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Abstract

Recent progress in single-image 3D generation highlights
the importance of multi-view coherency, leveraging 3D pri-
ors from large-scale diffusion models pretrained on Internet-
scale images. However, the aspect of novel-view diversity
remains underexplored within the research landscape due
to the ambiguity in converting a 2D image into 3D con-
tent, where numerous potential shapes can emerge. Here,
we aim to address this research gap by simultaneously ad-
dressing both consistency and diversity. Yet, striking a bal-
ance between these two aspects poses a considerable chal-
lenge due to their inherent trade-offs. This work introduces
HarmonyView, a simple yet effective diffusion sampling
technique adept at decomposing two intricate aspects in
single-image 3D generation: consistency and diversity. This
approach paves the way for a more nuanced exploration
of the two critical dimensions within the sampling process.
Moreover, we propose a new evaluation metric based on
CLIP image and text encoders to comprehensively assess the
diversity of the generated views, which closely aligns with hu-
man evaluators’ judgments. In experiments, HarmonyView
achieves a harmonious balance, demonstrating a win-win
scenario in both consistency and diversity.

1. Introduction
Humans can effortlessly imagine the 3D form of an object
from just a single camera view, drawing upon their prior
knowledge of the 3D world. Yet, emulating this human ca-
pability in machines remains a longstanding challenge in
the field of computer vision [2, 26, 37, 44, 46, 59]. The fun-
damental hurdle lies in the inherent ambiguity of deducing
3D structure from a single 2D image since a single image
essentially collapses the three dimensions of the real world
into a 2D representation. Consequently, countless 3D con-
figurations of an object can be projected onto the same 2D
image. This ambiguity has ignited the quest for innovative
solutions for single-image 3D generation [1, 12, 14, 16, 17,
19, 20, 29, 33–36, 40–42, 51, 52, 56, 57, 60, 61].

One prevalent strategy is to generate multi-view images
from a single 2D image [17, 18, 40, 50], and process them us-
ing techniques such as Neural Radiance Fields (NeRFs) [23]
to create 3D representations. Regarding this, recent stud-
ies [18, 19, 40, 50, 56, 57] highlight the importance of main-
taining multi-view coherency. This ensures that the generated
3D objects to be coherent across diverse viewpoints, empow-
ering NeRF to produce accurate and realistic 3D reconstruc-
tions. To achieve this, researchers harness the capabilities of
large-scale diffusion models [32], particularly those trained
on a vast collection of 2D images. The abundance of 2D
images provides a rich variety of views for the same ob-
ject, allowing the model to learn view-to-view relationships

and acquire geometric priors about the 3D world. On top of
this, some works [19, 40] introduce a refinement stage that
fine-tunes the view alignment to accommodate variations in
camera angles. This adjustment is a key factor in achieving
the desired multi-view coherency, which directly impacts the
realism of the resulting 3D representation. This progress has
notably enhanced the utility of the generated 3D contents,
making them more suitable for various applications [28, 53].

An equally significant but often overlooked aspect in
single-image 3D generation is the novel-view diversity. The
ill-posed nature of this task necessitates dealing with numer-
ous potential 3D interpretations of a given 2D image. Recent
works [18, 19, 40, 49] showcase the potential of creating
diverse 3D contents by leveraging the capability of diffu-
sion models in generating diverse 2D samples. However,
balancing the pursuit of consistency and diversity remains
a challenge due to their inherent trade-off: maintaining vi-
sual consistency between generated multi-view images and
the input view image directly contributes to sample quality
but comes at the cost of limiting diversity. Although current
multi-view diffusion models [19, 40] attempt to optimize
both aspects simultaneously, they fall short of fully unravel-
ing their intricacies. This poses a crucial question: Can we
navigate towards a harmonious balance between these two
fundamental aspects in single-image 3D generation, thereby
unlocking their full potential?

This work aims to address this question by introducing
a simple yet effective diffusion sampling technique, termed
HarmonyView. This technique effectively decomposes the
intricacies in balancing consistency and diversity, enabling a
more nuanced exploration of these two fundamental facets
in single-image 3D generation. Notably, HarmonyView pro-
vides a means to exert explicit control over the sampling
process, facilitating a more refined and controlled generation
of 3D contents. This versatility of HarmonyView is illus-
trated in Fig. 1. Our method achieves a harmonious balance,
demonstrating mutual benefits in both consistency and di-
versity. HarmonyView generates geometrically coherent 3D
contents that faithfully represent the input image for visible
parts while also capturing diverse yet plausible modes for
occluded parts. Another challenge we face is the absence of
standardized metrics for assessing the diversity of generated
multi-views. To address this gap and provide a more compre-
hensive assessment of the consistency and diversity of 3D
contents, we introduce a novel evaluation metric based on
both the CLIP image and text encoders [8, 30].

In experiments, we quantitatively compare HarmonyView
against state-of-the-art techniques, spanning two tasks: novel-
view synthesis and 3D reconstruction. In both tasks, Har-
monyView consistently outperforms baseline methods across
all metrics. Our qualitative results further highlight the effi-
cacy of HarmonyView, showcasing faithful reconstructions
with remarkable visual quality, even in complex scenes.
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Moreover, we show that our proposed metric closely aligns
with the assessments made by human evaluators. Lastly, Har-
monyView can be seamlessly integrated with off-the-shelf
text-to-image diffusion models (e.g., Stable Diffusion [32]),
enabling it to perform text-to-image-to-3D generation.

2. Related Work

Lifting 2D pretrained models for 3D generation. Recent
research endeavors [3, 15, 21, 36, 42, 45, 49, 52, 61] are cen-
tered on the idea of lifting 2D pre-trained models [30, 32]
to create 3D models from textual prompts, without the need
for explicit 3D data. The key insight lies in leveraging 3D
priors acquired by diffusion models during pre-training on
Internet-scale data. This enables them to dream up novel
3D shapes guided by text descriptions. DreamFusion [27]
distills pre-trained Stable Diffusion [32] using Score Distil-
lation Sampling (SDS) to extract a Neural Radiance Field
(NeRF) [23] from a given text prompt. DreamFields [11]
generates 3D models based on text prompts by optimizing
the CLIP [30] distance between the CLIP text embedding
and NeRF [23] renderings. However, accurately representing
3D details with word embeddings remains a challenge.

Similarly, some works [22, 29, 41, 55] extend the distilla-
tion process to train NeRF for the 2D-to-3D task. NeuralLift-
360 [55] utilizes a depth-aware NeRF to generate scenes
guided by diffusion models and incorporates a distillation
loss for CLIP-guided diffusion prior [30]. Magic123 [29]
uses SDS loss to train a NeRF and then fine-tunes a mesh
representation. Due to the reliance on SDS loss, these meth-
ods necessitate textual inversion [7] to find a suitable text
description for the input image. Such a process needs per-
scene optimization, making it time-consuming and requiring
tedious parameter tuning for satisfactory quality.

Another line of work [17, 18, 40, 50] uses 2D diffusion
models to generate multi-view images then use them for
3D reconstruction with NeRF [23, 47]. 3DiM [50] views
novel-view synthesis as an image-to-image translation prob-
lem and uses a pose-conditional diffusion model to predict
novel views from an input view. Zero-1-to-3 [18] enables
zero-shot 3D creation from arbitrary images by fine-tuning
Stable Diffusion [32] with relative camera pose. Our work,
falling into this category, is able to convert arbitrary 2D im-
ages to 3D without SDS loss [27]. It seamlessly integrates
with other frameworks, such as text-to-2D [24, 31, 32] and
neural reconstruction methods [23, 47], streamlining the
text-to-image-to-3D process. Unlike prior distillation-based
methods [22, 55] confined to a singular mode, our approach
offers greater flexibility for generating diverse 3D contents.

Consistency and diversity in 3D generation. The pri-
mary challenge in single-image 3D content creation lies in
maintaining multi-view coherency. Various approaches [18,
19, 50, 56, 57] attempt to tackle this challenge: Viewset Dif-

fusion [40] utilizes a diffusion model trained on multi-view
2D data to output 2D viewsets and corresponding 3D models.
SyncDreamer [19] introduces a 3D-aware feature attention
that synchronizes intermediate states of noisy multi-views.
Despite these efforts, achieving complete geometric coher-
ence in generated views remains a challenge.

On the other hand, diversity across generated 3D sam-
ples is another critical aspect in single-image 3D generation.
However, only a few works in the related literature specifi-
cally address this issue, often limited to domains such as face
generation [4] or starting from text for 3D generation [49].
Recent studies [18, 19, 40, 57] showcase the potential of pre-
trained diffusion models [32] in generating diverse multi-
view images. However, there is still significant room for
exploration in balancing consistency and diversity. In our
work, we aim to unlock the potential of diffusion models,
allowing for reasoning about diverse modes for novel views
while being faithful to the input view for observable parts.
We achieve this by breaking down the formulation of multi-
view diffusion model into two fundamental aspects: visual
consistency with input view and diversity of novel views. Ad-
ditionally, we propose the CD score to address the absence
of a standardized diversity measure in existing literature.

3. Method
Our goal is to create a high-quality 3D object from a single
input image, denoted as y. To achieve this, we use the diffu-
sion model [39] to generate a cohesive set of N views at pre-
defined viewpoints, denoted as x

(1:N)
0 = {x(1)

0 , ...,x
(N)
0 }.

These mutli-view images are then utilized in NeRF-like tech-
niques [23, 47] for 3D reconstruction. The key to a realistic
3D object lies in the consistency across the generated views.
If they exhibit coherent appearance and geometry, the re-
sulting 3D object will appear more natural. Therefore, en-
suring consistency is crucial for achieving our goal. Recent
works [19, 34, 40] address multi-view generation by jointly
optimizing the distribution of multiple views. Building upon
them, we aim to enhance both consistency and diversity by
decomposing their formulation during diffusion sampling.

3.1. Multi-view Diffusion Models

We address the challenge of generating a 3D representation
from a single, partially observed image using diffusion mod-
els [38, 39]. These models inherently possess the capability
to capture diverse modes [54], making them well-suited for
the task. In the context of multi-view image generation, Sync-
Dreamer [19] introduces a multi-view diffusion model that
captures the joint distribution of N novel views x(1:N)

0 given
an input view y. This model extends the DDPM [10] forward
process by adding random noises independently to each view
at every time step:

x
(n)
t =

√
ᾱtx

(n)
0 +

√
1− ᾱtϵ

(n). (1)
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Here, n denotes the view index. A noise prediction model
ϵθ is then used to “undo” the forward steps to recover the
original data. This model predicts the noise of the n-th view
ϵ(n), given the condition of an input view y, the view dif-
ference between the input view and the n-th target view
∆v(n), and noisy multi views x(1:N)

t . Hereafter, we define
the pair (y,∆v(n)) as the reference view condition r(n), and
the model is trained by the noise prediction objective as:

L = E
x
(1:N)
0 ,ϵ(1:N),t

∥ϵ(n) − ϵθ(x
(n); t, c(n))∥22, (2)

where c(n) = (r(n),x
(1:N)
t ) and ϵ(1:N) represents Gaussian

noise of size N ×H ×W added to all N views.

3.2. HarmonyView

Diffusion sampling guidance. Classifier-guided diffu-
sion [5] uses a noise-robust classifier p(l|xt), which esti-
mates the class label l given a noisy sample xt, to guide
the diffusion process with gradients ∇xt log p(l|xt). This
classifier requires bespoke training to cope with high noise
levels (where timestep t is large) and to provide meaningful
signals all the way through the sampling process. Classifier-
free guidance [9] uses a single conditional diffusion model
pθ(x|l) with conditioning dropout, which intermittently re-
places l (typically 10%) with a null token ϕ (representing
the absence of conditioning information) for unconditional
predictions. This models an implicit classifier directly from
a diffusion model without the need for an extra classifier
trained on noisy input. These conditional diffusion mod-
els [5, 9] dramatically improve sample quality by enhancing
the conditioning signal but with a trade-off in diversity.

What’s wrong with multi-view diffusion sampling?
From Eq. (2), we derive an unconditional diffusion model
p(x(n)) parameterized by a score estimator ϵθ(x

(n)
t ; t) and

conditional diffusion model p(x(n)|c(n)) parameterized by
ϵθ(x

(n)
t ; t, c

(n)
t ). These two models are learned via a single

neural network following the classifier-free guidance [9].
During sampling, the multi-view diffusion model adjusts its
prediction as follows (t is omitted for clarity):

ϵ̂θ(x
(n)
t ; c(n)) = ϵθ(x

(n)
t ; c(n)) + s · (ϵθ(x(n)

t ; c(n))− ϵθ(x
(n)
t )),

(3)
where s represents a guidance scale. The model output is ex-
trapolated further in the direction of ϵθ(x

(n)
t ; c

(n)
t ) and away

from ϵθ(x
(n)
t ). Thus, the scaling of s affects both the in-

put view condition r(n) and the multi-view condition x
(1:N)
t

simultaneously. As evidenced by Fig. 2 and Table 5, increas-
ing s encourages multi-view coherency and diversity in the
generated views. Yet, this comes with a trade-off: it dimin-
ishes the visual consistency with the input view. While the
inherent trade-off between these two dimensions is obvious
in this context, managing competing objectives under a sin-
gle guidance poses a considerable challenge. In essence, the

Input

Rear Views Rear Views Novel Views Novel Views

𝒔
=
𝟎.
𝟓

𝒔
=
𝟏.
𝟎

𝒔
=
𝟏.
𝟓

Figure 2. Visual ablation on scale s of Eq. (3).

model tends to generate diverse and geometrically coherent
multi-view images, but differ in visual aspects (e.g., color,
texture) from the input view, resulting in sub-optimal quality.

Harmonizing consistency and diversity. To address the
aforementioned challenge, we introduce a method termed
“HarmonyView”. Our approach leverages two implicit clas-
sifiers. One classifier pi(r(n)|x(n)

t ,x
(1:N)
t ) guides the tar-

get view x
(n)
t and multi-views x

(1:N)
t to be more visu-

ally consistent with the input view r(n). Another classifier
pi(x

(1:N)
t |x(n)

t , r(n)) contains uncertainty in both the target
(x(1:N)

t ) and conditional (x(n)
t ) elements. This contributes

to capturing diverse modes. Together, they synergistically
guide the synchronization of noisy multi-views x(1:N)

t , facil-
itating geometric coherency among clean multi-views. Based
on these, we redefine the score estimation as follows:

ϵ̃θ(x
(n)
t ; c(n)) = ϵθ(x

(n)
t ; c(n))

− s1σt∇x
(n)
t

log pi(r(n)|x(n)
t ,x

(1:N)
t )

− s2σt∇x
(n)
t

log pi(x
(1:N)
t |x(n)

t , r(n)),

(4)

where s1 and s2 are guidance scales and σt is a noise schedul-
ing parameter. By properly balancing these terms, we can
obtain multi-view coherent images that align well with the
semantic content of the input image while being diverse
across different samples.

According to Bayes’ rule, pi(r(n)|x(n)
t ,x

(1:N)
t ) ∝

p(x
(n)
t |c(n))/p(x(n)

t |x(1:N)
t ) and pi(x

(1:N)
t |x(n)

t , r(n)) ∝
p(x

(n)
t |c(n))/p(x(n)

t |r(n)). Hence, the diffusion scores of
these two implicit classifiers can be derived as follows:

∇
x
(n)
t

log pi(r(n)|x(n)
t ,x

(1:N)
t )

= − 1

σt
(ϵθ(x

(n)
t ; c(n))− ϵθ(x

(n)
t ;x

(1:N)
t )).

(5)

∇
x
(n)
t

log pi(x
(1:N)
t |x(n)

t , r(n))

= − 1

σt
(ϵθ(x

(n)
t ; c(n))− ϵθ(x

(n)
t ; r(n)).

(6)
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Input No Guidance Baseline (Eq. (3)) Only s1 Only s2 Ours (Eq. (7))

Figure 3. Qualitative comparison of several instantiations for multi-view diffusion guidance on novel-view synthesis. Our decomposition
of Eq. (3) yields two guidance parameters: s1 for input-target visual consistency and s2 for diversity in the novel views. With these parameters,
our final formulation Eq. (7) enables the generation of a diverse set of multi-view coherent images that well reflect the input view.

Method s s1 s2 PSNR↑ SSIM↑ LPIPS↓ Eflow↓ CD↑
No Guidance 20.51 0.818 0.144 2.270 0.640
Baseline (Eq. (3)) ✓ 20.19 0.819 0.140 2.071 0.717

Ours (Eq. (7))
✓ 20.32 0.822 0.141 2.136 0.764

✓ 21.03 0.828 0.128 2.146 0.668
✓ ✓ 20.69 0.825 0.133 1.945 0.792

Table 1. Ablative study of multi-view diffusion guidance on
novel-view synthesis. Metrics measure sample quality with PSNR,
SSIM, LPIPS; multi-view coherency with Eflow; and diversity
with CD score. Our final design strikes the best balance across the
metrics. Here, we set s = 1, s1 = 2, s2 = 1.

Finally, these terms are plugged into Eq. (4) and yields:

ϵ̃θ(x
(n)
t ;c(n)) = ϵθ(x

(n)
t ; c(n))

+ s1 · (ϵθ(x(n)
t ; c(n))− ϵθ(x

(n)
t ;x

(1:N)
t )

+ s2 · (ϵθ(x(n)
t ; c(n))− ϵθ(x

(n)
t ; r(n)).

(7)

This formulation effectively decomposes consistency and
diversity, offering a nuanced approach that grants control
over both dimensions. While simple, our decomposition
achieves a win-win scenario, striking a harmonious balance
in generating samples that are both consistent and diverse
(see Fig. 3 and Table 1).

3.3. Consistency-Diversity (CD) Score

We propose the CD score with two key principles: (1) Diver-
sity of novel views: It is preferable that the generated images
exhibit diverse and occasionally creative appearances that
are not easily imaginable from the input image. (2) Seman-
tic consistency: While pursuing diversity, it is crucial to
maintain semantic consistency, i.e., the generated images
should retain their semantic content consistently, regardless
of variations in the camera viewpoint. To operationalize
this evaluation, CD score utilizes CLIP [30] image (ΨI )
and text encoders (ΨT ), akin to CLIP score [8]. Diversity
(D) measures the average dissimilarity of generated views
{x(1), . . . ,x(N)} from a reference view y, reflecting how

distinct the generated images are from the reference view,
emphasizing creative variations. The diversity is computed
by averaging the cosine similarity of each generated view
with the reference view using CLIP image encoders.

D =
1

N

N∑
n=1

[
1− cos(ΨI(y),ΨI(x

(n)))
]
. (8)

Semantic variance (SV ar) quantifies the variance in seman-
tic changes across views. This measures how similar the
generated images are to a given text prompt, “An image
of {OBJECT}”. The semantic variance is calculated by
averaging the cosine similarity between the CLIP text em-
bedding of the prompt and the CLIP image embedding of
each generated view, followed by measuring the variance of
these values across views.

S̄ =
1

N

N∑
n=1

cos(ΨT (text),ΨI(x
(n))),

SV ar =
1

N

N∑
n=1

(cos(ΨT (text),ΨI(x
(n)))− S̄)2.

(9)

The CD score is then computed as the ratio of diversity to
semantic variances across views:

CD Score = D/SV ar. (10)

We note that the CD score is reference-free, i.e., it does not
require any ground truth images to measure the score.

4. Experiments
Due to space constraints, we provide detailed information
regarding implementation details and baselines in Appendix.
Dataset. Following [17–19], we used the Google Scanned
Object (GSO) [6] dataset, adopting the same data split as
in [19], for our evaluation. In addition, we utilized Internet-
collected images, including those curated by [19], to assess
the generation ability for complex objects or scenes.
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Input HarmonyView SyncDreamer [19] Zero123 [18]

Figure 4. Novel-view synthesis comparison. HarmonyView generates plausible novel views while preserving coherence across views.

Method PSNR↑ SSIM↑ LPIPS↓ Eflow↓ CD↑
Realfusion [22] 15.26 0.722 0.283 - -
Zero123 [18] 18.98 0.795 0.166 3.820 0.628
SyncDreamer [19] 20.19 0.819 0.140 2.071 0.717
HarmonyView 20.69 0.825 0.133 1.945 0.792

Table 2. Novel-view synthesis on GSO [6] dataset. We report
PSNR, SSIM, LPIPS, Eflow, and CD score.

Tasks and metrics. For the novel-view synthesis task, we
used three standard metrics – PSNR, SSIM [48], LPIPS [58]
– to measure sample quality compared to GT images. We
measured diversity using the CD score. As a multi-view co-
herency metric, we propose Eflow, which measures the ℓ1
distance between optical flow estimates from RAFT [43]
for both GT and generated images. For the single-view 3D
reconstruction task, we used Chamfer distance to evaluate
point-by-point shape similarity and volumetric IoU to quan-
tify the overlap between reconstructed and GT shapes.

4.1. Comparative Results

Novel-view synthesis. Table 2 shows the quantitative re-
sults for novel-view synthesis on the GSO [6] dataset. Here,
HarmonyView outperforms state-of-the-art methods across
all metrics. We confirm that HarmonyView generates im-
ages of superior quality, as indicated by PSNR, SSIM and
LPIPS. It particularly excels in achieving multi-view co-
herency (indicated by Eflow) and generating diverse views
that are faithful to the semantics of the input view (indicated
by CD score). In Fig. 4, we present the qualitative results.
Zero123 [18] produces multi-view incoherent images or im-
plausible images, e.g., eyes on the back. SyncDreamer [19]
generates images that lack visual similarity to the input view
or contain deficiencies, e.g., flatness or hole on the back.
In contrast, HarmonyView generates diverse yet plausible

Methods CD↑ User Likert Score (1-5)↑
Quality Consistency Diversity

Zero123 [18] 0.752 3.208 3.167 2.854
SyncDreamer [19] 0.722 3.417 3.208 2.708
HarmonyView 0.804 3.958 3.479 3.813

Table 3. Novel-view synthesis on in-the-wild images. We report
the CD score and 5-scale user Likert score, assessing quality, consis-
tency, and diversity. Notably, the CD score shows strong alignment
with human judgments. The test images are collected by [19].

multi-view images while maintaining geometric coherence
across views. In Table 3, we examine novel-view synthesis
methods on in-the-wild images curated by [19]. For evalua-
tion, we use CD score and user Likert ratings (1 to 5) along
three criteria: quality, consistency, and diversity. While Sync-
Dreamer [19] excels in quality and consistency scores when
compared to Zero123 [18], Zero123 performs better in diver-
sity and CD score. Notably, HarmonyView stands out with
the highest CD score and superior user ratings. This suggests
that HarmonyView effectively produces visually pleasing,
realistic, and diverse images while being coherent across
multiple views. The correlation between the CD score and
the diversity score underscores the efficacy of the CD score
in capturing the diversity of generated images.

3D reconstruction. In Table 4, we quantitatively com-
pare our approach against various other 3D generation meth-
ods [13, 17–19, 22, 25, 29]. Both our method and SDS-free
methods [18, 19] utilize NeuS [47], a neural reconstruction
method for converting multi-view images into 3D shapes. To
achieve faithful reconstruction of 3D mesh that aligns well
with ground truth, the generated multi-view images should be
geometrically coherent. Notably, HarmonyView achieves the
best results by a significant margin in both Chamfer distance
and volumetric IoU metrics, demonstrating the proficiency of
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Input HarmonyView SyncDreamer [19] Zero123 [18] One-2-3-45 [17] Point-E [25] Shap-E [13]

Figure 5. 3D reconstruction comparison. HarmonyView stands out in creating high-quality 3D meshes where other often fails. Har-
monyView, SyncDreamer [19], and Zero123 [18] use the vanilla NeuS [47] for 3D reconstruction.

Method Chamfer Dist.↓ Volume IoU↑
Realfusion [22] 0.0819 0.2741
Magic123 [29] 0.0516 0.4528
One-2-3-45 [17] 0.0629 0.4086
Point-E [25] 0.0426 0.2875
Shap-E [13] 0.0436 0.3584
Zero123 [18] 0.0339 0.5035
SyncDreamer [19] 0.0261 0.5421
HarmonyView 0.0187 0.6401

Table 4. 3D reconstruction on GSO [6] dataset. HarmonyView
demonstrates substantial improvements over competitive baselines.

HarmonyView in producing multi-view coherent images. We
also present a qualitative comparison in Fig. 5. The results
showcase the remarkable quality of HarmonyView. While
competing methods often struggle with incomplete recon-
structions (e.g., Point-E, Shap-E), fall short in capturing
small details (e.g., Zero123), and show discontinuities (e.g.,
SyncDreamer) or artifacts (e.g., One-2-3-45), our method
produces high-quality 3D meshes characterized by accurate
geometry and a realistic appearance.

4.2. Analysis

Scale study. In Table 5, we investigate two instantiations
of multi-view diffusion guidance with different scale config-
urations: baseline (Eq. (3)) and our approach (Eq. (7)). As
s increases from 0.5 to 1.5 in the baseline method, Eflow

(indicating multi-view coherency) and CD score (indicating
diversity) show an increasing trend. Simultaneously, PSNR,
SSIM, and LPIPS (indicating visual consistency) show a
declining trend. This implies a trade-off between visual con-
sistency and diversity. In contrast, our method involves pa-
rameters s1 and s2. We observe that increasing s1 provides
stronger guidance in aligning multi-view images with the
input view, leading to direct improvements in PSNR, SSIM,

Method s s1 s2 PSNR↑ SSIM↑ LPIPS↓ Eflow↓ CD↑

Baseline (Eq. (3))
0.5 - - 20.55 0.822 0.137 2.074 0.685
1.0 - - 20.19 0.819 0.140 2.071 0.717
1.5 - - 19.76 0.814 0.146 2.011 0.711

Ours (Eq. (7))

- 0.0 1.0 20.32 0.822 0.141 2.136 0.764
- 1.0 1.0 20.55 0.824 0.135 2.009 0.772
- 3.0 1.0 20.73 0.825 0.132 1.950 0.737
- 2.0 0.0 21.03 0.828 0.128 2.146 0.668
- 2.0 0.6 20.90 0.827 0.130 1.996 0.770
- 2.0 0.8 20.80 0.826 0.131 2.009 0.774
- 2.0 1.2 20.56 0.824 0.135 1.996 0.760
- 2.0 1.0 20.69 0.825 0.133 1.945 0.792

Table 5. Guidance scale study on novel-view synthesis. We com-
pare two instantiations of multi-view diffusion guidance: Eq. (3)
and Eq. (7). Our approach consistently outperforms the baseline.
Increasing s1 tends to enhance PSNR, SSIM, and LPIPS, while
higher s2 tends to improve CD score. Notably, the combined effect
of s1 and s2 synergistically improves Eflow.

and LPIPS. Keeping s1 fixed at 2.0, elevating s2 tends to
yield improved CD score, indicating an enhanced diversity
in the generated images. However, given the inherent conflict
between consistency and diversity, an increase in s2 intro-
duces a trade-off. We note that our approach consistently out-
performs the baseline across various configurations, striking
a nuanced balance between consistency and diversity. Essen-
tially, our decomposition provides more explicit control over
those two dimensions, enabling a better balance. Addition-
ally, the synergy between s1 and s2 notably enhances Eflow,
leading to improved 3D alignment across multiple views.

Generalization to complex objects or scenes. Even in
challenging scenarios, either with a highly detailed single ob-
ject or multiple objects within a single scene, HarmonyView
excels at capturing intricate details that SyncDreamer [19]
might miss. The results are shown in Fig. 6. Our model well
generates multi-view coherent images even in such scenar-
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Input HarmonyView SyncDreamer [19]

Figure 6. 3D reconstruction for complex object or scene. HarmonyView successfully reconstructs the details, while SyncDreamer fails.

An astronaut 
riding a horse

A cute panda 
riding a car

A boxer toy 
made of wood

Input text Text to image Generated images Mesh

Figure 7. Text-to-Image-to-3D. HarmonyView, when combined with text-to-image frameworks [24, 31, 32], enables text-to-3D.

Method DDIM Steps PSNR↑ SSIM↑ LPIPS↓ Eflow↓ CD↑

SyncDreamer [19] 50 20.19 0.819 0.140 2.071 0.717
200 20.20 0.823 0.140 2.009 0.727

HarmonyView 50 20.69 0.825 0.133 1.945 0.792
200 20.75 0.834 0.133 1.926 0.793

Table 6. Impact of sampling steps on novel-view synthesis.

ios, enabling the smooth reconstruction of natural-looking
meshes without any discontinuities.

Compatibility with text-to-image models. HarmonyView
seamlessly integrates with off-the-shelf text-to-image mod-
els [31, 32]. These models convert textual descriptions into
2D images, which our model further transforms into high-
quality multi-view images and 3D meshes. Visual examples
are shown in Fig. 7. Notably, our model excels in captur-
ing the essence or mood of the given 2D image, even man-
aging to create plausible details for occluded parts. This
demonstrates strong generalization capability, allowing it to
perform well even with unstructured real-world images.

Runtime. HarmonyView generates 64 images (i.e., 4 in-
stances × 16 views) in only one minute, with 50 DDIM [39]
sampling steps on an 80GB A100 GPU. Despite the ad-
ditional forward pass through the diffusion model, Har-
monyView takes less runtime than SyncDreamer [19], which

requires about 2.7 minutes with 200 DDIM sampling steps.
We also confirm that HarmonyView with 200 DDIM steps
further improves the image quality, as shown in Table 6.

Additional results & analysis. Please see Appendix for
more qualitative examples and analysis on the CD score, etc.

5. Conclusion

In this study, we have introduced HarmonyView, a simple yet
effective technique that adeptly balances two fundamental
aspects in a single-image 3D generation: consistency and
diversity. By providing explicit control over the diffusion
sampling process, HarmonyView achieves a harmonious
equilibrium, facilitating the generation of diverse yet plausi-
ble novel views while enhancing consistency. Our proposed
evaluation metric CD score effectively measures the diversity
of generated multi-views, closely aligning with human eval-
uators’ judgments. Experiments show the superiority of Har-
monyView over state-of-the-art methods in both novel-view
synthesis and 3D reconstruction tasks. The visual fidelity and
faithful reconstructions achieved by HarmonyView highlight
its efficacy and potential for various applications.
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