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Figure 1. The 3D layout overview. (a) campus and (b) factory. We installed 16 multi-modal cameras in both indoor and outdoor settings, across multiple
floors, with overlapping coverage. The cameras were fixed in position and angle to densely cover the building, creating a realistic surveillance camera system.

https://sites.google.com/view/mtmmc

Abstract
Multi-target multi-camera tracking is a crucial task that

involves identifying and tracking individuals over time using
video streams from multiple cameras. This task has practical
applications in various fields, such as visual surveillance,
crowd behavior analysis, and anomaly detection. However,
due to the difficulty and cost of collecting and labeling data,
existing datasets for this task are either synthetically gener-
ated or artificially constructed within a controlled camera
network setting, which limits their ability to model real-world
dynamics and generalize to diverse camera configurations.
To address this issue, we present MTMMC, a real-world,

* Equal contribution

large-scale dataset that includes long video sequences cap-
tured by 16 multi-modal cameras in two different environ-
ments - campus and factory - across various time, weather,
and season conditions. This dataset provides a challenging
test-bed for studying multi-camera tracking under diverse
real-world complexities and includes an additional input
modality of spatially aligned and temporally synchronized
RGB and thermal cameras, which enhances the accuracy
of multi-camera tracking. MTMMC is a super-set of exist-
ing datasets, benefiting independent fields such as person
detection, re-identification, and multiple object tracking. We
provide baselines and new learning setups on this dataset
and set the reference scores for future studies. The datasets,
models, and test server will be made publicly available.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Multiple object tracking (MOT) is an essential vision task
that helps us understand visual content and predict the
evolution of the surroundings over time. Recent advance-
ments in MOT, thanks to benchmarks such as MOT17 [39],
BDD100K [68], Waymo [51], and TAO [10] have led to the
development of more effective and efficient trackers [16, 38,
40, 61, 82]. Despite these advancements, multiple-camera
tracking has seen limited exploration, largely due to the lack
of appropriate datasets. The high costs associated with the
collection and annotation of such data are a major bottleneck.

The datasets currently available predominantly consist
of either synthetically generated data from game simula-
tors [27] or small-scale real-world data obtained from con-
trolled camera networks [3, 6, 11, 13, 17, 18], which assume
an idealized overlap between the camera views to simplify
the annotation process. However, synthetic data often fail to
translate effectively to real-world scenarios due to significant
domain shifts, and datasets from controlled environments do
not reflect the complexities of real-world multi-camera net-
works. Additionally, the withdrawal of the DukeMTMC [46],
previously the most extensive real-world dataset, due to pri-
vacy issues has left a considerable void in this research area.

To tackle this, this paper presents a new benchmark called
the Multi-Target Multi-Modal Camera (MTMMC) tracking
dataset. The dataset was collected from two challenging envi-
ronments—a campus and a factory—equipped with 16 multi-
modal cameras, each placed at different angles (see Fig. 1).
The dataset consists of 25 video recordings—13 from the
campus and 12 from the factory—with each video contain-
ing five and a half minutes of HD video recording captured
under various times, weather, and seasons, ensuring a rich
diversity of backgrounds. To ensure compliance with data
privacy standards, we collected informed consent from all
participants, who explicitly agreed to the public release of
the collected data for research purposes. The annotation of
all trajectories was accomplished using a semi-automatic
labeling system, carefully refined by crowdworkers over a
year, making the dataset the most largest publicly accessible
MTMC tracking benchmark to date.

Significantly, our dataset contains both RGB and thermal
cameras, allowing the tracker to additionally utilize ther-
mal information for more accurate multi-camera tracking.
This is the first time a dataset has provided a valid test-bed
for studying the impact of multi-modal learning for multi-
camera tracking. Our experiments reveal that incorporating
thermal data into standard RGB camera-based trackers re-
sults in more robust tracking, motivating future research in
this new direction. The construction of the MTMC dataset
also facilitates progress in related subtasks, such as person
detection, re-identification, and MOT.

2. Related Work
Benchmarks To construct a high-quality MTMC dataset,
it is crucial to have temporally synchronized videos from
multiple cameras. These videos must also maintain consis-
tent person identities across all camera views. However,
this requirement results in high annotation costs. As a
result, existing MTMC benchmarks are either short in dura-
tion [11, 13, 17, 18], have low video resolution [3, 6, 29, 72],
or provide inconsistent person IDs [7], making them
unsuitable for training generic deep trackers for real-world
use cases. The most popular dataset closest to our proposal
is DukeMTMC [46], but it was withdrawn due to consent
and privacy issues. Recently, two large-scale MTMC
datasets, MTA [27] and MMPTRACK [20], have been
introduced, but they have limitations such as being obtained
through game simulations or collected in controlled setups
where all cameras have overlapping fields of view. The new
MTMC dataset aims to provide a larger basis for training
and testing MTMC performance than any previous datasets,
making it a valuable resource for researchers.

Multi-modal Learning Unlike existing tracking datasets,
our dataset features an additional thermal input modality,
which opens up new research directions for multi-modal
learning in multi-camera tracking. Multi-modal learning
is an interesting research problem that not only improves
model robustness through modality fusion, which applies to
various vision tasks such as detection [31, 70, 71, 71, 71],
visual object tracking [25, 26, 28, 35, 65], and segmen-
tation [53, 81], but also enables better representations of
each modality by learning the intrinsic correlations between
them [1, 37, 48, 64, 76]. In this paper, we present two new
experimental setups with baselines.

Multiple Object Tracking The standard way to tackle the
MTMC problem involves a two-step approach: 1) generating
local tracklets for all the targets within each camera; 2)
associating these local tracklets across cameras when they
belong to the same target. The first step, known as multiple
object tracking, has been extensively studied by the commu-
nity. The tracking-by-detection paradigm has emerged as
the dominant approach, owing to significant improvements
in object detection techniques [33, 34, 43, 44]. Recent
advances in this paradigm include developing more discrimi-
native association objectives [23, 30, 40, 41, 55, 59, 60],
unifying detection and tracking [16, 52, 62, 82], or building
an end-to-end framework [38, 50, 69].

Multi Camera Association Cross-camera associa-
tion presents a more challenge due to pronounced changes
in object appearance between cameras, variable background
conditions, and an increased number of targets to be
matched. To facilitate this process, various constraints have
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Dataset # Cameras # ID # Frames OV/NOV Camera Coverage Extra Modality FPS Resolution

PETS2009 [17] 8 30 1,200 OV outdoor ✗ 30 768×576
USC Campus [29] 3 146 135,000 NOV outdoor ✗ 30 852×480
Passageway [3] 4 4 120,000 OV outdoor ✗ 25 320×240
NLPR MCT [6] ≤ 5 ≤ 235 355,500 NOV in & outdoor ✗ 20 320×240
CamNet [72] 8 50 360,000 NOV in & outdoor ✗ 25 640×480
WILDTRACK [7] 7 N/A 66,626 both outdoor ✗ 60 1920×1080
DukeMTMC [46] 8 2,834 2,448,000 NOV outdoor ✗ 60 1920×1080
MTA [27] 6 2,840 2,007,360 both simulated ✗ 41 1920×1080
MMPTRACK [20] ≤ 6 ≤ 140 2,979,900 OV indoor ✗ 15 640×320

MTMMC (Ours) 16 3,669 3,052,800 both in & outdoor ✓ (Thermal) 23 1920 ×1080

Table 1. Overview of the publicly available MTMC datasets. For each dataset, we report the number of cameras, person identities, and frames. We also
report the presence of overlapping (OV) / non-overlapping (NOV) camera views, camera coverage, availability of extra input modality, annotated frame rate
(FPS), and frame resolution. Our new MTMMC dataset is unprecedented in its scale and diversity. It includes 16 cameras, 3,669 person IDs, and 3 million
frames, making it a challenging and large-scale dataset. The dataset also provides high-resolution and multi-modal information.

been employed, including time conflicts [75], linear motion
patterns [45], camera network topology [24, 49], geometric
cues [5, 8, 67], and spatial locality [22].

Cross-camera association can be conducted in both real-
time [6, 42] and offline manners [9, 21, 22, 45, 75], with
the latter often favored for its enhanced accuracy. Notably,
several offline global association techniques have been de-
veloped, such as hierarchical clustering [75, 80], correlation
clustering [4, 45], matrix factorization [21], and adaptive
locality-based association [22].

3. MTMMC

Our camera network is detailed in Fig. 1, comprising a school
campus and a factory environment. This choice reflects
common real-world surveillance scenarios. With 16 multi-
modal cameras, our configuration spans both indoors and
outdoors, extends over multiple levels of floors. Each camera
provides RGB and thermal data that are spatially aligned
and temporally synchronized. A detailed description of all
cameras is provided in the appendix.

3.1. Data Characteristics

Table. 1 presents a comparative summary between our
dataset and the existing datasets. The MTMMC dataset con-
sists of 25 scenarios, each composed of 16 high-resolution
RGB + Thermal videos captured at 23 fps, both at in-
door and outdoor, resulting in a total of 3,052,800 frames.
The dataset offers diverse real-world environmental condi-
tions, ranging from day to evening (time), sunny to cloudy
(weather), and summer to fall (season). This diversity
makes our dataset unique and more representative.

In Fig. 2, we present a detailed comparison of our MT-
MMC dataset with two of the largest datasets in MTMC:
MTA [27] and MMPTrack [20]. We focus on three critical
aspects that influence the tracking performance:

1. Track Length. We analyze the variability in the number
of cameras each individual is tracked through, providing
insights into the robustness of tracking across cameras.
MTMMC features a broader distribution of track lengths,
including more extended tracking periods compared to
MTA and MMPTrack, as shown in Figure 2(a), demon-
strating our dataset’s capability to challenge and train
models on maintaining identities over longer sequences.

2. Track Scale. We assess the range of target scales by nor-
malizing bounding boxes against image dimensions. MT-
MMC includes a diverse range of scales, with Figure 2(b)
highlighting instances of small-scale tracks that are not
well-represented in other datasets, critical for training
models to detect and track small or distant targets.

3. Track Path. Our analysis of track trajectories in nor-
malized image coordinates reveals MTMMC’s coverage
of diverse movement patterns. The dataset exhibits a
more comprehensive range of trajectories compared to
others, as depicted in Figure 2(c), which is pivotal for
algorithms predicting and maintaining track continuity
amidst complex environmental dynamics.

MTMMC advances in all these three aspects over the pre-
vious datasets, providing a challenging testbed that more
precisely reflects real-world conditions.

We further provide a statistical analysis of key attributes
of our dataset in the appendix. First, the number of objects
per frame and the number of tracks per video metrics reveal
the complexity of scene contexts and the robustness required
for successful multi-object tracking. Additionally, the wide
demographic range, represented by the age and gender
distributions of the actors ensures the development of more
inclusive and unbiased tracking algorithms. Lastly, for the
first time, a thermal modality is included, enabling multi-
modal learning — a feature unprecedented in previous multi-
object tracking datasets.
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Figure 2. MTMC Dataset statistics comparison. We compare MTMMC dataset with the current largest simulated MTA [27] and real world
MMPTrack [20] datasets. Each visual summarizes specific statistics of each dataset : (a) The instance tracks by the number of visited cameras, (b)
The joint distribution of instance normalized width and height, (c) The instance track centers plotted over normalized image coordinates.

3.2. Data Collection

The data collection was conducted over two days, capturing
different seasons for each environment: summer for the fac-
tory and fall for the school campus. To ensure a high degree
of accuracy in temporal alignment, we employed a precise
global time-stamping method for space-time synchroniza-
tion. For potential frame drops, we meticulously inspected
the video sequences and made adjustments by aligning times-
tamps and interpolating missing data. To prevent any privacy
issues, we recruited 623 actors of varying ages and genders
and obtained data release agreements. We ensured that all
participating actors were compensated for their time and
efforts. Furthermore, we conducted de-identification for the
107 non-actors involved in the recordings.

Each video last in five-and-a-half-minutes per scenario,
with 12 scenarios from the factory and 13 scenarios from
the school campus. We allowed the actors to improvise
their actions, provided they fit the given circumstances. For
instance, actors could move luggage in the factory or play
ball at school, resulting in a wide variety of behaviors being
captured. Moreover, we instructed the actors to change their
clothes for each scenario to ensure diverse appearances.

Notably, our new MTMMC dataset significantly improves
upon the Duke-MTMC dataset [46], which was collected
within a narrow 1.5-hour window on a single day on campus.
By extending the breadth and diversity of our collection
process, we aim to provide a more solid foundation for the
development of robust tracking systems.

3.3. Data Annotation

We designed an annotation pipeline to separate the single-
camera tracking and the multi-camera association tasks. The
single-camera tracking involves generating bounding boxes
of person tracks within a camera, while the multi-camera
association involves assigning consistent person-IDs across
multiple cameras. By dividing the tasks, we can assign
inexperienced annotators to the former and skilled workers

to the latter. The reviewers carefully check the quality of
the completed labels from the annotators, and this process
is repeated several times until no critical errors are visible.
More details are in the appendix.

Single Camera Tracking. To annotate the set of 400 videos
(16 cameras × 25 scenarios), we tasked annotators with
drawing bounding boxes and assigning track-IDs to each
person in the video. We collected the annotations in a semi-
automatic manner, as described in previous works [54, 57].
First, the annotators tracked and labeled the person in the
keyframes, which were selected every five frames in a video.
We then used the deepSORT [59] algorithm to generate
pseudo tracking boxes by interpolating the annotations be-
tween keyframes efficiently. The predicted tracking boxes
were then carefully corrected by the annotators. Addition-
ally, to protect the privacy of non-actors, we applied a de-
identification process, which involved blurring their faces
while remaining the ground truth annotations intact. This pro-
cess ensured confidentiality of personal information, while
simultaneously preserving the data integrity.

Multiple Camera Association. In the next step, we asked
annotators to assign consistent track-IDs for the same person
across the cameras for each scenario. We observed that
the semi-automatic labeling approach was not sufficient to
achieve satisfactory label quality for this task. Hence, we re-
lied on careful manual labeling. After the initial labeling was
completed by the annotators, the reviewers collected person-
ID errors using two critical camera constraints. Firstly, one
person cannot appear in multiple tracks of the same camera
simultaneously. Secondly, one person cannot be visible in
the view of two non-overlapping cameras simultaneously.
The reviewers also checked for other remaining errors. All
the collected errors were then passed to the annotators, who
corrected them. The refining process was iterated twice to
guarantee high-quality labels.
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Method Train on Eval on mAP

Faster RCNN
COCO-Person MOT17 29.8

MTMMC-Person MOT17 31.3

YOLOX
COCO-Person MOT17 34.2

MTMMC-Person MOT17 38.3

Table 2. Detection Results.

3.4. Data Splits

We split the MTMMC dataset into three subsets. The train
set includes 14 scenarios (7 from the factory and 7 from the
campus), the validation set includes 5 scenarios (3 from the
factory and 2 from the campus), and the test set includes 6
scenarios (2 from the factory and 4 from the campus).

4. Experiments

We present various experimental setups and benchmark their
performance using the new MTMMC dataset. For the eval-
uation, we use standard metrics such as mAP for detection,
Rank1 and mAP for re-identification, and CLEAR MOT
and IDF1 for tracking. The experiments are conducted on
the train and validation sets of the dataset. Detailed setup
specifications are in the appendix.

4.1. Sub Tasks: Detection, Re-ID, and MOT

Person Detection We evaluate the efficacy of our dataset
in training person detectors for tracking applications. We uti-
lized two well-established detectors, Faster RCNN [44] and
YOLOX [19], and investigate how well these models general-
ize and perform when trained on task-specific versus generic
datasets. Specifically, we trained models MTMMC-Person
and COCO-Person datasets and then tested their general-
ization performance using the MOT17 [39] dataset, which
presents a variety of real-world tracking scenarios. The
COCO-Person is a subset of the larger COCO [32] dataset
and includes 65K natural images that depict humans. To
compare fairly, we matched the size of our MTMMC-Person
dataset, compiling 60K images sampled at a frame rate of
23 fps from the original video footage.

As shown in Table. 2, models trained on the MTMMC-
Person dataset consistently outperformed those trained on
COCO-Person during the MOT17 evaluations. This suggests
that the specificity of the training data to the end-use scenario
is crucial. By design, the MTMMC dataset is tailored to
tracking, highlighting diverse human activities, frequent oc-
clusions, varied interactions and non-central camera angles,
which are typical in real-world tracking situations. These
results validate the importance of contextual alignment be-
tween training data and its target application, emphasizing
the value of our specialized dataset, MTMMC, for tracking
and surveillance applications.

Method Train on Eval on Rank 1 mAP

AGW

Market-1501 Market-1501 95.3 88.2
MSMT17 MSMT17 78.3 55.6

MTMMC-reID MTMMC-reID 76.0 45.6
MSMT17 Market-1501 64.3 34.2

MTMMC-reID Market-1501 66.5 35.4

Table 3. Re-Identification Results.

Person Re-Identification In line with the standard proto-
cols for re-identification (Re-ID) data construction, as out-
lined in [77, 79], we derived our MTMMC-reID dataset
from the larger MTMMC dataset. For our experiments, we
used the AGW model [66] as the benchmark.

Re-ID tasks require the identification of individuals across
multiple camera views and at different times. Training data
characteristics significantly influence the performance of
Re-ID systems. The MTMMC-reID dataset, in particular,
provides a challenging training environment, as evidenced
by the lower Rank-1 accuracy and mAP scores—76.0 and
45.6, respectively—compared to other datasets (see Table. 3,
rows 2-4). These figures highlight the demanding nature of
the tracking scenarios within MTMMC-reID.

However, the dataset’s complexity is beneficial for model
generalization. For instance, when a model trained on the
MSMT17 [58] dataset is evaluated on Market-1501 [77], per-
formance drops (to 64.3 Rank-1 and 34.2 mAP), indicating
a loss of generalizability. Yet, if the same model is trained
on MTMMC-reID and tested on Market-1501, it demon-
strates better robustness with higher Rank-1 accuracy and
mAP scores (66.5 and 35.4, respectively) compared to the
MSMT17 training (refer to Table. 3, rows 5-6). These re-
sults imply that despite the intrinsic challenges of MTMMC-
reID, models trained on it are better equipped to handle new,
unseen environments, underscoring the value of rigorous
training environments for improved real-world applicability.

Multi Object Tracking Multi-object tracking (MOT) is
a task that requires the detection and tracking of multiple
objects, often people, through a sequence of video frames.
The challenge lies in keeping consistent object identities
despite movement, occlusions, and environmental changes.
In our experiment, we employed four state-of-the-art track-
ers: JDE [56], QDTrack [40], CenterTrack [82], and Byte-
Track [74], and our analysis focuses on three main aspects:

1. Training and Evaluating on the Same Dataset: When
models are both trained and evaluated on the same dataset,
they exhibit lower performance on the MTMMC com-
pared to the MOT17 dataset. For instance, JDE, achieved
an IDF1 score of 42.4% on MTMMC, whereas the same
model yielded an improved IDF1 of 63.6% on MOT17.
This trend is consistent across all tested models, indicat-
ing that MTMMC presents a more challenging testbed.
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Method
Train on Eval on MTMMC Eval on MOT17

MTMMC MOT17 Misc IDF1 MOTA FP FN IDs IDF1 MOTA FP FN IDs

JDE
✓ 42.4 74.6 146678 859893 30767 48.0 40.9 2311 29084 329

✓ cccpe 34.0 52.3 206112 1694301 27347 63.6 60.0 2927 18155 486
✓ ✓ cccpe 43.7 72.6 125770 964863 25725 70.5 65.7 2232 15759 469

QDTrack
✓ 53.0 84.5 157529 475242 14542 55.3 43.6 10548 80197 449

✓ 34.3 52.3 286382 1643818 21470 66.8 65.3 9324 45441 1383
✓ ✓ 54.2 84.6 439646 439646 14106 70.0 68.6 6927 42903 1005

CenterTrack

✓ 50.8 78.6 504642 353525 16972 55.0 45.3 17718 69870 903
✓ 25.2 37.0 629624 1911628 40656 62.1 60.5 6678 55446 1710
✓ CHpre 27.1 45.7 518692 1662554 40746 63.7 66.2 7128 45939 1611

✓ ✓ CHpre 51.6 80.9 415132 351162 16938 65.7 66.7 6138 46338 1407

ByteTrack

✓ 64.8 89.7 112835 300354 7153 69.1 55.9 16896 54106 230
✓ 40.2 56.8 506286 1283368 13585 76.8 75.0 4539 8693 224
✓ CH 56.9 77.7 267550 640084 7547 79.5 76.6 10128 27250 479

✓ ✓ CH 64.6 89.1 147385 289854 7184 78.7 76.9 8504 28302 517

Table 4. Multi Object Tracking Results. Following the previous works, we use additional person detection data: CH denotes CrowdHuman [47], MIX
indicates combined datasets of Caltech Pedestrian [12], Citypersons [73], CUHK-SYS [63], PRW [78] and ETH [14].

Method
Train on Eval on MOT17

MTMMC MOTSynth IDF1 MOTA FP FN IDs

QDTrack
✓ 55.3 43.6 10548 80197 449

✓ 54.1 43.1 11178 80178 615

✓ ✓ 60.8 48.9 14724 67029 870

(a) w/o finetune

Method
Train on Eval on MOT17

MTMMC MOTSynth IDF1 MOTA FP FN IDs

QDTrack
✓ 68.6 66.6 9963 43074 957

✓ 70.8 68.7 9813 39882 921

✓ ✓ 72.0 70.2 8367 39135 750

(b) w/ finetune
Table 5. Pre-Training on MTMMC and MOTSynth.

2. Training and Evaluating on Different Datasets: When
training and evaluation datasets differed, we observed
a pattern where models trained on MTMMC generally
outperformed those trained on MOT17 when evaluated
on the alternate dataset. For example, ByteTrack, after be-
ing trained on MTMMC and tested on MOT17, reached
an IDF1 score of 69.1% and MOTA of 55.9%, which
is closer to the practical upper bounds observed when
trained and tested on MOT17 (IDF1 of 76.8% and MOTA
of 75.0%). In contrast, when ByteTrack was trained on
MOT17 and evaluated on MTMMC, it achieved a much
lower IDF1 of 40.2% and MOTA of 56.8%, versus its
upper-bound performance on MTMMC (IDF1 of 64.8%
and MOTA of 89.7%). This suggests that the complex
and diverse tracking environments found in MTMMC
contribute to the development of more robust and gener-
alizable model features.
Notably, the above two trends within multi-object track-
ing mirror the tendencies observed in our Re-ID experi-
ments. This consistency reinforces the notion that training
on more complex and diverse environments effectively
enhances the models’ ability to generalize and maintain

accuracy when introduced to new domains.

3. Training on Combined Datasets: The most compelling
results were observed when models were trained on a
mixture of both MTMMC and MOT17 datasets. This
combined training approach produced the best results
on both MTMMC and MOT17 evaluations. It implies
that the MTMMC provides a complementary training
signal to the MOT17. When combined, the diversity
and complexity of MTMMC complement the MOT17,
leading to a robust tracking model.

In conclusion, these experiments underline the impor-
tance of dataset diversity and complexity in training multi-
object tracking models. The demanding context provided by
MTMMC help to forge models that can handle real-world
complexities effectively.

4.2. Pre-Training: Real-world vs. Synthetic Data

In this study, we evaluate the efficacy of real-world data in
improving MOT models by employing our MTMMC dataset
as a foundational training set. We utilized the QDTrack [40]
as our base tracker and conducted experiments to measure its
performance on the MOT17 benchmark. These experiments
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(a) Modality Fusion (b) Modality Drop

Input-level Fusion

Feature-level Fusion

Problem Setting

Knowledge Distillation

Multi-modal Reconstruction

Multi-modal Contrastive Learning

Figure 3. Multi-modal Learning Setups and Baselines. (a) presents the concept of modality fusion with both input-level and feature-level fusion techniques
integrating thermal data with RGB for enhanced object tracking. (b) outlines the modality drop scenario, where the model trained on combined RGB and
thermal data is tested solely on RGB data, using methods like multi-modal reconstruction, knowledge distillation, and multi-modal contrastive learning.

involved pre-training the model on the MTMMC dataset
and subsequently fine-tuning it on MOT17. Additionally, we
drew comparisons with models pre-trained on the MOTSynth
dataset [15], which is a large-scale synthetic dataset derived
from extensive simulation within a gaming environment.

As detailed in Table 5, our findings illustrate that the MT-
MMC dataset, albeit comprising half the number of annota-
tions compared to MOTSynth (0.5M vs. 1M), and without
the aid of complex data simulation techniques, still substan-
tially contributes to the tracking accuracy. Notably, models
pre-trained on MTMMC yield a MOTA score of 55.3 without
fine-tuning (54.1 when pre-trained on MOTSynth) and see
an increase to 68.6 with fine-tuning (70.8 when pre-trained
on MOTSynth). While MOTSynth commences at a higher
baseline, our real-world data, when combined with MOT-
Synth, demonstrates a remarkable synergy, resulting in a
superior IDF1 score of 72.0 post fine-tuning.

These observations underscore the continued relevance of
real-world datasets. While the scalability and control offered
by synthetic data are appealing, the inherent complexities
and variability present in real-world data are crucial for
models to learn effectively. The MTMMC dataset, therefore,
remains an invaluable resource for achieving high-fidelity
tracking performance, and its integration with synthetic data
further enhances this advancement.

4.3. Multi-modal Learning: Setups and Baselines

Multi-modal learning aims to improve scene understanding
by leveraging complementary information from different
sensor modalities. In this context, we explore how ther-
mal data, when paired with RGB data, can enhance object
tracking. This question stems from existing literature that
demonstrates the benefits of such combinations in other do-
mains [2, 53, 81]. Our research extends these concepts into

tracking scenarios using QDTrack [40] as the base tracker.
We present two new learning setups, modality fusion and
drop, illustrated in Fig. 3-(a) and (b), respectively. We pro-
vide more detailed setup specifications and additional analy-
ses in the appendix. Here, we briefly introduce the high-level
concepts of the setups and then discuss the key results.

Modality Fusion We begin with modality fusion, focusing
on the explicit integration of thermal data into RGB-based
tracking models. This involves comparing both input and
feature-level fusion methods against RGB and thermal-only
baselines. We evaluate the benefits of thermal data incorpo-
ration, when it is directly available for both train and test.

Modality Drop The modality drop setup presents a more
challenging scenario. Here, the model is trained on both
RGB and thermal data but is evaluated solely on RGB data.
The rationale is that, during training, the model can learn gen-
eralized feature representations that are robust even when
a modality is absent during testing. We introduce three
strategies to harness RGB-T data effectively during train-
ing: knowledge distillation, multi-modal reconstruction, and
multi-modal contrastive learning.

One practical application is using a multimodally trained
tracking model in an unimodal tracking system. For instance,
consider CCTV surveillance systems, which predominantly
rely on RGB cameras often due to hardware or budget con-
straints. Our goal is to train the model using datasets like
MTMMC, which contain both RGB and thermal data, and
then test its effectiveness in environments that only provide
RGB data. Essentially, we aim to determine if the model can
learn generic features from the combined RGB and thermal
data during training, and preserve its tracking capabilities in
the absence of thermal data during testing.
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Method Fusion IDF1 MOTA mAP

RGB ✗ 53.0 84.5 92.8

T ✗ 44.5 79.2 89.9

RGBT-I Input 54.0 85.6 93.1

RGBT-F Feature 53.9 86.0 93.5

(a) Modality Fusion in MTMMC

Method
w/o fine-tune w/ fine-tune

IDF1 MOTA IDF1 MOTA

RGB-Unimodal (baseline) 55.3 43.6 68.6 66.6

Knowledge Distill. 55.1 43.2 70.5 68.0

Multi-modal Recon. 57.9 46.2 68.3 67.6

Multi-modal Contrastive. 59.7 48.4 68.3 67.3

(b) Modality Drop in MTMMC → MOT17
Table 6. Multi-modal learning results.

Method IDF1 MOTA FP FN IDs

TrackTA 32.8 76.9 10604 18715 13364

H. Cluster 41.6 80.9 8012 14663 11072

(a) RGB-based MTMC

Fusion IDF1 MOTA FP FN IDs

RGBT-I 42.2 81.1 7823 14264 10803

RGBT-F 43.5 81.7 7301 13592 9916

(b) Multi-modal MTMC

Table 7. Multi-Target Multi-Camera Tracking Results in MTMMC. For the efficient evaluation, we temporally sub-sampled the videos in 1FPS. H. Cluster
denotes hierarchical clustering. The averaged results of all the testing scenarios are shown.

Results The results in Table. 6-(a) showcase the perfor-
mance gains from modality fusion. The integration of ther-
mal data at both the input (RGBT-I) and feature level (RGBT-
F) with the base RGB data results in improved performance,
compared to using RGB or thermal data in isolation. Notably,
the RGBT-F approach, achieves the highest overall perfor-
mance, with an IDF1 score of 53.9 and MOTA of 86.0. This
suggests that thermal data, when fused at the feature level,
provides a more discriminative tracking representation.

In Table. 6-(b), we summarize the performance in the
modality drop setup. We simulate the modality drop sce-
nario, by training the model using both RGB and thermal
data in the MTMMC, and evaluate or optionally fine-tune the
model using MOT17, which only provides RGB data. Here,
the ‘without fine-tuning’ demonstrates how well the features
learned from the combined multimodal data (RGB+T) trans-
fer directly to the RGB domain. On the other hand, ‘with fine-
tuning’ evaluates how effectively these learned features serve
as initialization for further refinement. Without fine-tuning,
Knowledge Distillation (KD) lags in performance (IDF1:
55.1, MOTA: 43.2), which is likely due to its strong depen-
dence on thermal data imposed during distillation, resulting
in a weaker generalization ability. In contrast, the Multi-
modal Contrastive method shows a relatively high resilience
(IDF1: 59.7, MOTA: 48.4), suggesting it learns modality-
invariant features through contrastive learning, which con-
fers strong generalization. With fine-tuning, KD exhibits a
marked improvement (IDF1: 70.5, MOTA: 68.0), indicating
its potential once adapted to the RGB domain. Conversely,
the Multi-modal Contrastive method sees only a marginal
increase after fine-tuning (IDF1: 68.3, MOTA: 67.3). It is
important to note that generalizable features do not neces-
sarily equate to an optimal initialization for RGB-specific
fine-tuning. We recognize the further investigations are nec-
essary to fully understand the underlying mechanisms, and
we leave this for future studies.

4.4. Multi-modal MTMC

Multi-target multi-camera (MTMC) expands upon MOT by
requiring the identification of multiple targets across var-
ious camera views. We build a strong baseline model to
benchmark the MTMC scores on our new MTMMC dataset.
Specifically, we integrate the multi-object tracker and person
Re-ID networks, QDtrack [40] and BoT [36] to generate the
tracklet-level feature representation. Upon this, we study the
performance of two leading multi-camera association (MCA)
methods, optimization-based [21] and clustering-based [27].

In Table. 7-(a), the results show that the hierarchi-
cal clustering-based MCA method [27] outperformed the
optimization-based approach [21], which required heavy
hyper-parameter tuning. Table 7-(b) presents the results
following the integration of thermal information on the
clustering-based method. The feature-fusion approach again
resulted in more accurate multi-camera tracking. As a dataset
and evaluation paper, we focus on establishing baseline mod-
els and benchmark scores to set a stage for followup re-
searches. We hope to see numerous advanced multi-modal
tracking models presented upon our results.

5. Conclusion
We have presented the MTMMC dataset—a large-scale, real-
world, multi-modal tracking benchmark designed to advance
MTMC tracking. Through our extensive experiments, we
have demonstrated its efficacy in improving the performance
of various sub-tasks and have highlighted its synergistic use
with synthetic data for pre-training. Additionally, we in-
troduced two new multi-modal learning setups—modality
fusion and drop—and developed robust baseline models for
multi-modal MTMC tracking. We hope that our contribu-
tions will reinvigorate research in MTMC and will spark new
innovations in multi-modal tracking technologies, ushering
in a new era of intelligent tracking systems.
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