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Figure 1. Speeding up diffusion models through block caching. We observe that there are many redundant layer computations at
different timesteps in diffusion models when generating an image. Our block caching technique allows us to avoid these unnecessary
computations, therefore speeding up inference by a factor of 1.5x-1.8x while maintaining image quality. Compared to the standard practice
of naively reducing the number of denoising steps to match our inference speed, our approach produces more detailed and vibrant results.

Abstract

Diffusion models have recently revolutionized the field of
image synthesis due to their ability to generate photorealis-
tic images. However, one of the major drawbacks of diffu-
sion models is that the image generation process is costly. A
large image-to-image network has to be applied many times
to iteratively refine an image from random noise. While
many recent works propose techniques to reduce the num-
ber of required steps, they generally treat the underlying
denoising network as a black box. In this work, we investi-
gate the behavior of the layers within the network and find
that 1) the layers’ output changes smoothly over time, 2) the
layers show distinct patterns of change, and 3) the change
from step to step is often very small. We hypothesize that
many layer computations in the denoising network are re-
dundant. Leveraging this, we introduce block caching, in

This work was done during Felix’ internship at Meta GenAl.

which we reuse outputs from layer blocks of previous steps
to speed up inference. Furthermore, we propose a tech-
nique to automatically determine caching schedules based
on each block’s changes over timesteps. In our experiments,
we show through FID, human evaluation and qualitative
analysis that Block Caching allows to generate images with
higher visual quality at the same computational cost. We
demonstrate this for different state-of-the-art models (LDM
and EMU) and solvers (DDIM and DPM).

Project page: fwmb.github.io/blockcaching

1. Introduction

Recent advances in diffusion models have revolutionized
the field of generative Al. Such models are typically pre-
trained on billions of text-image pairs, and are commonly
referred to as “foundation models”. Text-to-image founda-
tion models such as LDM [41], Dall-E 2/3 [2, 38], Ima-
gen [43], and Emu [8] can generate very high quality, pho-
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torealistic images that follow user prompts. These founda-
tion models enable many downstream tasks, ranging from
image editing [4, 17] to synthetic data generation [20], to
video and 3D generations [34, 46].

However, one of the drawbacks of such models is their
high latency and computational cost. The denoising net-
work, which typically is a U-Net with residual and trans-
former blocks, tends to be very large in size and is repeat-
edly applied to obtain a final image. Such high latency pro-
hibits many applications that require fast and frequent infer-
ences. Faster inference makes large-scale image generation
economically and technically viable.

The research community has made significant efforts to
speed up image generation foundation models. Many works
aim to reduce the number of steps required in the denoising
process by changing the solver [10, 27, 28, 45, 61]. Other
works propose to distill existing neural networks into archi-
tectures that require fewer steps [44] or that can combine the
conditional and unconditional inference steps [31]. While
improved solvers and distillation techniques show promis-
ing results, they typically treat the U-Net model itself as
a black box and mainly consider what to do with the net-
work’s output. This leaves a potential source of speed up—
the U-Net itself—completely untapped.

In this paper, we investigate the denoising network in-
depth, focusing on the behavior of attention blocks. Our
observations reveal that: 1) The attention blocks change
smoothly over denoising steps. 2) The attention blocks
show distinct patterns of change depending on their posi-
tion in the network. These patterns are different from each
other, but they are consistent irrespective of the text inputs.
3) The change from step to step is typically very small in the
majority of steps. Attention blocks incur the biggest compu-
tational cost of most common denoising networks, making
them a prime target to reduce network latency.

Based on these observations, we propose a technique
called block caching. Our intuition is that if a layer
block does not change much, we can avoid recomputing
it to reduce redundant computations. We extend this by a
lightweight scale-shift alignment mechanism, which pre-
vents artifacts caused by naive caching due to feature mis-
alignment. Finally, we propose an effective mechanism to
automatically derive caching schedules.

We analyse two different models: a replacement trained
version of Latent Diffusion Models [41] on Shutterstock
data, as well as the recently proposed EMU [8], as can be
seen in Fig. 1. For both, we conduct experiments with two
popular solvers: DDIM [48] and DPM [27]. For all com-
binations, given a fixed computational budget (inference la-
tency), we can perform more steps with block caching and
achieve better image quality. Our approach achieves both
improved FID scores and is preferred in independent human
evaluations.

2. Related Work

In the following, we introduce important works that are re-
lated to our proposed method.

Text-to-Image Models. With recent advances in genera-
tive models, a vast number of text-conditioned models for
image synthesis emerged. Starting out with GAN-based
methods [14, 24, 35, 36, 40, 51, 53, 54, 58, 59, 64], re-
searchers discovered important techniques such as adding
self-attention layers [60] for better long-range dependency
modeling and scaling up to very large architectures [3, 21].
Different autoencoder-based methods [16, 39], in particular
generative transformers [5, 7, 12, 37], can also synthesize
new images in a single forward pass and achieve high vi-
sual quality. Recently, the field has been dominated by dif-
fusion models [47-49]. Advances such as classifier guid-
ance [9], classifier-free guidance [18, 32], and diffusion in
the latent space [41] have enabled modern diffusion models
[1, 6, 8, 13, 32, 38, 41, 43, 55] to generate photorealistic
images at high resolution from text. However, this superior
performance often comes at a cost: Due to repeated appli-
cations of the underlying denoising neural network, image
synthesis with diffusion models is very computationally ex-
pensive. This not only hinders their widespread usage in
end-user products, but also slows down further research. To
facilitate further democratization of diffusion models, we
focus on accelerating diffusion models in this work.

Improved Solvers. In the diffusion model framework, we
draw a new sample at every step from a distribution deter-
mined by the previous steps. The exact sampling strategy,
defined by the so-called solver, plays an important role in
determining the number of steps we have to make to ob-
tain high-quality output. Starting out from the DDPM [19]
formulation, DDIM [48] introduced implicit probabilistic
models. DDIM allows the combination of DDPM steps
without retraining and is popular with many current mod-
els. The DPM-Solver [27, 28] models the denoising process
as an ordinary differential equation and proposes a dedi-
cated high-order solver for diffusion ODEs. Similar ap-
proaches are adopted by [22, 25, 61-63]. Another line of
works [10, 11, 23, 45, 52] proposed to train certain parts
of the solver on a dataset. While better solvers can help
to speed up image synthesis by reducing the number of re-
quired steps, they still treat the underlying neural network
as a black box. In contrast, our work investigates the inter-
nal behavior of the neural network and gains speed up from
caching. Therefore, the benefits of improved solvers and
our caching strategy are not mutually exclusive.

Distillation. Distillation techniques present an alternative
way to speed up inference. Here, a pretrained teacher net-
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Figure 2. Overview. We observe, that in diffusion models, not only the intermediate results x, but also the internal feature maps change
smoothly over time. (a) We visualize output feature maps of two layer blocks within the denoising network via PCA. Structures change
smoothly at different rates. (b) We also observe this smooth layer-wise change when plotting the change in output from one step to the
next, averaging over many different prompts and randomly initialized noise. Besides the average, we also show the standard deviation as
shaded area. The patterns always remain the same. Configuration: LDM-512, DPM, 20 Steps.

work creates new training targets for a student architec-
ture, that needs fewer neural function evaluations than the
teacher. Guidance distillation [31] replaces the two function
evaluations of classifier-free guidance with a single one,
while progressive distillation [44] reduces the number of
sampling steps. [29] optimizes a student to directly predict
the image generated by the teacher in one step.

Consistency models [30, 50] use a consistency formula-
tion enabling a single-step student to do further steps. Fi-
nally, [56] distill a large teacher model into a much smaller
student architecture. However, distillation does not come
without cost. Apart from the computational cost of re-
training the student model, some distillation techniques can-
not handle negative or composite prompts [26, 31]. In this
paper, we introduce a lightweight fine-tuning technique in-
spired by distillation, that leaves the original parameters un-
changed while optimizing a small number of extra parame-
ters without restricting the model.

3. Method

In this work, we investigate the behavior of the different lay-
ers in the diffusion U-Net to develop novel ways of speed-
ing up the image generation process. The main insight of
our method is that large latent diffusion models contain re-
dundant computations that can be recycled between steps
without compromising image quality. The key to our ap-
proach is to cache the outputs of U-Net blocks to be reused
in the remaining diffusion steps.

3.1. Preliminaries

In the diffusion model framework, we start from an input
image v € [—1,1]>*#*W_ For a number of timesteps
t € [1,T], we repeatedly add Gaussian noise ¢; ~ N to the
image, to gradually transform it into fully random noise.

(D
xp ~ N(0,1) 2)

To synthesize novel images, we train a neural network
U(xy,t) to gradually denoise a random sample xr. The
neural network can be parameterized in different ways to
predict zg, €; or Vlog(x) [49]. A solver ® determines
how to exactly compute z;_; from the output of ¥ and ¢.

Ty =Tp—1+ €

Tt—1 = @(.’I}t,t,\y(l‘t,t)) (3)

The higher the number of steps is, the higher the visual
quality of the image generally becomes. Determining the
number of steps presents users with a trade-off between im-
age quality and speed.

3.2. Analysis

One of the key limitations of diffusion models is their slow
inference speed. Existing works often propose new solvers
or to distill existing models, so that fewer steps are required
to produce high-quality images. However, both of these di-
rections treat the given neural network as a black box.

6213



Baseline - 14 Steps

Block Caching - 20 Steps

hidden realm of wonders.

in_full bloom under a full moon.

An ancient castle on a cliff overlooking A tranquil garden with cherry blossoms A magical portal opening to reveal a
a vast, mist-covered valley.

A floating city in the clouds where airships A time-traveling wizard riding a

Block Caching - 20 Steps

Baseline - 14 Steps

mechanical steed through a portal, A yellow tiger with blue stipres.

leaving trails of stardust in their wake.

navigate through tunnels of light, and
majestic creatures soar in the skies.

Figure 3. Qualitative Results for EMU-768. With identical inference speed, our caching technique produces finer details and more vibrant
colors. For more results refer to the supplementary material. Configuration: DPM, Block caching with 20 steps vs Baseline with 14 steps.

In this paper, we move away from the “black box per-
spective” and investigate the internal behavior of the neu-
ral network W to understand it at a per-layer basis. This is
particularly interesting when considering the temporal com-
ponent. To generate an image, we have to perform multiple
forward passes, where the input to the network changes only
gradually over time.

The neural network U generally consists of multiple
blocks of layers B;(x;,s;), ¢ € [0, N — 1], where N is
the number of all blocks of the network, x is the output of
an earlier block and s is the optional data from a skip con-
nection. The common U-Net architecture [42], as used in
many current works [8, 33, 41], is made up of ResBlocks,
SpatialTransformer blocks, and up/downsampling
blocks. ResBlocks mostly perform cheap convolutions,
while SpatialTransformer blocks perform self- and
cross-attention operations and are much more costly.

A common design theme of such blocks is that they rely
on residual connections. Instead of simply passing the re-
sults of the layer computations to the next block, the result
is combined with the original input of the current block via

summation. This is beneficial, as it allows information (and
gradients) to flow more freely through the network [15].
Rather than replacing the information, a block changes the
information that it receives as input.

Bi(z,s) = C;(x, s) + concat(z, s)

C;(x, s) = layers,(concat(z, s))

“4)
®)

To better understand the inner workings of the neural net-
work, we visualize how much the changes the block applies
to the input vary over time. Concretely, we consider two
metrics: Relative absolute change L1,.

_ ||Ci($ta St) - Ci(xt—la St—l)Hl
||Ci($t, 3t)||1

To get representative results, we generate 32 images
from different prompts with 2 random seeds each and re-
port the averaged results in Fig. 2. Further, we visualize
selected feature maps. We make three key observations:

1) Smooth change over time. Similarly to the interme-
diate images during denoising, the blocks change smoothly

Ll (i,t)

(6)
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Figure 4. Caching Schedule for LDM-512 at 20 steps with
DPM. Each arrow represents the cache lifetime of a spatial trans-
former block. For the duration of an arrow, the spatial transformer
block reuses the cached result computed at the beginning of the
arrow. E.g., Input block I only computes the result at step 1, 6, 10,
14 and 18 and uses the cached value otherwise.

and gradually over time. This suggests that there is a clear
temporal relation between the outputs of a block.

2) Distinct patterns of change. The different blocks
do not behave uniformly over time. Rather, they apply a
lot of change in certain periods of the denoising process,
while they remain inactive in others. The standard deviation
shows that this behavior is consistent over different images
and random seeds. Note that some blocks, for example the
blocks at higher resolutions (either very early or very late
in the network) change most in the last 20%, while deeper
blocks at lower resolutions change more in the beginning.

3) Small step-to-step difference. Almost every block
has significant periods during the denoising process, in
which its output only changes very little.

3.3. Block Caching

We hypothesize that a lot of blocks are performing redun-
dant computations during steps where their outputs change
very little. To reduce the amount of redundant computations
and to speed up inference, we propose Block Caching.
Instead of computing new outputs at every step, we reuse
the cached outputs from a previous step. Due to the nature
of residual connections, we can perform caching at a per-
block level without interfering with the flow of information
through the network otherwise. We can apply our caching
technique to almost all recent diffusion model architectures.
One of the major benefits of Block Caching compared to
approaches that reduce the number of steps is that we have a
more finegrained control over where we save computation.
While we perform fewer redundant computations, we do not

Figure 5. Scale Shift Optimization. The student network copies
and freezes the weights of the teacher and has additional scale
and shift parameters per block. These parameters are optimized
to match the teacher output per block and step.

reduce the number of steps that require a lot of precision
(i.e. where the change is high).

Automatic cache schedule. Not every block should be
cached all the time. To make a more informed decision
about when and where to cache, we rely on the metric de-
scribed in Sec. 3.2. We first evaluate these metrics over a
number of random prompts and seeds. Our intuition is that
for any layer block 7, we retain a cached value, which was
computed at time step ¢, as long as the accumulated change
does not exceed a certain threshold §. Once the threshold is
exceeded at time step t;, we recompute the block’s output.

ty— ty

1
Ll (i,t) <6< > Lla(i,t) @)
t

t=tq t=tq

With a lower threshold, the cached values will be refreshed
more often, whereas a higher threshold will lead to faster
image generation but will affect the appearance of the image
more. The threshold § can be picked such that it increases
inference speed without negatively affecting image quality.

3.4. Scale-Shift Adjustment

While caching already works surprisingly well on its own,
as shown in Sec. 4.2, we observe that aggressive caching
can introduce artifacts into the final image. We hypothesize
that this is due to a misalignment between the cached fea-
ture map and the “original” feature map at a given timestep.
To enable the model to adjust to using cached values, we
introduce a very lightweight scale-shift adjustment mech-
anism wherever we apply caching. To this end, we add a
timestep-dependent scalar shift and scale parameter for each
layer that receives a cached input. Concretely, we consider
every channel separately, i.e. for a feature map of shape
(N x C x H x W), we predict a vector of shape (N x C')
for both scale and shift. This corresponds to a simple linear
layer that receives the timestep embedding as input.

We optimize scale and shift on the training set while
keeping all other parameters frozen. However, optimization
of these additional parameters is not trivial. As we require

6215



Block Caching - 20 Steps

2R
= <
=3
“ga
S8
ERS
S
2
9
Qs
N
S
S3
O]

High quality photograph of a female
astronaut from a scifi movie

A single rose in a rustic garden

Naive Caching - 20 Steps

Baseline - 20 Steps Baseline - 14 Steps

Figure 6. Qualitative Results for LDM-512. Our method often provides richer colors and finer details. Through our scale-shift adjustment,
we avoid artifacts that are visible when naively applying block caching. More qualitative results for DPM and DDIM can be found in the
supplementary material. Configuration: DPM, Block caching with 20 steps vs Baseline with 14 steps.

valid cached values, we cannot directly add noise to an im-
age and train the network to denoise to the original image.

Therefore, we rely on an approach, shown in Fig. 5,
that is inspired by distillation techniques. Our model with
caching enabled acts as the student, while the same model
with caching disabled acts as the teacher. We first unroll the
consecutive steps of the denoising process for the student
configuration and generate an image from complete noise.
Then, we perform a second forward pass at every timestep
with the teacher configuration, which acts as the training
target. Note that for the teacher, we use the intermediate
steps from the student’s trajectory as input rather than un-
rolling the teacher. Otherwise, the teacher might take a dif-
ferent trajectory (leading to a different final output), which
then is not useful as a training target.

This optimization is very resource-friendly, as the
teacher and student can use the same weights, saving GPU
memory, and we only optimize a small number of extra
parameters, while keeping the parameters of the original
model the same. During inference, the multiplication and

addition with scale and shift parameters have no noticeable
effect on the inference speed but improve image quality as
shown in Sec. 4.2.

4. Experiments

In the following, we first demonstrate the general potential
of our Block Caching technique and then analyze it in more
detail through several ablation studies.

4.1. Experimental Setup

Our proposed method is general and can be applied to most

recent diffusion models. In order to give a good overview,

we conduct our experiments mainly on two models that rep-
resent light and heavy computational demands:

e LDM-512 [41], a popular diffusion model with 900M pa-
rameters, that generates images at a 512 x 512 resolution,
replacement trained on internal Shutterstock images.

* EMU-768 [8], a state-of-the-art model with 2.7B param-
eters, which can produce photorealistic images at a reso-
lution of 768 x 768.
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For both models, we use classifier-free guidance [18]
with a guidance strength of 5.0 and do not use any other
performance-enhancing techniques. We run inference in
bfloat16 type and measure the latency on a single Nvidia
A100 GPU. For the optimization of the scale-shift adjust-
ment parameters, we perform 15k training iterations on
eight A100 GPUs. Depending on the model and the number
of denoising steps, this takes between 12 and 48 hours.

4.2. Accelerating Inference through Caching

Our proposed caching technique can be viewed from two
perspectives: 1) Given a fixed number of steps, caching al-
lows us to accelerate the image generation process without
decreasing quality. 2) Given a fixed computational budget,
we can perform more steps when using caching, and there-
fore obtain better image quality than performing fewer steps
without caching.

To demonstrate the flexibility of our approach, we con-
sider two common inference settings: (i) Many approaches
perform 50 denoising steps by default. Therefore, we apply
caching with 50 solver steps and achieve the same latency
as the 30 steps of the baseline model. (ii) By using modern
solvers like DPM [27] or DDIM [48], it is possible to gen-
erate realistic-looking images with as few as 20 steps. If we
apply caching with 20 solver steps, we can reduce the infer-
ence latency to an equivalent of performing 14 steps with
the non-cached baseline model.

Analysis of LDM-512. We begin by performing a thor-
ough qualitative and quantitative analysis of the LDM-512
model. After computing the layer block statistics for the au-
tomatic cache configuration, we find that a change thresh-
old of § = 0.5 gives us the desired speedup. The resulting
caching schedule is visualized in Fig. 4. As can be observed
in the plots with relative feature changes (Fig. 2), we can
aggressively cache the early and late blocks. On the other
hand, the activations of the deeper blocks change faster, es-
pecially in the first half of the denoising process, and should
therefore only be cached conservatively.

The results in Tab. 1 demonstrate that for both DPM and
DDIM, the proposed caching with 20 steps significantly
improves the FID value compared to the 14-step baseline,
while being slightly faster. Similarly, 50 steps with caching
outperforms the 30-step baseline, while maintaining a com-
parable latency. Moreover, our scale-shift adjustment mech-
anism further enhances the results. Notably, this full config-
uration even outperforms the 20-step and 50-step baselines.
We hypothesize that caching introduces a slight momentum
in the denoising trajectory due to the delayed updates in
cached values, resulting in more pronounced features in the
final output image.

Qualitative results can be seen in Fig. 6. Our full model
(caching + scale-shift adjustment) produces more crisp and

Solver ‘ Steps ‘ Caching SS ‘ FID | Img/st Speedup 1

20 1715 2.17  1.00x
DPM | 14 18.67 3.10 143x
271 | 20 v 1758 3.64  1.68x
20 v v 1595 359  1.65x
20 1743 217  1.00x
DDIM | 14 17.11  3.10  143x
48] | 20 v 16.52 348  1.60x
20 v v 1602 345  1.58x
50 1744 087  1.00x
DPM | 30 1721 146 1.67x
271 | 50 v 1723 1.61  1.85x
50 v v |1518 159  1.82x
50 17.76  0.87  1.00x
DDIM | 30 1742 146  1.67x
[48] | 50 v 16.65 159  1.82x
50 v v |1515 156  1.79x

Table 1. LDM-512 FID and Throughput Measurements. For
different solvers, we test our caching technique against baselines
with 1) the same number of steps or 2) the same latency. In all
cases, our proposed approach achieves significant speedup while
improving visual quality as measured by FID on a COCO subset
removing all faces. Legend: SS = Scale-shift adjustment, Img/s.
= Images per second.

Steps (mmgrs) Votes (in %)
Caching Baseline | Win Tie Lose

Solver

DPM | 20 (025
DDIM | 20 (.25

14 o | 347 369 284
14 om) | 280 488 232

DPM | 50 (0.14)
DDIM | 50 (g.13)

30 0.13) | 27.8 543 179
30 013y | 29.7 468 235

Table 2. EMU-768 Visual Appeal Human Evaluation. We
present the percentages of votes indicating a win, tie, or loss for
our method in comparison to the baseline. This is evaluated across
various solvers and number of steps. In every comparison, both
the caching and baseline configuration have roughly the same in-
ference speed (reported as images per second).

vibrant images with significantly more details when com-
pared to the 14-step baseline. This can be explained by the
fact that when performing only 14 steps, the model makes
steps that are too big to add meaningful details to the image.
Caching without scale-shift adjustment also yields images
with more detail compared to the baseline. However, we
often observe local artifacts, which are particularly notice-
able in the image backgrounds. These artifacts appear like
overly-emphasized style features. The application of our
scale-shift adjustment effectively mitigates these effects.
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more blocks are cached, resulting in faster inference. § = 0.5
gives a 1.5x speedup and the best visual quality. Configuration:
DPM, LDM-512, Block caching with 50 steps.

Analysis of EMU-768. To demonstrate the generality of
our proposed approach, we also apply caching and scale-
shift adjustment to the EMU-768 model under the same set-
tings as for LDM-512. As can be seen in Fig. 3, we achieve
a very similar effect: The generated images are much more
detailed and more vibrant, compared to the baseline. This is
also confirmed by a human eval study, in which we asked 12
independent annotators to compare the visual appeal of im-
ages generated for the prompts from Open User Input (OUI)
Prompts [8] and PartiPrompts[57] for different configura-
tions. Specifically, we compared different configurations
with the same latency for different samplers and collected
1320 votes in total. As reported in Tab. 2, our proposed
caching technique is clearly preferred over the baseline in
every run. Note that for many prompts, both images have
very high quality, leading to a high rate in ties. This study
shows that caching can be applied to a wide range of differ-
ent models, samplers and step counts.

Effects of more aggressive caching. The extent to which
the model caches results is controlled by the parameter §.
The higher 9, the longer the cache lifetime and the less
frequent block outputs are recomputed. Fig. 7 shows syn-
thesized images for varying § values along with the cor-
responding inference speed. Although a higher § leads to
faster inference, the quality of the final image deteriorates
when block outputs are recomputed too infrequently. We
find that 6 = 0.5 not only provides a significant speedup by
1.5 but also improves the image quality, thereby achieving
the optimal trade-off (see Tab. 1).

Difficulty of Caching ResBlocks. As described above,
we only cache SpatialTransformer blocks and not
ResBlocks. This design choice is grounded in the ob-

Baseline - 20 Steps

ResBlock Caching - 20 Steps

Figure 8. Effect of Caching ResBlocks. Caching ResBlocks in-
stead of spatial transformer blocks results in fewer details and in-
ferior image quality, while achieving only a small speedup of 5%.
Configuration: DPM, EMU-768, Block caching with 20 steps.

servation, that ResBlocks change much less smoothly
compared to SpatialTransformer blocks. In par-
ticular, ResBlocks are very important for generating
local details in the image. To test this, we generate
images where we only cache ResBlocks and leave
SpatialTransformer blocks untouched. As can be
seen in Fig. 8, even to gain a speedup of as low as 5%, the
image quality deteriorates significantly.

5. Conclusion

In this paper, we first analyzed the inner workings of the de-
noising network, moving away from the common perspec-
tive of considering diffusion models as black boxes. Lever-
aging the insights from our analysis, we proposed the Block
Caching technique. It reduces the redundant computations
during inference of the diffusion models and significantly
speeds up the image generation process by a factor of 1.5 x-
1.8 at a minimal loss of image quality. To showcase the
adaptability of our approach, we performed experiments on
LDM and EMU models with a parameter range from 900M
to 2.7B. We tested our approach in different inference set-
tings by varying solvers and number of steps. Our technique
generates more vibrant images with more fine-grained de-
tails when compared to naively reducing the number of
solver steps for the baseline model to match the compute
budget. We confirmed our findings quantitatively by com-
puting the FID and by human evaluation.
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