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Abstract

Current techniques for deep neural network (DNN)
pruning often involve intricate multi-step processes that re-
quire domain-specific expertise, making their widespread
adoption challenging. To address the limitation, the Only-
Train-Once (OTO) and OTOv2 are proposed to eliminate
the need for additional fine-tuning steps by directly train-
ing and compressing a general DNN from scratch. Never-
theless, the static design of optimizers (in OTO) can lead
to convergence issues of local optima. In this paper, we
proposed the Auto-Train-Once (ATO), an innovative net-
work pruning algorithm designed to automatically reduce
the computational and storage costs of DNNs. During the
model training phase, our approach not only trains the tar-
get model but also leverages a controller network as an ar-
chitecture generator to guide the learning of target model
weights. Furthermore, we developed a novel stochastic
gradient algorithm that enhances the coordination between
model training and controller network training, thereby im-
proving pruning performance. We provide a comprehen-
sive convergence analysis as well as extensive experiments,
and the results show that our approach achieves state-
of-the-art performance across various model architectures
(including ResNetlS8, ResNet34, ResNet50, ResNet56, and
MobileNetv2) on standard benchmark datasets (CIFAR-
10, CIFAR-100, and ImageNet). The code is available at
https://github.com/xidongwu/AutoTrainOnce.

1. Introduction

Large-scale Deep Neural Networks (DNNs) have demon-
strated remarkable prowess in various real-world applica-
tions [15, 29, 40, 41, 44, 62]. These large-scale networks
leverage their substantial depth and intricate architecture
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Figure 1. Overview of Auto-Train-Once (ATO). The controller
network generates mask w based on the size of ZIGs G to guide
the automatic network pruning of the target model and we remove
variable groups according to mask w after training. Additional
training (such as fine-tuning) is not required after model training
and we can directly get the final compressed model.

to enhance approximations capability [46], capture intri-
cate data features, and address a variety of computer vision
tasks. Nevertheless, the large-scale models present a signif-
icant conflict with the hardware capability of devices during
deployment since DNNs require substantial computational
and storage overheads. To address this issue, model com-
pression techniques [3, 14, 20, 51] have gained popularity to
reduce the size of DNNs with minimal performance degra-
dation and ease the deployment.

Structural pruning is a widely adopted direction to re-
duce the size of DNNs due to its generality and effec-
tiveness [9]. Compared with weight pruning, structural
pruning, particularly channel pruning, is more hardware-
friendly, since it eliminates the need for post-processing
steps to achieve computational and storage savings. There-
fore, we focus on structural pruning for DNNs. However,
it’s worth noting that many existing pruning methods often
come with notable limitations and require a complex multi-
stage process. The process typically includes initial pre-
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training, intermediate training for redundancy identifica-
tion, and subsequent fine-tuning. Managing this multi-stage
process of DNN training demands substantial engineering
efforts and specialized expertise. To simplify the prun-
ing methods, recent approaches like OTO [4] and OTOv2
[5] propose an end-to-end manner of training and prun-
ing. These methods introduce the concept of zero-invariant
groups (ZIGs), and simultaneously train and prune models
without the reliance on further fine-tuning.

However, simple training frameworks in OTO and
OTOV2 pose a challenge to model performance. They refor-
mulate the objective as a constrained regularization prob-
lem. The local minima with better generalization may be
scattered in diverse locations. Yet, as the augmented reg-
ularization in OTO penalizes the mixed L1/L2 norm of all
trainable parameters in ZIGs, it restricts the search space to
converge around the origin point. OTOv2 improves OTO
by constructing pruning groups in ZIGs based on salience
scores to penalize the trainable parameters only in pruning
groups. However, model variables vary as training and the
statically selected pruning groups of the optimizer in the
early training stage can lead to convergence issues of local
optima and poor final performance. Drawbacks in the al-
gorithm design prevent them from giving a complete con-
vergence analysis. For instance, OTO assumes the deep
model as a strongly convex function and OTOv2 assumes a
full gradient estimate at each iteration, which does not align
with the practical settings of DNN training.

To enhance the model performance while maintaining
a similar advantage, we propose Auto-Train-Once (ATO)
and utilize a small portion of samples to train a network
controller to dynamically manage the pruning operation on
ZIGs. Experimental results demonstrate the success of our
algorithm in identifying the optimal choice for ZIGs via the
network controller.

In summary, the main contributions of this paper are
summarized as follows:

1) We propose a generic framework to train and prune DNNs
in a complete end-to-end and automatic manner. After
model training, we can directly obtain the compressed
model without additional fine-tuning steps.

2) We design a network controller to dynamically guide the
channel pruning, preventing being trapped in local op-
tima. Importantly, our method does not rely on the spe-
cific projectors compared with OTO and OTOv2. Addi-
tionally, we provide a comprehensive complexity analy-
sis to ensure the convergence of our algorithm, covering
both the general non-adaptive optimizer (e.g. SGD) and
the adaptive optimizer (e.g. ADAM).

3) Empirical results show that our method overcomes the
limitation arising from OTOs. Extensive experiments
conducted on CIFAR-10, CIFAR-100, and ImageNet
show that our method outperforms existing methods.

Table 1. summary of ATO and existing methods

Method ATO OTOs Others
Training cost Low Low
Addition fine-tuning No No

Optimizer design Dynamic
Convergence guarantee N -

Gradient projection General -

2. Related Works

To reduce the storage and computational costs, structural
pruning methods identify and remove redundant structures
from the full model. Most existing structural pruning meth-
ods adopt a three-stage procedure for pruning: (1) train a
full model from scratch; (2) identify redundant structures
given different criteria; (3) fine-tune or retrain the pruned
model to regain performance. Different methods have dif-
ferent choices for the pruning criteria. Filter pruning [30]
selects important structures with larger norm values. In ad-
dition to assessing channel or filter importance based on
magnitude, the batch normalization scaling factor [23] can
be used to identify important channels since batch normal-
ization has gained popularity in the architecture of contem-
porary CNNs [15, 45]. Liu et al. [38] employ sparse reg-
ularization on the scaling factors of batch normalization to
facilitate channel pruning. A channel is pruned if its as-
sociated scaling factor is deemed small. Structure sparse
selection [22] extends the idea of using scaling factors of
batch normalization to different structures, such as neu-
rons, groups, or residual blocks, and sparsity regulariza-
tion is also applied to these structures. Another line of
research [10-12, 25, 26, 54] prunes unimportant channels
through learnable scaling factors added for each structure.
The learnable parameters are designed to be end-to-end dif-
ferentiable, which enjoys the benefit of gradient-based opti-
mizations. Inter-channel dependency [43] can also be used
to remove channels. Greedy forward selection [53] itera-
tively adds channels with large norms to an empty model.
In addition, reinforcement learning and evolutionary algo-
rithms can also be used to select import structures. Auto-
matic Model Compression (AMC) [17] uses a policy net-
work to decide the width of each layer, and it is updated
by policy gradient methods. In MetaPruning [32, 39], evo-
lutionary algorithms are utilized to find the ideal combi-
nation of structures, and a hypernet generates the model
weights. In addition to vision tasks, Natural Language Pro-
cessing (NLP) has made significant advances across various
tasks [47, 52, 57-61]. Concurrently, structure pruning has
been increasingly applied to enhance the efficiency of large
language models [49].

Regular structural pruning methods require manual ef-
forts on all three stages, especially for the second and third
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stages. To unify all three stages and minimize manual ef-
forts, OTO [4] formulates a structured-sparsity optimiza-
tion problem and proposes the Half-Space Stochastic Pro-
jected Gradient (HSPG) to solve it. OTO resolves sev-
eral disadvantages of previous methods based on structural
sparsity [31, 50]: (1) multiple training stages since their
group partition cannot isolate the impact of pruned struc-
tures on the model output; (2) heuristic post-processing
to generate zero groups. On top of OTO, OTOv2 [5] in-
troduces automated Zero-Invariant Groups (ZIGs) partition
and Dual Half-Space Projected Gradient (DHSPG) to be
user-friendly and better performant. Despite the advantages
of OTOvV2, it still has several problems: (1) the selection of
pruning groups in ZIGs is static, once it is decided it can not
be changed as model weights updates; (2) HSPG/DHSPG is
more complex than simple proximal gradient operators. (3)
The theoretical analysis of OTO and OTOv2 is not compre-
hensive and assumptions are overly strong. In this paper, we
provide remedies for all the aforementioned weaknesses of
OTOvV2. A comprehensive comparison of ATO, OTO series,
and other methods is shown in Table 1. It should be men-
tioned that our work is irrelevant to the gating modules used
in dynamic pruning. The controller network builds a one-
to-one mapping between an input vector and the resulting
sub-network vector, and it is not designed to handle input
features or images like dynamic pruning. The training pro-
cess of ATO incorporates a regularization term to penalize
useless structures decided by the controller network which
is also not considered in dynamic pruning.

3. Proposed Method

The main idea of the method is to train a target network
under the guidance of a trainable controller network. The
controller network generates a mask w, for each group in
ZIGs [4]. As the training process concludes, the compres-
sion model is constructed by directly removing masked-out
elements according to w without any more tuning.

3.1. Zero-Invariant Groups

Definition 1. (Zero-Invariant Groups (ZIGs)) [4]. In the
context of a layer-wise Deep Neural Network (DNN), en-
tire trainable parameters are divided into disjoint groups
G = {g}. These groups are termed zero-invariant groups
(ZIGs) when each group g € G exhibits zero-invariant,
where zero-invariant implies that setting all parameters in
g to zero leads to the output corresponding to the next layer
also being zeros.

Chen et al. [4] firstly proposed the ZIGs. The Convo-
lutional layer (Conv) without bias followed by the batch-
normalization layer (BN) can be shown as below:

a (Ol) !

O« ' KL TH! « Ul_“ o+ 4

where 7! denotes the input tensor, ® denote the convolu-
tional operation, O' presents one output channel in /*” layer,
© is the element-wise multiplication, a(-) is the activation
function, and pu!, o', !, 3" represent running mean, stan-
dard deviation, weight and bias, respectively in BN. Each
output channel of the Conv K!, and corresponding channel-
wise BN weight v/ and bias 3' belong to one ZIG because
they being zeros results in their corresponding channel out-
put to be zeros as well.

3.2. Controller Network

In the context of ZIGs, group-wise masks denoted as w €
{0,1}" are generated by a Controller Network. The bi-
nary 0 and 1 represent the respective actions of removing
and preserving channel groups. Controller Network incor-
porates bi-directional gated recurrent units (GRU) [6] fol-
lowed by linear layers and Gumbel-Sigmoid [24] combined
with straight-through estimator (STE) [2]. The utilization
of the Gumbel-Sigmoid aims to produce a binary vector w,
that approximates a binomial distribution. The details of the
Controller Network are in the supplementary materials.

With the mask w, we can apply it to the feature maps
to control the output of each group in ZIGs. For exam-
ple, in a DNN, if the channels of [*" layer are in ZIGs
and the weights of [*" layer can be written as M; €
RC1xCr_1xkixkr where () is the number of channels and
k; is the kernel size in [*" layer. The feature map of [*" layer
can be represented by F; € REO*WixHi where H; and W,
are height and width of the current feature map. With the
mask w; = {0, 1} for I*" layer, the feature map of the I*"
layer is then modified as fl = w; ® F;. The definition of
ZIGs shows setting the output as 0 for one ZIG is equal to
setting all weights in this ZIG.

3.3. Auto-Train-Once

Here, we introduce our proposed algorithm, Auto-Train-
Once (ATO). The details of ATO are shown in Algorithm 1.

First, we initiate the ZIG set (denoted as G) by partition-
ing the trainable parameters of M. Then, we build a con-
troller network with model weight JV, configuring it in the
way that the output dimension equals |G| (| - | is set cardi-
nality). Subsequently, the controller network generates the
model mask vector w = CN (W), and group in ZIGs G
with mask value as 0 will be penalized in the project opera-
tion, as the Line 8 in Algorithm 1.

We can formulate the optimization problem with regu-
larization as follows:

min J(M) :=L(M) +g(M)
=L(f(z;M),y) + D A Mgl (1)

9eg

where f(z; M) is the output of target model with weight
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M, L(f(z; M), y) is the loss function with data (z, y) and
G is ZIGs. ), is a group-specific regularization coefficient
and its value is decided by the output of the controller net-
work, i.e. Ay = A(1 — [w]y). If A is 0, then we do not
put a penalty on the group g. After T;, warm-up steps, we
add regularization to prune the target model. A larger A
typically results in a higher group sparsity [56]. To incor-
porate the group sparsity into optimization objective func-
tions, there are several existing projection operators, such
as Half-Space Projector (HSP) [4] as below:

2
11T
Projlis(z)] = 10 Il M), < H[M]g
7 [z]; otherwise.
2
and proximal gradient projector [56] as follows:.
(=],
[2]g = 1Al
prox,,, ([2]g) = 4 if || 2], | = aX,, )

0, otherwise .

On the other hand, to avoid trapping in the local op-
tima, we train a controller network to dynamically adjust
the model mask from T4t t0 Tepng. We use a small por-
tion of training datasets D to construct Dcy. The overall
loss function for the controller network is as follows:

min Jen (W) =L(f(x; M, w),y)
+ YReLops (P (W), pProta) “4)

where f(x;WW,w) is the output of the target model with
weight VV based on model mask vector w. P(w) is the cur-
rent FLOPs based on the mask w, Py, is the total FLOPs of
the original model, p € (0, 1] is a hyperparameter to decide
the target fraction of FLOPs, and + is the hyper-parameter
to control the strength of FLOPs regularization. The regu-
larization term Rg ops i defined as:

Revops(2,y) = log(max(z,y) /y)

In ATO, we train the target model and controller network
alternately. After T¢,4 epochs, we stop controller network
training and freeze the model mask vector w to improve the
stability of model training in the final phase.

4. Convergence and Complexity Analysis

In this section, we provide theoretical analysis to ensure the
convergence of ATO to the solution of Eq. (1) in the manner
of both theory and practice. Note: for convenience, we set
z as the vector of network weight M.

Algorithm 1 ATO Algorithm

1: Input: Target model with model weights M (no need
to be pre-tained). Datasets D, Dcy, learning rate 7, A,
7, total steps 1', warm-up steps 7, controller network
training steps Ts;qr¢ and Tepq

2: Initialization: Construct ZIGs G of M. Build con-
troller network with weight W based on the size of G.
w is initialized as {0, 1}9!

3: fort=1,2...,7T do

4:  for a mini-batch (z,y) in D do

5: Compute the stochastic gradient estimator
VmL(M)in Eq. (1).

6: Update model weights M with any stochastic op-
timizer.
if T' > T, then

8: Perform projection operator and update follow-

ing Eq. (2) or Eq. (3) on ZIGs with w.
9: end if
10:  end for
11: if Tstart S T S Tend then
12: W, w < CN-Update(M, W, w, Dcn)
13:  end if
14: end for
15: Output: Directly remove pruned structures with mask
w and construct a compressed model.

Algorithm 2 CN-Update(M, W, w, Dcn)

1: Input: Target model with weights M, controller net-
work with weights W, mask w and Datasets D¢y, v

2: for a mini-batch (z,y) in Den do

3:  generate the mask w and calculate gradients estima-
tor ViyJen (W) in Eq. (4).

4:  Update the controller network weight W with
stochastic optimizer.

5: end for

6: Generate mask w

7: Output: controller network M and w

4.1. Stochastic Mirror Descent Method

We convert the algorithm into the stochastic mirror de-
scent method to provide the convergence analysis, consid-
ering the stochastic non-adaptive optimizers (i.e., SGD) and
stochastic adaptive optimizers (ADAM).

We set z as the vector of network weight M, and define
di(z) = %ZTAtZ, the Bregman divergence (i.e., Bregman
distance) is defined as below:

Dy(z,x) = ¢(2) — ¢(z) = (Vo(x), 2 — x)

To solve the general minimization optimization problem
min, f(z), the mirror descent method [1, 21] follows the
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below step:

2441 = arg mzin {f(zt) +(Vf(zt),z2—ze) + %Dqg(z, zt)}

where 77 > 0 is learning rate. It should be mentioned
that the first two terms in the above function are a lin-
ear approximation of f(z), and the last term is a Breg-
man distance between z and z;. Most importantly, the con-
stant terms f(z;) and (V f(z¢), 2:) can be ignored in the
above function. When choosing ¢(z) = 3||z/|?, we have
Dy(z,2) = 3|z — z|*. Then we have the standard gradi-
ent descent algorithm as below:

=0V f(z)

And the stochastic mirror descent update step as below:

Zt41 = 2t

. 1
Zt41 = argmin {{m¢,z) + W—D@(z, z) + g1(2)}
¢

where m; is the momentum gradient estimator of V.L(z;¢)
and m; = (1 — ay)mi—1 + . VL(z€), 1, is the learn-
ing rate, g(z) is a generally nonsmooth regularization in
Eq. (1). The controller network uses the mask to adjust
group-specific regularization coefficient A\, in g(z).

In the practice, since regularization g(x) in composite
functions Eq. (1) might not differentiable, we can minimize
the loss function L firstly as step 6 in Algorithm 1, which is
equivalent to the following generalized problem:

- . 1
Z1 = argmin {(mt7 z) + §Dt(z, zt)}

and then perform the projection operator as step 8 in Algo-
rithm 1 as in Eq. (2) and Eq. (3) on ZIGs with w.

For non-adaptive optimizer, we choose ¢(z) = 3||z||?
and Dy (2, 2) = %||z — 2|* and the mirror descent method
will be reduced to the stochastic projected gradient descent
method. For adaptive optimizer, we can generate the matri-
ces A; as in Adam-type algorithms [27], defined as

= B—1 + (1 = B)V.L(21; &),
Ay = diag(\/5; + €) )

where v is the second-moment estimator, and € is a term to
improve numerical stability in Adam-type optimizer. Then

o =0, U

1
Dy(z,z) = 5(2 —2) T Ay(z — z). (6)

4.2. Convergence Metrics and analysis

We introduce useful convergence metrics to measure the
convergence of our algorithms. As in [13], we define a gen-
eralized projected gradient gradient mapping as:

Pr=—(z
' 77t(t

1
z{,, = argmin {(V,C(zt), z) + n—D@(z, zt) + g(z)}
z t

— Z41)s @)

Therefore, for Problem (1), we use the standard gradient
mapping metric E||P;|| to measure the convergence of our
algorithms

Finally, we present the convergence properties of our
ATO algorithm under Assumptions ?? and ??. The follow-
ing theorems show our main theoretical results. All related
proofs are provided in the Supplement Material.

Theorem 1. Assume that the sequence {z;}1_, be gen-
erated from the Algorithm ATO (details of definition of
variables are provided in the supplementary materials).
When we have hyperparameters n, = W, 51% <
min{l, ;5} 1 = %,O{t.}rl = ¢y, constant batch size
b= O(1), we have

VGe! VG
7Z]E”Pt” = T1C/2 T1/4 ®)

where G =

w + 20% 4 280% 1n(G 4 T,

bLec ceLb

Remark 1. (Complexity) To make the £ 31 ' E|P,| <
g, we get T = O(e~*). Considering the use of constant
batch size, b = O(1), we have complexity bT = O(e~*),
which matches the general complexity for stochastic opti-
mizers [ 13 ] and guarantees the convergence of the proposed
algorithm.

5. Experiments
5.1. Setup

We assess the effectiveness of our algorithm through eval-
uations on image classification tasks, including datasets
CIFAR-10 [28], CIFAR-100, and ImageNet [7] employing
ResNet [15] and MobileNet-V2 [45] for comparison.

To compare with existing algorithms, we adjust the
hyper-parameter p as in Eq. (4) to decide the final remain-
ing FLOPs. A uniform setting with ~ in Eq. (4) set to 4.0.
The value of A in Eq. (1) is set as 10 for different mod-
els and datasets. We set the start epoch of the controller
network Ts;q-+ at around 10% of the total training epochs,
and the parameter T, 4 is set at 50% of the total training
epochs. Detailed values are provided in supplementary ma-
terials. The general choice of Ty, and T, 4 denotes that
the training of the controller network is easy and robust. To
mitigate the training costs arising from controller network
training, we randomly sample 5% of the original dataset D
to construct Dcy, incurring only additional costs of less than
5% of the original training costs. We use ADAM [27] opti-
mizer to train the controller network with an initial learning
rate of 0.001. In addition, we use the proximal gradient
project with > norm in Eq. (3).

For the training of the target network, standard training
recipes for ResNets on CIFAR-10, CIFAR-100, and Ima-
geNet are followed, while for the MobileNet-V2, training
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Table 2. Results comparison of existing algorithms on CIFAR-10 and CIFAR-100. A-Acc represents the performance changes relative to

the baseline, and +/— indicates an increase/decrease, respectively.

Dataset Architecture Method Baseline Acc | Pruned Acc A-Acc Pruned FLOPs
OTOV2 [5] 93.02 % 92.86% -0.16% 79.7%
ResNet-18
ATO (ours) 94.41% 94.51% +0.10% 79.8%
DCP-Adapt [63] 93.80% 93.81% +0.01% 47.0%
SCP [25] 93.69% 93.23% —0.46% 51.5%
FPGM [18] 93.59% 92.93% —0.66% 52.6%
SFP [16] 93.59% 92.26% -1.33% 52.6%
ResNet-56 FPC [19] 93.59% 93.24% -0.25% 52.9%
HRank [36] 93.26% 92.17% —0.09% 50.0%
CIFAR-10 DMC [10] 93.62% 92.69% +0.07% 50.0%
GNN-RL [55] 93.49% 93.59% +0.10% 54.0%
ATO (ours) 93.50% 93.74% + 0.24% 55.0%
|~ ATO(ours) | 93.50% | 9348% | —0.02% | 653%
Uniform [63] 94.47% 94.17% —0.30% 26.0%
DCP [63] 94.47% 94.69% +0.22% 26.0%
MobileNetV2 DMC [10] 94.23% 94.49% +0.26% 40.0%
SCOP [48] 94.48% 94.24% -0.24% 40.3%
ATO (ours) 94.45% 94.78 % +0.33% 45.8%
OTOV2 [5] - 74.96% - 39.8%
CIFARL00 ResNet-18 ATO (ours) 77.95% 7679% | —0.07% 40.1%
ResNet-34 OTOV2 [5] 76.31% - 49.5%
ATO (ours) 78.43 % 78.54 % +0.11% 49.5%

settings in their original paper [45]. are utilize. The T, is
set as T, around 20% of total epochs for all models and
datasets. Due to the page constraints, detailed information
on training can be found in the supplementary materials.
The main counterpart of our algorithm is OTOv2, which
also requires no additional fine-tuning. In addition, we also
list other pruning algorithms.

5.2. CIFAR-10

For CIFAR-10, we select ResNet-18, ResNet-56 and Mo-
bileNetV2 as our target models. Table 2 presents the results
of our algorithm (i.e., ATO) and other baselines on CIFAR-
10.

ResNet-18. For ResNet-18, our algorithm achieves the best
performance (in terms of A-Acc) compared to OTOv2 un-
der the same pruned FLOPs. OTOv2 regresses 0.16% top-1
accuracy since it does not require a fine-tuning stage and
uses the static pruning groups. Under the guidance of the
controller network, we can select masks more precisely and
overcome the limitations in OTOv2 which has better perfor-
mance.

ResNet-56. In ResNet-56, our method shows better per-
formance compared with baselines under similar pruned
FLOPs. Specifically, our method does not rely on the fine-
tuning stage and is more simple and more user-friendly.
Furthermore, our algorithm outperforms the second-best
algorithm GNN-RL by 0.14% according to A-Acc (ATO
+0.24% vs. GNN-RL +0.10%) when pruning a little more
FLOPs (ATO 55.0% vs. GNN-RL 54.0%). The gaps be-
tween other algorithms and ours are even larger.

MobileNet-V2. In MobileNet-V2, our method also has
good performance. Our algorithm prunes most FLOPs
(45.8%) and also achieves the best performance in terms
of A-ACC (+0.33).

5.3. CIFAR-100

Our comparisons on CIFAR-100 involve ResNet-18 and
ResNet-34. All results for the CIFAR-100 dataset are shown
in Table 2.

Due to OTOv2 not reporting its result on CIFAR-100
with ResNet-18 and ResNet-34, we produce the results
of OTOv2 on CIFAR-100 under the same setting as ours.
Compared with results of OTOv2 in Table 2, our algorithm
pruned a little more FLOAPs, while our algorithms im-
proved the results largely.

5.4. ImageNet

Subsequently, we employ ATO on ImageNet to demonstrate
its effectiveness. In this context, we consider ResNet-34,
ResNet-50, and MobileNetV2 as target models. The com-
parison between existing algorithms and ATO is presented
in Table 3.

ResNet-34. In the ResNet-34, our algorithm achieves the
best performance compared with others under the similar
pruned FLOPs although our algorithm has a simpler train-
ing procedure. Our algorithm achieves 72.92% Top-1 ac-
curacy and 91.15% Top-5 accuracy, which are better than
other algorithms. SCOP and DMC prune similar FLOPs to
our algorithm and have the same baseline results. Nonethe-
less, our method achieves a pruned Top-1 Accuracy that
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Table 3. Comparison results on ImageNet with ResNet-34/50 and MobileNet-V2.

Architecture Method Base Top-1 | Base Top-5 | Pruned Top-1 (A Top-1) | Pruned Top-5 (A Top-5) | Pruned FLOPs
FPGM [18] 73.92% 91.62% 72.63% (—1.29%) 91.08% (—0.54%) 41.1%
Taylor [42] 73.31% - 72.83% (—0.48%) - 24.2%
ResNet-34 DMC [10] 73.30% 91.42% 72.57% (—0.73%) 91.11% (—0.31%) 43.4%
SCOP [48] 73.31% 91.42% 72.62% (—0.69%) 90.98% (—0.44%) 44.8%
ATO (ours) 73.31% 91.42% 72.92% (—0.39%) 91.15% (—0.27%) 44.1%
DCP [63] 76.01% 92.93% 74.95% (—1.06%) 92.32% (—0.61%) 55.6%
CCP [43] 76.15% 92.87% 75.21% (—0.94%) 92.42% (—0.45%) 54.1%
FPGM [18] 76.15% 92.87% 74.83% (—1.32%) 92.32% (—0.55%) 53.5%
ABCP [37] 76.01% 92.96% 73.86% (—2.15%) 91.69% (—1.27%) 54.3%
DMC [10] 76.15% 92.87% 75.35% (—0.80%) 92.49% (—0.38%) 55.0%
Random-Pruning [34] 76.15% 92.87% 75.13% (—1.02%) 92.52% (—0.35%) 51.0%
DepGraph [8] 76.15% - 75.83% (—0.32%) - 51.7%
DTP [35] 76.13% - 75.55% (—0.58%) - 56.7%
ResNet-50 ATO (ours) 76.13% 92.86% 76.59% (40.46%) 93.24% (4-0.38%) 55.2%

|~ DTP[35] | ” 76.13% | - [ 7524%(-089%) | - - e 60.9%
OTOV2 [5] 76.13% 92.86% 75.20% (—0.93%) 92.22% (—0.66%) 62.6%
ATO (ours) 76.13% 92.86% 76.07% (—0.06%) 92.92% (+0.06% ) 61.7%
|~ DTP(35] | ” 76.13% | - [ 7426% (—1.87%) | - - e 67.3%
OTOv1 [4] 76.13% 92.86% 74.70% (—1.43%) 92.10% (—0.76%) 64.5%
OTOV2 [5] 76.13% 92.86% 74.30% (—1.83%) 92.10% (—0.76%) 71.5%
ATO (ours) 76.13% 92.86% 74.77% (—1.36%) 92.25% (—0.61%) 71.0%
Uniform [45] 71.80% 91.00% 69.80% (—2.00%) 89.60% (—1.40%) 30.0%
AMC [17] 71.80% - 70.80% (—1.00%) - 30.0%
. CC [33] 71.88% - 70.91% (—0.97%) - 28.3%
MobileNet-V2 | 4 Pruning [39] 72.00% - 71.20% (—0.80%) - 30.7%
Random-Pruning [34] 71.88% - 70.87% (—1.01%) - 29.1%
ATO (ours) 71.88% 90.29% 72.02% (+0.14%) 90.19% (—0.10%) 30.1%
) g e
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Figure 2. (a, e): the impact of \ in regularization term in Eq. (1). (b, f): the effect of hyperparameter v in RrLops in Eq. (4). (c, g): the
effect of Ty. (d, h): the effect of the project operation as in Eq. (2) and Eq. (2). Experiments are conducted on CIFAR-10 with ResNet-56

and p = 0.45 (a,b,c,d) and p = 0.35 (e.f,g,h).

is 0.30% and 0.35% superior to SCOP and DMC, respec-
tively. Similar observations are made for Top-5 Accuracy,
where our method outperforms SCOP and DMC by 0.17%
and 0.04% respectively.

ResNet-50. In the ResNet-50, we report a performance
portfolio under various pruned FLOPs, ranging from 55.2%
to 71.0%. We compare with other counterparts in Figure 3.
Although increasing pruned FLOPs and parameter reduc-

tions typically results in a compromise in accuracy, ATO ex-
hibits a leading edge in terms of top-1 accuracy across vari-
ous levels of FLOPs reduction. Compared with OTOv2, the
results of our algorithm do not suffer from training simplic-
ity. Especially, under pruned FLOPs of 61.7%, Top-1 acc
of ATO achieves 76.07%, which is better than the OTOv2
by 0.87% under similar pruned FLOPs. In addition, even
when pruned FLOPs is more than 70%, ATO still has good
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Figure 3. ResNet50 on ImageNet

performance compared with counterparts.

MobileNetv2. The lightweight model MobileNetv2 is gen-
erally harder to compress. Under the pruned FLOPs of
30%, our algorithm archives the best Top-1 acc compared
with other methods, even though our algorithm has simpler
training procedures. Our algorithm achieves 72.02% Top-1
accuracy and 90.19% Top-5 accuracy while the results of
other counterparts are below the baseline results.

5.5. Ablation Study

We study the impact of different hyperparameters on model
performance. We use the RenNet-56 on CIFAR-10. Note
that the falling gap at Epoch 30 is because controller net-
work training starts at Epoch 30 and then we test model
performance under the mask vector w, which is equivalent
to removing the corresponding ZIGs.

The impact of \. We study the impact of regularization
coefficient A in Eq. (1), and we plot the test accuracy in
Figure 2a and Figure 2e. From the curves, we can see that
plays an important role in the model training. If the value of
A is too small, it will harm model performance, especially
when pruned FLOPs are large (p = 0.35).

The impact of v. We plot the impact of hyper-parameter
controlling 7, which decide the strength of FLOPs regular-
ization in Eq. (4) and we plot the test accuracy in Figure 2b
and Figure 2f. From the results, we can see that accuracy
is lightly affected by + and the curves of different  con-
verge quickly after the model starts training (Epoch = 30).
Furthermore, we plot R ops in Figure 4, and the controller
network under different y converges before training stops
at Epoch =150 with different speeds. Note the loss value
is scaled to [0, 1]. It shows that selecting a too-small ~y
may hinder the controller network from achieving the tar-
get FLOPs when the pruning rate is large. Otherwise, the
training of the controller network is robust.

T
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Figure 4. the effect of hyperparameter v in RrLops in Eq. (4).
Experiments are conducted on CIFAR-10 with ResNet-56 with
p = 0.45 (a) and p = 0.35 (b).

The impact of 7,,. We study the impact of T;, when train-
ing target model in Figure 2c and Figure 2g. Since we start
training the controller network at Epoch 30 and we need a
mask w from the controller network, T, is selected from
set {30, 50, 100, 150}. In general, they can converge to the
optimal under the mask with different 73,.

The impact of projection operator. To verify our proposed
is algorithm flexible to the projection operator, we plot the
test accuracy of the proximal gradient projector in 3 and
Half-Space projector 2. In OTO [4] and OTOV2 [5], due
to the limitation of the manually selected static mask, they
have to use (D)HSPG [5] to achieve better performance. In
the test, we show that the controller network helps us solve
these tough questions and there is no big difference between
the two projection operators. Due to the easy implementa-
tion and the better efficiency of the proximal gradient pro-
jector, we use it in our experiments.

6. Conclusion

In this paper, we investigate automatic network pruning
from scratch and address the limitations found in existing
algorithms, including 1) complex multi-step training
procedures and 2) the suboptimal outcomes associated with
statically chosen pruning groups. Our solution, Auto-Train-
Once (ATO), introduces an innovative network pruning
algorithm designed to automatically reduce the computa-
tional and storage costs of DNNs without reliance on the
extra fine-tuning step. During the model training phase, a
controller network dynamically generates the binary mask
to guide the pruning of the target model. Additionally,
we have developed a novel stochastic gradient algorithm
that offers flexibility in the choice of projection operators
and enhances the coordination between the model training
and the controller network training, thereby improving
pruning performance. In addition, we present a theoretical
analysis under mild assumptions to guarantee conver-
gence, along with extensive experiments. The experiment
results demonstrate that our algorithm achieves state-of-
the-art performance across various model architectures,
including ResNetl8, ResNet34, ResNet50, ResNet56,
and MobileNetv2 on standard benchmark datasets
such as CIFAR-10, CIFAR-100, as well as ImageNet.
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