BEVFormer [23] pioneering in integrating tempo-
ral modeling mechanism, yielding a substantial enhance-
ment over single-frame methods such as DETR3D [47] and
PETR [25]. Then BEVDepth [22], SOLOFusion [30], and
StreamPETR [45] further improve the temporal modeling
approach, achieving superior performance.

As the BEV perception methods rely heavily on paired
data and BEV ground truth layouts, numerous studies are
delving into paired data generation to aid training. Previ-
ously, generative efforts in autonomous driving primarily
employed BEV layouts to augment image data with syn-
thetic single or multi-view images [7, 41, 52, 57], prov-
ing beneficial for single-frame perception methods. For
example, BEVGen [41] specializes in generating multi-
view street images based on BEV layouts, while BEVCon-
trol [52] proposes a two-stage generative pipeline for cre-
ating image foregrounds and backgrounds from BEV lay-
outs. However, the generation of paired video data, crucial
for more advanced video-based BEV perception methods,
remains largely unexplored. The Video Latent Diffusion
Model [3] attempts to generate driving videos but its scope
is limited to single-view and falls short in effectively bol-
stering video perception models.

In light of this, our work initiates the first exploration of
generating multi-view videos paired with BEV layout se-
quences, marking a significant leap forward in enhancing
video-based BEV perception.

3. Method
In this section, we present Panacea, an innovative ap-
proach to generate controllable multi-view videos for driv-
ing scenes. Sec. 3.1 provides a brief description of the latent
diffusion models that form the foundation of our approach.
Following this, Sec. 3.2 delves into our novel method that
enables the generation of high-quality multi-view videos in
a feasible and efficient manner. Finally, Sec. 3.3 elaborates
on the controlling modules integral to Panacea, which is the
central design feature that renders our model an invaluable
asset for the advancement of autonomous driving systems.

3.1. Preliminary: Latent Diffusion Models

Diffusion models (DMs) [13, 38] learn to approximate a
data distribution p(x) via iteratively denoising a normally
distributed noise ϵ. Specifically, DMs first construct the
diffused inputs xt through a fixed forward diffusion pro-
cess in Eq. 1. Here αt and σt represent the given noise
schedule, and t indicates the diffusion time step. Then, a
denoiser model ϵθ is trained to estimate the added noise ϵ
from the diffused inputs xt. This is achieved by minimizing
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Figure 2. Overview of Panacea. (a). The diffusion training process of Panacea, enabled by a diffusion encoder and decoder with the
decomposed 4D attention module. (b). The decomposed 4D attention module comprises three components: intra-view attention for spatial
processing within individual views, cross-view attention to engage with adjacent views, and cross-frame attention for temporal processing.
(c). Controllable module for the integration of diverse signals. The image conditions are derived from a frozen VAE encoder and combined
with diffused noises. The text prompts are processed through a frozen CLIP encoder, while BEV sequences are handled via ControlNet.
(d). The details of BEV layout sequences, including projected bounding boxes, object depths, road maps and camera poses.

the mean-square error, as detailed in Eq. 2. Once trained,
DMs are able to synthesize a new data x0 from random
noise xT ∼ N (0, I) by sampling xt iteratively, as formu-
lated in Eq. 3. Here µθ and Σθ are determined through the
denoiser model ϵθ [13].

xt = αtx+ σtϵ, ϵ ∼ N (0, I), x ∼ p(x) (1)

min
θ

Et,x,ϵ||ϵ− ϵθ(xt, t)||22 (2)

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (3)

Latent diffusion models (LDMs) [34] are a variant of
diffusion models that operate within the latent representa-
tion space rather than the pixel space, effectively simplify-
ing the challenge of handling high-dimensional data. This
is achieved by transforming pixel-space image into more
compact latent representations via a perceptual compression
model. Specifically, for an image x, this model employs an
encoder E to map x into the latent space z = E(x). This
latent code z can be subsequently reconstructed back to the
original image x through a decoder D as x = D(z). The
training and inference processes of LDMs closely mirror
those of traditional DMs, as delineated in Eq. 1-3, except
for the substitution of x with the latent code z.

3.2. Generating High-Quality Multi-View Videos

Here we describe how we upgrade a pre-trained image
LDM [34] for high-quality multi-view video generation.

Our model utilizes a multi-view video dataset pdata for
training. Each video sequence, encompasses T frames, in-
dicating the sequence length, V different views, and dimen-
sions H and W for height and width, respectively.

Our framework is built on the Stable Diffusion (SD) [34]
model, which is a strong pre-trained latent diffusion model
for image synthesis. While the SD model excels in im-
age generation, its direct application falls short in produc-
ing consistent multi-view videos due to the lack of con-
straints between different views and frames in the sequence.
Therefore, we introduce an innovative architecture: a de-
composed 4D attention-based UNet [35], designed to con-
currently generate the entire multi-view video sequence.
The joint diffused input z is structured with dimensions
H × (W × V )× T × C, where C represents the latent di-
mension. This multi-view video sequence is constructed by
concatenating the frames across their width, which aligns
with their inherent panoramic nature. Fig. 2 (a) illustrates
the overall training framework of the proposed model. Be-
yond the proposed 4D attention-based UNet, we also intro-
duce a two-stage generation pipeline, which largely boosts
the generation quality.

3.2.1 Decomposed 4D Attention

The decomposed 4D attention-based UNet is designed to
enable cross-view and cross-frame modeling while ensur-
ing computational feasibility. A naive approach to multi-
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Figure 3. The two-stage inference pipeline of Panacea. Its two-
stage process begins by creating multi-view images with BEV lay-
outs, followed by using these images, along with subsequent BEV
layouts, to facilitate the generation of following frames.

view video generation might employ 4D (HWVT) atten-
tion to exhaustively explore the multi-view video represen-
tations for coherent sample generation. However, this ap-
proach demands excessive memory and computational re-
sources, surpassing the capabilities of even the most ad-
vanced A100 GPUs. Therefore, we propose a more efficient
architecture called decomposed 4D attention, drawing in-
spiration from recent advancements in video representation
learning [1, 2, 24, 56]. Our model selectively retains the
most critical attention operations: the attention between ad-
jacent views and the attention among spatially aligned tem-
poral patches. This leads to the introduction of two new at-
tention modules—cross-view attention and cross-frame at-
tention—alongside the existing intra-view spatial attention.
Empirical evaluations in Sec. 4.4 demonstrate that this de-
composed 4D attention framework effectively generates co-
herent multi-view videos, maintaining both network feasi-
bility and efficiency.

Fig. 2 (b) details our decomposed 4D attention mech-
anism. The intra-view attention retains the design of the
original spatial self-attention in the Stable Diffusion (SD)
model, as formulated in Eq. 4. To enhance cross-view con-
sistency, we introduce cross-view attention. Our observa-
tions indicate that the correlation between adjacent views is
paramount, while the correlation among non-adjacent views
is comparatively less significant and can be disregarded.
This cross-view attention is formulated in Eq. 5. The cross-
frame attention, mirroring the design of VLDM [3], focuses
on spatially aligned temporal patches. This component is
crucial in endowing the model with temporal awareness, a
key factor in generating temporally coherent videos.

Attiv (Q,K, V ) = softmax

(
Qv

t (K
v
t )

T

√
c

)
V v
t (4)

Attcv (Q,K, V ) = softmax

(
Qv

t

(
[Kv−1

t ,Kv+1
t ]

)T
√
c

)
· [V v−1

t , V v+1
t ]

(5)
Here Qv

t ,K
v
t , V

v
t represent the queries, keys, and values

within frame t and view v, respectively.

3.2.2 Two-Stage Pipeline

To enhance the generation quality, we further adopt a two-
stage training and inference pipeline. By bypassing the
temporal-aware modules, our model could also operate as
a multi-view image generator, which enables a unified ar-
chitecture for two-stage video generation.

During training, we first train a separate set of weights
dedicated to multi-view image generation. Then, as illus-
trated in Fig. 2, we train the second stage video generation
weights, by concatenating a conditioned image alongside
the diffused input. This conditioned image is integrated
only with the first frame, while subsequent frames employ
zero padding. Notably, in this second stage training, we em-
ploy ground truth images instead of the generated ones as
condition. This approach equips our training process with
an efficiency comparable to that of a single-stage video gen-
eration scheme.

During inference, as shown in Fig. 3, we first sample
multi-view frames using the weights of the first stage. This
is followed by the generation of a multi-view video, which
is conditioned on the initially generated frames, employing
the weights of the second stage. This two-stage pipeline sig-
nificantly enhances visual fidelity, a result attributable to the
decomposition of spatial and temporal synthesis processes.
The efficacy of this approach and its impact on visual qual-
ity will be further demonstrated in Sec. 4.4.

3.3. Generating Controllable Driving Scene Videos

In our Panacea model, designed for the advancement of au-
tonomous driving systems, the controllability of synthesis
samples emerge as a pivotal attribute. Panacea integrates
two categories of control signals: a coarse-grained global
control, encompassing textual attributes, and a fine-grained
layout control, which involves BEV layout sequence.

The coarse-grained global control endows the Panacea
model to generate diverse multi-view videos. This is
achieved by integrating CLIP-encoded [32] text prompts
into the UNet, a method analogous to that used in Stable
Diffusion. Benefiting from the Stable Diffusion pre-trained
model, Panacea synthesizes specific driving scenes in re-
sponse to textual prompts, as demonstrated in Fig. 1 (c)

The Panacea model’s fine-grained layout control facil-
itates the generation of synthesis samples that align with
annotations. We use BEV layout sequences as the condi-
tion. Specifically, for a BEV sequence of duration T, we
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convert them into a perspective view and extract the con-
trol elements as object bounding boxes, object depth maps,
road maps, and camera pose embeddings. Fig. 2 (d) il-
lustrates this process, where we employ different channels,
represented by distinct colors, to delineate these segmented
elements. This results in layout-controlling images with
19 channels: 10 for depth, 3 for bounding boxes, 3 for
road maps, and 3 for camera pose embeddings. These 19-
channel images are then integrated into the UNet using the
ControlNet [54] framework.

It is noteworthy that the camera pose essentially repre-
sents the direction vector [5, 41, 58], which is derived from
the camera’s intrinsic and extrinsic parameters. Detailed
construction of the camera pose is elaborated in the sup-
plementary. This camera pose condition is incorporated to
facilitate precise control over the viewpoint.

4. Experiment

4.1. Datasets and Evaluation Metrics

We evaluate the generation quality and controllability of
Panacea on the nuScenes [4] dataset.
nuScenes Dataset. The nuScenes dataset, a public driving
dataset, comprises 1000 scenes from Boston and Singapore.
Each scene is a 20 seconds video with about 40 frames. It
offers 700 training scenes, 150 validation scenes, and 150
testing scenes with 6 camera views. The camera views over-
lap each other, covering the whole 360 field of view.
Generation Quality Metrics. To evaluate the quality of
our synthesised data, we utilize the frame-wise Fréchet In-
ception Distance (FID) [12] and the Fréchet Video Distance
(FVD) [43], where FID reflects the image quality and FVD
is a temporal-aware metric that reflects both the image qual-
ity and temporal consistency.

We also use a matching-based [39] consistency score,
View-Matching-Score (VMS), to measure the cross-view
consistency of generated videos. This metric draws inspi-
ration from a similar concept, the view-consistency-score
(VCS), previously employed in BEVGen [41]. However,
due to the unavailability of the original evaluation, we de-
veloped our own implementation of the VMS instead of di-
rectly using VCS.
Controllability Metrics. The controllability of Panacea is
reflected by the alignment between the generated videos
and the conditioned BEV sequences. To substantiate this
alignment, we assess the perceptual performance on the
nuScenes dataset, utilizing metrics such as the nuScenes
Detection Score (NDS), mean Average Precision (mAP),
mean Average Orientation Error (mAOE), and mean Av-
erage Velocity Error (mAVE). Our evaluation is two-fold:
firstly, we compare the validation performance of our gen-
erated data against real data using a pre-trained perception
model. Secondly, we explore the potential of augmenting

Method Multi-View Multi-Frame FVD↓ FID↓
BEVGen[41] ✓ 25.54
BEVControl[52] ✓ - 24.85
DriveDreamer[46] ✓ 452 52.6
Panacea ✓ ✓ 139 16.96

Table 1. Comparing FID and FVD metrics with SoTA methods on
the validation set of the nuScenes dataset.

training set as a strategy for performance enhancement.
We employ StreamPETR, a state-of-the-art (SoTA)

video-based perception method, as our main evaluation
tool. For the assessment of image-based generation ap-
proaches, we utilize StreamPETR-S, the single-frame vari-
ant of StreamPETR.

4.2. Implementation Details

We implement our approach based on Stable Diffusion
2.1 [34] . Pre-trained weights are used to initialize the spa-
tial layers in UNet. During our two-stage training, the im-
age weights of the first stage is optimized for 56k steps,
and the video weights of the second stage is optimized for
40k steps. For inference, we utilize a DDIM [38] sam-
pler configured with 25 sampling steps. The video samples
are generated at a spatial resolution of 256 × 512, with a
frame length of 8. Correspondingly, our evaluation model,
StreamPETR, building upon a ResNet50[10] backbone, is
trained at the same resolution of 256 × 512. More details
can be found in supplementary material.

4.3. Main Results

4.3.1 Quantitative Analysis

Generation Quality. To verify the high fidelity of our gen-
erated results, we conduct a comparison of our approach
with various state-of-the-art driving scene generation meth-
ods. For fairness, we generate the whole validation set with-
out using any post-processing strategies to select samples.
Demonstrated in Tab. 1, our approach, Panacea, showcases
remarkably superior generation quality, achieving an FVD
of 139 and an FID of 16.96. These metrics significantly
exceed those of all counterparts, encompassing both video-
based method like DriveDreamer and image-based solu-
tions such as BEVGen and BEVControl.
Controllability for Autonomous Driving. The control-
lability of our method is quantitatively assessed based on
the perception performance metrics obtained using Stream-
PETR [45]. We first generate the entire validation set of the
nuSences by Panacea. Then, the perception performance is
derived using a pre-trained StreamPETR model. The rela-
tive performance metrics, compared to the perception scores
of real data, serve as indicators of the alignment between the
generated samples and the conditioned BEV sequences. As
depicted in Tab. 2, Panacea achieves a relative performance
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of 68%, underscoring a robust alignment of the generated
samples. Furthermore, we present the first-stage results of
our approach, which attains a relative performance of 72%.

Beyond the evaluation on the validation set, the more im-
portant feature of Panacea is its ability of generating an un-
limited number of annotated training samples. Capitalizing
on this, we synthesized a new training dataset for nuScenes,
named Gen-nuScenes, to serve as an auxiliary training
resource for the StreamPETR model. Intriguingly, the
StreamPETR model trained exclusively on Gen-nuScenes
achieved a notable nuScenes Detection Score (NDS) of
36.1%, amounting to 77% of the relative performance com-
pared to the model trained on the actual nuScenes training
set, as shown in Tab. 3. More importantly, integrating gen-
erated data with real data propels the StreamPETR model to
an NDS of 49.2, surpassing the model trained only on real
data by 2.3 points. Additionally, Fig. 4 illustrates that Gen-
nuScenes consistently bolsters the performance of Stream-
PETR across various real data ratios. These results collec-
tively affirm that our Panacea model is adept at generating
controllable multi-view video samples, constituting a valu-
able asset for autonomous driving systems.

We also demonstrate another application scenario of our
Panacea model, which could elevate image-only datasets
to video datasets by using their real images as condition.
This elevation allows for the application of advanced video-
based technologies. As indicated in Tab. 4, this data eleva-
tion process yields a significant improvement, evidenced by
a 5.8 point increase in NDS. Unfortunately, we also note a
2.3 point decrease in mAP, which we hypothesize is due to
the inferior quality of the generated samples compared to
the realistic ones and a domain mismatch between the gen-
erated training data and the real validation data. We hope
that future advancements in improving the quality of gener-
ated samples will ameliorate this observed degradation.

4.3.2 Qualitative Analysis

Temporal and View Consistency. As depicted in Fig. 1 (a-
b), Panacea shows the ability to generate the realistic multi-
view videos directly from BEV sequences and text prompts.
The generated videos exhibit notable temporal and cross-
view consistency. For instance, as seen in Fig. 1 (a), the car
in the front view maintains its appearance while approach-
ing. Similarly, the content across different views is coher-
ent, and the newly generated frames align seamlessly with
the conditional frames (see Fig. 1 (b)).
Attribute and Layout Control. Fig. 1 (c) illustrates the
attribute control capabilities, where modifications to text
prompts can manipulate elements like weather, time, and
scene. This allows our approach to simulate a variety of
rare driving scenarios, including extreme weather condi-
tions such as rain and snow, thereby greatly enhancing the

Stage Image Size Real Generated NDS↑
512×256 ✓ - 34.3

Panacea S1 512×256 - ✓ 24.7 (72%)
512×256 ✓ - 46.9

Panacea 512×256 - ✓ 32.1 (68%)

Table 2. Comparison of the generated data with real data on the
validation set, employing a pre-trained perception model. The
first stage (S1) generates the single-frame image, while the second
stage (S2) outputs the multi-frame video. The evaluation of image
is carried out by StreamPETR-S (single frame), whereas the video
data is assessed through StreamPETR.

Real Generated mAP↑ mAOE↓ mAVE↓ NDS↑
✓ - 34.5 59.4 29.1 46.9
- ✓ 22.5 72.7 46.9 36.1
✓ ✓ 37.1 (+2.6%) 54.2 27.3 49.2 (+2.3%)

Table 3. Comparison involving data augmentation using synthetic
data. We attempt training exclusively using synthetic data and also
explore integrating it with real data.

Multi-Frame Real Generated mAP↑ mAOE↓ mAVE↓ NDS↑
- ✓ - 28.6 67.9 101.6 34.3
✓ - ✓ 26.3 (-2.3%) 61.1 42.9 40.1 (+5.8%)

Table 4. Effect of elevating image-only data into video dataset.

Figure 4. The detailed comparison of synthetic data augmentation
across various real data ratios. We select portions of the real data
at ratios of 25%, 50%, 75%, and 100%.

diversity of the data. Additionally, Fig. 5 depicts how cars
and roads align precisely with the BEV layouts while main-
taining excellent temporal and view consistency.

4.4. Ablation Studies

This section validates two important designs in Panacea:
decomposed 4D attention and the two-stage pipeline.
Decomposed 4D Attention. We first investigate the im-
pact of the cross-view attention mechanism in decomposed
4D attention. As illustrated in Tab. 5, the exclusion of the
cross-view module results in a degradation of 108 and 5.11
in FVD and FID, respectively. This indicates the crucial role
of the cross-view module in improving video quality. Addi-
tionally, to assess view consistency more precisely, we eval-
uate the VMS metric. Incorporating the cross-view module
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Figure 5. Controllable multi-view video generation. The col-
umn shows 4 different views and the rows shows adjacent frames
aligned with BEV control.

Settings FVD↓ FID↓
Panacea 139 16.96
w/o Cross-view 247 (+108) 22.07 (+5.11)
w/o Cross-frame 214 (+75) 20.43 (+3.47)
w/o Two stage 305 (+166) 36.61 (+19.65)

Table 5. Ablation studies on different settings. ’w/o Two stage’
denotes the method where a video generation model is directly
trained and inferred without an initial stage of image generation.

results in a 0.8 point enhancement, corroborating its effi-
cacy in improving multi-view consistency, as showcased in
the right of Fig. 6.

The effectiveness of the cross-view module is also illus-
trated in the left of Fig. 6. Without the cross-view mod-
ule, the appearance of cars are inconsistent across different
views. Conversely, with the integration of the cross-view
module, there is a significant improvement in maintaining
the consistency of cars and scenes across views.

To evaluate the temporal attention, we perform an ab-
lation study by eliminating this component. As shown in
Tab. 5, a notable degradation of 75 points in FVD is ob-
served when the temporal module is removed, highlighting
its crucial role in maintaining temporal consistency. Fur-
thermore, Fig. 7 concisely demonstrates that without the
cross-frame attention module, the model fails to retain tem-
poral consistency, as evident in the variations of the car’s
appearance across frames.
Two Stage Pipeline. To confirm that our two-stage pipeline
enhances generation quality, we conduct a comparison

Figure 6. Ablation on the efficiency of cross-view attention (CVA).
The cars in the generated frames with or without cross-view atten-
tion are highlighted by green and pink dashed boxes, respectively.
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Figure 7. Ablation study on the effects of Cross-Frame Attention
(CFA). The sequential frames are displayed from left to right.

against the single-stage schema. The single-stage approach
yields an FID of 36.61 and an FVD of 305, markedly in-
ferior to the results achieved by Panacea. This comparison
unequivocally underscores the critical impact of the two-
stage pipeline in substantially elevating the quality of the
generated videos.

5. Conclusion

We propose Panacea, a cutting-edge generator meticulously
designed to create manipulable panoramic videos for driv-
ing scenarios. Within this innovative framework, we in-
corporate a decomposed 4D attention module to ensure
temporal and cross-view consistency, facilitating the gen-
eration of realistic multi-view images and videos. Be-
sides, a two-stage training strategy is employed to further
enhance the generation quality. Significantly, Panacea is
adept at handling a variety of control signals to produce
videos with precise annotations. Through extensive exper-
iments, Panacea has demonstrated its proficiency in gener-
ating high-quality, well-annotated panoramic driving-scene
videos. These videos are invaluable, serving not only in
BEV perception but also hold promise in real-world driving
simulations. Looking ahead, we aspire to delve into the ex-
pansive potential of Panacea in real-world simulation, and
integrate control signals with more diversity.
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