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Abstract

We present Dive Into the BoundarieS (DIBS), a novel
pretraining framework for dense video captioning (DVC),
that elaborates on improving the quality of the generated
event captions and their associated pseudo event bound-
aries from unlabeled videos. By leveraging the capabil-
ities of diverse large language models (LLMs), we gen-
erate rich DVC-oriented caption candidates and optimize
the corresponding pseudo boundaries under several metic-
ulously designed objectives, considering diversity, event-
centricity, temporal ordering, and coherence. Moreover, we
further introduce a novel online boundary refinement strat-
egy that iteratively improves the quality of pseudo bound-
aries during training. Comprehensive experiments have
been conducted to examine the effectiveness of the pro-
posed technique components. By leveraging a substantial
amount of unlabeled video data, such as HowTolO00M [16],
we achieve a remarkable advancement on standard DVC
datasets like YouCook2 [31] and ActivityNet [13]. We out-
perform the previous state-of-the-art Vid2Seq [27] across
a majority of metrics, achieving this with just 0.4% of the
unlabeled video data used for pre-training by Vid2Seq.

1. Introduction

Dense video captioning (DVC), a challenging task in video
understanding, involves the temporal localization and cap-
tioning of all events within an untrimmed video [12]. Com-
pared to standard video captioning that generates a single
caption for a short video clip [4, 26, 30], the complexity
of dense captioning significantly increases as it requires lo-
calizing multiple events in long-term video sequences and
much more detailed captioning.

Particularly, the event boundary is paramount in dense
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video captioning. It provides precise event localization, en-
suring the generated captions are accurate, coherent, and
contextually relevant. Unfortunately, data containing pre-
cise event boundaries is rare and expensive to annotate. This
scarcity poses a substantial performance bottleneck.

Pioneering efforts have been made to address data short-
age challenges in DVC. Notably, several weakly supervised
approaches [3, 6] have endeavored to approximate fully
supervised performance without relying on all the bound-
ary annotations provided by existing datasets, thereby cir-
cumventing the need for such annotations. However, these
methods take a conservative approach to the problem by
carefully re-designing the DVC training or testing frame-
work, aiming to theoretically develop self-sufficient tech-
niques and reduce the reliance on precise boundary annota-
tions. They have not yet substantially incorporated larger-
scale data for training purposes to drive improved perfor-
mance. Instead, we take a direct approach to address the
fundamental data scarcity issues. Specifically, we introduce
an effective method for generating and enhancing pseudo
boundaries and harnessing the capabilities of LLMs to pro-
duce higher-quality coherent captions. Given the enhanced
captions, their corresponding boundaries are generated and
further optimized using a carefully designed unified metric
and optimization algorithm, ultimately achieving optimal
quality. Moreover, we deploy this approach on a substantial
volume of unannotated, large-scale video data, effectively
bolstering the training data for the DVC task and thereby
resulting in a notable performance improvement.

Similar to our motivation, Vid2Seq [27] also emphasizes
the utilization of large-scale unlabeled video data for model
training to boost performance. They first propose a single-
stage DVC framework that collectively predicts all event
captions and corresponding temporal boundaries by gen-
erating a single sequence of discrete tokens. Then, this
framework is pre-trained on numerous unlabeled narrated
videos, where the target event captions and boundaries are
obtained directly from the text and timestamps of subtitles
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Figure 1. Comparison between Vid2Seq [27] and ours. (a) Raw
subtitles extracted from videos. (b) Vid2Seq [27] directly converts
the raw text and timestamps of subtitles into pseudo event bound-
aries and captions for pretraining. (c) Our proposed framework
utilizes LLMs to generate rich and accurate captions for events
from raw narrations. Subsequently, corresponding pseudo bound-
aries can be generated using these captions through our devised
optimization algorithm (cf. Sec. 3.2).

(as shown in Figure 1(b)). Nevertheless, these raw subti-
tles usually comprise dialogues, personal reflections, or su-
perfluous background details, and are often temporally mis-
aligned with the visual stream, which introduces significant
noise into the event learning. Therefore, while Vid2Seq suc-
cessfully integrates a larger scale of data for DVC, the ef-
fectiveness and utilization efficiency of its large-scale video
data still need to be improved.

To this end, we present DIBS, a novel DVC framework
that generates accurate event captions along with pseudo
boundaries from unlabeled videos to enable effective pre-
training for DVC. Specifically, DIBS harnesses diverse off-
the-shelf LLMs, leveraging their proficiency in text pro-
cessing to produce coherent and rich caption candidates for
events from unlabeled videos. Moreover, it generates cor-
responding pseudo event boundaries for each caption, and
further optimizes each boundary with a meticulously de-
signed algorithm considering multiple metrics such as di-
versity, event-centricity, temporal ordering, and coherence.
Furthermore, considering that the generated pseudo bound-
ary is still imperfect and includes noises (e.g., background
segments), we propose a novel training strategy with on-
line boundary refinement. This strategy aims to iteratively
refine and improve the pseudo boundaries during the train-
ing phase. Additionally, we seamlessly integrate our ap-

proach with state-of-the-art DVC training frameworks such
as PDVC [25], achieving significantly improved results on
extensive benchmarks.

2. Related Work
2.1. Dense Video Captioning

Dense video captioning entails event localization and cap-
tioning tasks in long-form videos. Early approaches to
this problem typically employed a two-stage detect-then-
describe” framework. Within this framework, previous
methods [10, 12, 17, 28] focused extensively on improving
event representation. For instance, HCN [28] observed that
contextual modeling could significantly enhance event cap-
tioning performance, while [10, 11] incorporated the audio
modality to produce a more robust representation.

Traditionally, the separation between event localization
and captioning posed a gap in methods. However, recent
approaches [5, 14, 27, 32, 33] strive for joint learning.
MT [32] connected captioning loss and proposal boundaries
via a differential masking mechanism for their mutual op-
timization. PDVC [25], inspired by DETR [2], framed the
task as set prediction, enabling simultaneous optimization
of both tasks. In contrast, SGR [5] proposed a top-down
framework, generating paragraphs before assigning event
descriptions to video segments. E2ESG [33] tackled dense
video captioning as a unified sequence-to-sequence task us-
ing a multimodal Transformer, predicting event locations
and captions concurrently.

Despite their advancements, current DVC algorithms
still rely on comprehensive annotations for events, partic-
ularly precise event boundaries. This requirement restricts
the utilization of large-scale datasets to enhance DVC per-
formance. Recently, Vid2Seq [27] made a groundbreak-
ing attempt by leveraging unlabeled narrated videos for
DVC pre-training. However, it directly converts the text
and timestamps from narrations into pseudo event captions
and boundaries for training, which introduces considerable
noise (e.g., backgrounds) into the learning targets. This
operation limits the potential benefits of utilizing extensive
narrated video datasets for DVC.

2.2. Weakly-supervised Dense Video Captioning

Research in weakly-supervised dense video captioning has
gained traction due to its potential to bypass the tedious task
of annotating precise event boundaries in lengthy videos.
WSDEV [6] introduced a cyclical system tackling cap-
tion generation and sentence localization as dual tasks.
WLT [20] extended this by incorporating audio inputs for
improved event captioning. Recently, EC-SL [3] introduced
a concept learner to enhance the sentence localizer. How-
ever, these methods primarily focus on reducing reliance
on precise boundary annotations without incorporating un-
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labeled data for training or significantly improving perfor-
mance compared to fully supervised approaches.

2.3. Video-Language Pretraining

Large-scale video-text pretraining has proven highly effec-
tive in diverse video applications like video retrieval, recog-
nition, and non-dense video captioning. UniVL [15], for in-
stance, employed multi-task pretraining on an instructional
dataset for video retrieval. All-in-one [24] extended this
approach with an end-to-end video-language model, incor-
porating multiple video datasets to support various down-
stream tasks like video question answering.

However, few studies have focused on extensive pre-
training for dense video captioning due to the demanding
nature of event annotation in these tasks. UEDVC [29]
introduced a pretraining task on ActivityNet to enhance
DVC performance on the same dataset. Vid2Seq [27] col-
lected and used numerous narrated videos for pretraining
in dense video captioning. However, it directly translates
raw narrations and timestamps into pseudo event captions
and boundaries for DVC pretraining, leading to significant
noise and reduced effectiveness in utilizing large-scale nar-
ration video data. In contrast, our approach introduces a
new pipeline to extract rich and accurate event captions and
pseudo boundaries, preserving the wealth of information in
large-scale videos for DVC.

3. Approach

Given an input video V comprising M frames f, DVC aims
to temporally localize and describe events within the video
using natural language. In particular, DVC must predict
timestamped boundaries b around key moments and gener-
ate descriptive captions ¢ for each segmented event, result-
ing in a triplet ({f,,|m € M}, {b,|n € N}, {c,|n € N}),
where IV represents the number of events.

Therefore, large-scale pretraining for DVC requires an
extensive collection of video data paired with textual de-
scriptions like subtitles or speech-to-text transcriptions, rep-
resented as (V, C). However, this data lacks precise bound-
ary information crucial for determining event quantity, po-
sitions, and durations. Additionally, the textual descriptions
may not consistently align with the requirements of dense
captioning, needing a coherent, sequentially narrated de-
scription based on pivotal events.

Previous methods, like Vid2Seq [27], tackled this issue
by segmenting subtitles into boundaries and captions. How-
ever, these subtitles often contain dialogues, musings, re-
flections, or irrelevant details, leading to discrepancies be-
tween the intended content and the subtitles. This mis-
match resulted in inaccuracies in automatically generated
captions, misrepresenting the depicted events in the video.

Method | Vid2Seq [27] | Ours

N #Sentences in subtitle #Events reinterpreted by diverse LLMs

c Noisy raw sentences in subtitle Rich, event-centric and sequential

b Timestamps of subtitle Our pseudo boundaries generator in Sec. 3.2

Table 1. Comparison of event caption generation methods between
Vid2Seq [27] and our approach in terms of ‘b’, ‘¢’, and ‘N’.

3.1. Prompting LLMs for DVC-Oriented Captions

To address the aforementioned issue more effectively, we
aim to utilize the capabilities of off-the-shelf LLMs [21, 22]
to enrich C for the DVC task. LLMs are recognized for their
proficiency in text processing, showcasing a remarkable ca-
pacity to generate rich and contextually accurate captions,
particularly when provided with carefully crafted prompts.

Diverse Off-the-shelf LLMs Our exploration into diverse
LLMs includes both open-source models like LLAMA-
2 [22] and InternLM [21], as well as closed-source API-
based models such as ChatGPT and Claude. Leveraging
diverse LLMs enables us to evaluate different backbones
and datasets, tapping into the distinct capabilities of each
model. Tailoring carefully selected prompts to the unique
characteristics of each LLM, whether open-source or API-
based, enables us to extract accurate and contextually rel-
evant event captions. Integrating a diverse range of LLMs
illustrates the adaptability and effectiveness of our method-
ology, highlighting its versatility across different LLMs and
ensuring the extraction of high-quality event captions.
Leveraging Sparse Ground Truth Captions as Prompts
for Prompt Generation Initially, we aim to extract the
event events descriptions {¢,|n € N} from the subtitles
C. To achieve this, we employ a circle-prompting strategy,
initially providing a small set of ground truth event captions
as hints and querying an LLM for prompts that can gener-
ate similar results. We subsequently conduct iterative test-
ing of prompts and captions for better results and manually
correct LLM errors in the loop to ensure that our prompts
generate rich, accurate, concise, coherent, and event-centric
captions. This iterative process seeks to achieve a balanced
compromise between precision and conciseness. An exam-
ple prompt we generate is specified as follows:

Task: Extract concise and action-oriented steps or instruc-
tions from the video subtitles, focusing solely on the sequen-
tial process. Each step should be presented as a single sen-
tence with clear actions. Exclude any steps that are not di-
rectly related to the actions in the video. Generate the steps
directly without repeating the original text.

Consequently, the original subtitles are transformed into
logically structured and temporally coherent description of
events. Table |1 and Figure | present a comparison be-
tween our method and Vid2Seq [27] in generating event
captions, accompanied by an example. Utilizing various
LLMs and prompts, we generate multiple candidate event
captions. These candidates, introduced in the next section

18701



during the pseudo boundary generation process, are opti-
mized with boundary generation.

3.2. Optimization of Pseudo Boundaries

After generating event captions {c,|n € N}, the sub-
sequent challenge is to ascertain the temporal boundaries
{b,,|n € N} of the corresponding events. In this section,
we introduce how to obtain and optimize the corresponding
boundaries for each event caption. The optimization com-
prises two main objectives: first, maximizing alignment be-
tween the event caption ¢,, and the video clip ff,  7; and sec-
ond, ensuring that the temporal order relationships between
the boundaries reflect those between event captions.
Vision-Language Similarity Matrix For semantic align-
ment between {c,|n € N} and {f,,|m € M}, we adopt
a bottom-up optimization strategy. Initially, a pre-trained
vision-language (VL) model, denoted as (M, M) for vi-
sion and language feature extractors, is employed to calcu-
late similarities between individual frames in the video and
each caption. This yields a similarity matrix S that signifies
the associations between frames and captions.

S = My (f,,) - M(c,)
T My ()] - IM ()|

Note that when employing a video-language model, a short
video clip centered around a frame is utilized to repre-
sent this frame. For implementation, image-language mod-
els such as CLIP [18] and video-language models like
UniVL [15] are utilized. In the experiments, we aggre-
gate scores from multiple vision-language models, averag-
ing them to yield a more robust similarity matrix.
Discussion: the domain gap and noisy detection issue.
Evidently, the quality of the similarity matrix significantly
depends on the VL models’ quality and the domain gap be-
tween the dataset used for VL model training and the DVC
dataset. On the one hand, this underscores the importance
of employing diverse LLMs to generate rich caption candi-
dates. On the other hand, despite these concerted efforts, the
similarity matrix still exhibits notable detection noise and,
in some instances, false positives.
Caption-Aware Pseudo Boundary Generation with Soft
Time Constraints Leveraging the similarity matrix S, we
convert the event localization problem into the identification
of the optimal N frames in {f,,|m € M} corresponding
to captions {¢,,|n € N}. This process should adhere to
the temporal order specified in {c,,|n € N}, resulting in a
drop dynamic time warping (Drop-DTW) [7] problem. We
denote this baseline method as the Drop-DTW Baseline.
However, due to the noisy detection issue discussed
above, the effectiveness of the direct Drop-DTW Baseline
method is constrained. This ineffectiveness arises from sev-
eral reasons: 1) Multimodal Responses: Higher response

(D

Algorithm 1 Pseudo Boundary Generation

1: Input: event captions {c,, |[n € N}; similarity matrix S; user-
defined top-k parameter K, total iterations ().

2: Initialization: {b,|n € N} « Divide the entire video V into
N equal segments.

3: for each caption ¢,, in {c,|n € N} do
4 for each iteration t in ¢t € @ do
5 collect top-k frames {Ty |k € K} around b,.
6: for cach k in K do
7: ch,n = Zfil |En - Tfe,n|
8 end for
9: k* « k with minimum D .
10: new boundary center < Tj, ,
11: new boundary size « 2 * «a * std,,.
12: update boundary « bfm in Eq. 3
13: record loss < L' in Eq. 4.
14: end for
15: select iter with minimum loss ¢ = argmin Lt7 teqQ
t
16: determine the pseudo boundary for caption c,,: b,, < b,
17: determine the loss for captions : L « L.

18: end for
19: Output: Generated pseudo boundaries {b,,|n € N} and loss
L for input event captions {c,,|n € N}.

positions often exhibit multiple peaks, with their distribu-
tion in the video lacking concentration. 2) Non-Uniform
Event Coverage: Events do not exhibit a preference for
a uniformly distributed coverage across the majority of the
entire video. 3) Strict Temporal Ordering Constraints:
the hard global temporal ordering constraints in Drop-DTW
not only slow down the optimization process significantly
but also impede individual captions from effectively finding
the best-matching video intervals; 4) Duration Determina-
tion: Additionally, determining the duration of events lacks
a straightforward, intuitive method.

To address these issues, we propose a caption-aware
pseudo boundary generation algorithm with soft time con-
straints, as illustrated in Algorithm 1. To encourage events
cover most of the video length evenly, we initialize the
boundaries b’ by dividing the video into [V equal segments.
Subsequently, we iteratively optimize the boundaries, as il-
lustrated in Figure 2. For the nth caption, in its {th 1tera-
tion, we first collect a local set of top- k frames around b
(the boundary range in the previous iteration, starting from

n) with the highest similarity scores to ¢,,. From these k
positions, we select the new boundary center. For each of
the k frames, we calculate the total temporal distance from
this frame to the other k — 1 frames. The frame with the
minimum total distance indicates that these top k frames
are more concentrated around it, thus setting it as the new
boundary center, demoted as T}« ,,. The size of the bound-
ary is determined by calculating the standard deviation with
respect to the new boundary center as shown in Equation 2.
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Figure 2. Prior range division and frame processing in pseudo
boundary generation. Frames showcasing top-k global similarity
to Event-3 are indicated by deep points, contrasting with
lighter green points denoting similarity outside the top-k range.
The blue box delineates the evenly divided prior range, while the
box signifies the adjusted range after an iteration. The
pseudo boundary generation process is outlined in Algorithm 1.

1 1
Stdn = (E Z(Tk,n - Tk*,n)2)2 (2)
k

To this end, we gain a coarse boundary b.oq,se,, and we
further determine the actual boundary bfL of the boundary
by selecting the minimum and maximum values of k frames
within the new coarse boundary as depicted in Equation 3:

bcoarse,n = [ch* n T Q¥ stdy,, ng* n T Q¥ Stdn]
7 ’ 3)
b:; = [min(Tk,n)a maX(Tk,n) for Tk,n in bcoarse,n]

where « is a hyperparameter determining the size of the
coarse boundary. After each iteration, we define a loss func-
tion to evaluate the quality of the generated boundary, as
shown in Equation 4:

Lt = Z Z Sk,n * Dis(Tk,nabfLL
n k

Dis(f.b) = {—min(f—bs,be —f), ifb,< f<b,,
max(bs - fv f - be)a
“)
Here, the loss is the total distance weighted by the similarity
score between the frame and caption. The function Dis(-)
measures the distance between a frame f and the boundary
b, where b, and b, represent the start and end of the bound-
ary respectively. The function Dis( f,b) is positive when f
is within the boundary range and negative otherwise. We
then collect the local top-k frames with the highest simi-
larity scores to the nth caption around the new boundary
and proceed to the next iteration. Finally, we select the
boundary with the minimum loss value as the final opti-
mized boundary. Refer to Algorithm 1 for further details
on generating the pseudo boundaries.

3.3. Training with Online Boundary Refinement

Although we can employ various fully supervised ap-
proaches [25, 29, 33] to train a DVC model using gener-

if f <bgor f>Db,.

Proposal = [—————

sampling B |>\—'p6
e Event_l L E
Event
Inaccurate Bag head " H—»P , Selected
Pseudo Proposal Proposals
Boundary pc score lMerge
5] Cap Caption
head  score Refined
Matched “Add water to the incubator” Pseudo
Stage-1 queries Boundary
J
\ Proposal [——| 7 T»
sampling p ~l —
- > Event
Refined Bag T score @ p Selected
BPseu:o I J Proposal Proposals
oundar
Y —— P~ SC2IE Merge
5] Cap Caption
head score Refined
Matcl?ed “Add water to the incubator” Pseudo
Stage-2 queries Boundary
SEAGE-K <= eeeeeaaee . Final refined

Pseudo Boundary

Figure 3. The process of online pseudo boundary refinement.

ated event captions and pseudo boundaries, these bound-
aries might be imperfect, encompassing inaccuracies like
background elements. Utilizing them directly as ground
truth during DVC pretraining could mislead the event learn-
ing process, especially in event localization. To counter this,
we introduce an online strategy for refining pseudo bound-
aries, seamlessly integrating it with cutting-edge DVC train-
ing frameworks like PDVC [25].

Background Review of PDVC PDVC [25] is an effective
DVC framework employing parallel decoding and set pre-
diction principles. It starts by utilizing a pre-trained video
feature extractor and a transformer encoder to derive a se-
quence of frame-level features. Then, employing M learn-
able event queries {qi}?fl, it employs a transformer de-
coder along with three prediction heads (localization head,
caption head, and event counter) to simultaneously predict
M boundaries, M captions, and event count. During in-
ference, the model selects the top detected events by rank-
ing captioning and localization scores, without using non-
maximum suppression (NMS) [9].

Online Pseudo Boundary Refinement We refine pseudo
boundaries by augmenting their quantity and conducting
quality evaluations. As shown in Figure 3, consider a
pseudo boundary b = (¢, d) of caption ¢, we employ a stan-
dard jitter augmentation on the boundary duration d and
the boundary center ¢ with jitter ratio r; and ro respec-
tively, obtaining an augmented set of proposals, denoted as
B = {b,}._, (U proposals in total and b is contained in
B as well), representing potentially superior event segments
for caption c. Then, following PDVC, we adopt the Hun-
garian matching method [2] between all proposals {Bu}fj;l
and query embeddings {q; }.2, to link each proposal with a
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specific query, yielding {Q, }°—; (Q,, = qi, if the ith query
is linked to the uth proposal). The linked query serves as
the proxy feature for the proposal.

Utilizing the augmented set of proposals and their proxy
features, we evaluate their quality online during training.
PDVC offers an event classification head h® and a caption
scoring head h®, both using the query embeddings as input
and producing confidence scores. Formally,

P, = Sigmoid(h’(Q,)) 5
p, = Softmax}(h°(Qy,c)) (6)

Note that the event score p;, is normalized with the Sig-
moid activation while the caption score p;, is normalized
with the Softmax activation across all proposals in B. The
final assessment score p,, for the proposal E)u is calculated
as p, = Py, + Py,- A higher proposal score means this pro-
posal better represents the boundary of caption c.

Finally, we select the top-K proposals in {Bu}5=1 with
the highest scores and compute a weighted average of their
boundaries as the final refined boundary.

b= Y bt P Br
ref T TR
Zk=1 Pk

The refined pseudo boundary b,..; replaces the original
boundary b for subsequent training stages. This iterative
process, shown in Figure 3, refines each pseudo boundary
in multiple stages, resulting in increasingly accurate bound-
aries. Our implementation defaults to a 2-stage refinement
process to derive the final boundary. Importantly, bound-
ary refinement doesn’t impact model inference, incurring
no additional computational overhead during this phase.

)

4. Experiments
4.1. Experimental Setting

Datasets Our experiments encompass two prominent
datasets commonly employed for dense video captioning:
YouCook2 [31] and ActivityNet Captions [13]. For pre-
training, we leverage a subset of the HowTol0OM [16]
dataset, specifically focusing on cooking videos, amounting
to approximately 56,000 videos.

Implementation Details In our setup, we uniformly sam-
ple video frames at 1 FPS and adjust them to a fixed count
denoted as I'. For YouCook2, F' is set to 200, and for Ac-
tivityNet Captions, it’s 100. We utilize pretrained vision-
language models like CLIP [18] and UniVL [15] to ex-
tract frame-level features across all datasets. The model un-
dergoes a two-stage training process: initially, a 10-epoch
pretraining on a subset of HowTo100M, followed by a 20-
epoch fine-tuning phase on each target dataset. Notably, to

address the domain gap between the HowTo100M dataset
and the target dataset, we augment the training data by in-
corporating the target dataset using pseudo-boundaries dur-
ing pretraining. Our model architecture mirrors PDVC [25],
incorporating a transformer encoder, transformer decoder,
and three prediction heads.

Evaluation Metrics We employ standard captioning met-
rics: METEOR [1] (M) for semantic similarity, and
CIDEr [23] (C) for human judgment correlation. For event
localization evaluation, we utilize average precision (Pre.)
and recall (Rec.) at Intersection over Union(IoU) thresholds
of 0.3, 0.5, 0.7 and 0.9, along with the overall F1 score for
boundary prediction. These metrics are computed using the
official ActivityNet challenge toolbox. Additionally, we in-
corporate the SODA _c [8] (S) metric, which provides a joint
evaluation of caption quality and localization accuracy.

4.2. Comparison with State-of-the-art Methods

In Table 2, we compare our captioning performance against
state-of-the-art approaches. We evaluate our model un-
der two settings: weakly supervised and fully supervised
paradigms. In the weakly supervised setting, our model is
trained directly on the target dataset using ground truth cap-
tions and generated pseudo boundaries, without using any
ground truth boundaries. It can be observed that this strat-
egy achieves comparable performance compared to prior
weakly supervised DVC methods, demonstrating the ef-
fectiveness of our pseudo boundary generation and refine-
ment. Regarding the standard fully-supervised setting, our
approach outperforms PDVC [25] with the same back-
bone architecture after pretraining. This illustrates the sig-
nificant benefits of pretraining for DVC. Particularly, on
YouCook2 and ActivityNet, our models with UniVL and
CLIP backbones surpass previous methods across multiple
metrics. Notably, Vid2Seq incorporates additional speech
cues during inference, providing a richer multi-modal con-
text. Besides, Vid2Seq uses much larger-scale pretraining
data (15M videos) and captioning models (TS5 [19]) com-
pared to our DIBS. These factors likely explain some per-
formance differences relative to Vid2Seq, particularly with
the CLIP backbone. However, using the UniVL backbone,
our model can surpass Vid2Seq on YouCook?2 by a signif-
icant margin. On ActivityNet, our CLIP-based approach
also achieves state-of-the-art results.

In Table 3, we see that our pretraining consistently en-
hances the event localization, enabling our DIBS to outper-
form previous methods on YouCook2 by a great margin.
However, on ActivityNet, our approach lags behind PDVC
and UEDVC [29] while outperforming Vid2Seq. This dis-
parity may be due to the domain gap between instructional
and activity videos, impacting the localization of less com-
mon events despite improvements in captioning.
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DIBS(Ours) | ©  UniVL | 590 2062 496 | 676 1375 426  DVCLS] e CLIP 12176 31921 5082 55.73
PDVC [25 TSN 474 2271 442 | 796 2896 544 PDVC [25] (%] UniVL 29.66 42.04 | 53.21 59.46
PDVC [:SL . CLIP | 547 2837 500|831 30.01 563 UEDVC [29] | 676k TSN ) ) 59.00 6032
PDVC {Z%}"' 2 UniVL | 787 4602 687 | 824 2821 543 o0 U] 2 3D A 2004 - '
P ni R A X N . 45 .
Fully- | UEDVC[29] | 676k TSN | 2.18 837 334 | - - 549 Vid2Seq [27] 15M CLIP 27.90  27.80 | 5270 53.90
Supervised | E2ESG [33] Z b | 340 200 L o T DIBS (Ours) | 56k CLIP | 2624 39.18 | 53.14 5831
Vid2Seq [27] | 15M CLIP | 930 47.10 7.90 | 850 30.10 5.80 DIBS (Ours) | 56k UniVL | 30.80 45.13 | 53.02 5839
DIBS (Ours) | 56k CLIP | 751 4444 639 | 893 3189 585
DIBS (Ours) | 56k UniVL | 941 5935 7.97 | 825 2885 535

Table 2. Performance of caption generation on YouCook2 and ActivityNet.
" Results are obtained from our implementation with official codebase.

In summary, our proposed pretraining approach substan-
tially boosts event localization on well-matched instruc-
tional datasets like YouCook2. Regarding general activ-
ity localization, additional techniques may be necessary to
transfer specific knowledge from the instructional videos
due to the clear domain gap. Therefore, taking careful con-
sideration of domain similarity is critical when leveraging
unlabeled videos for DVC pretraining.

4.3. Ablation Study

Effects of Pseudo Boundary We examine the impact
of pseudo boundaries on YouCook2, comparing against a
baseline where ground truth event boundaries are omitted.
When utilizing pseudo boundaries, matching between pro-
posals and captions primarily relies on the Generalized IoU
(GIoU) cost. To provide a comprehensive comparison, we
construct two additional settings, both incorporating cap-
tion information similar to our pseudo boundary. The first
setting introduces an additional caption cost for matching,
replacing the GIoU cost, while the second setting incorpo-
rates a caption-proposal similarity cost in place of the GloU
cost. In Table 4, we present a comprehensive compari-
son of model performance on event localization and cap-
tion generation using CLIP and UniVL as backbones. The
results demonstrate a significant improvement in model per-
formance when employing pseudo boundaries, whereas the
other two settings exhibit inferior performance compared
to the baseline at most metrics. This corroborates the ef-
fectiveness of generating pseudo boundaries using captions
as a powerful method for leveraging caption information in
event localization tasks.

Effects of Soft Time Constraints We assess the impact
of soft time constraints on pseudo boundaries by exclud-
ing ground truth boundaries from both the YouCook2 and
ActivityNet. Our method without soft time constraints per-
forms global video iteration for each caption. Table 5
delineates model performance with and without soft time
constraints, employing CLIP and UniVL backbones. In-

Table 3. Perfgrmance of event localization on YouCook2 and
ActivityNet. " Results are obtained from our implementation
with official codebase.

Settings Metrics
Feature Boundary Caption | M C S Rec. Pre.
1. CLIP X X 232 9.07 340 1847 25.01
2. CLIP X Cost 1.68 7.09 279 14.19 16.63
3. CLIP X Sim 2.18 837 334 20.77 2470
4. CLIP v X 4.62 2193 3.73 1548 28.82
1.  UniVL X X 266 997 321 15.62 25.18
2. UniVL X Cost 1.99 849 3.15 1875 21.08
3. UniVL X Sim 227 9.16 3.16 15.83 24.88
4. UniVL v X 5.88 28.04 447 1972 3543

Table 4. Performance comparison of event localization and cap-
tion generation on YouCook2 with and without pseudo boundaries.

Dataset ‘ Features STC ‘ M C S Rec. Pre.

CLIP X 392 17.05 3.57 1429 2587

YouCook2 CLIP v 4.62 2193 3.73 1548 28.82

UniVL X 543 2557 447 18.05 32.83

UniVL v 5.88 28.04 447 19.72 3543

CLIP X 6.60 1523 3.87 3531 57.68

.. CLIP v 723 16.63 4.68 42.44 65.46
ActivityNet

UniVL X 5.88 13.60 3.68 3572 55.14

UniVL v 6.75 14.13 4.21 4224 64.75

Table 5. Comparison of model performance with and without soft
time constraints. STC denotes soft time constraints.

troducing soft time constraints notably enhances model
performance in event localization and caption generation.
This improvement underscores the efficacy of soft time
constraints in generating higher-quality pseudo boundaries.
The sequential nature of events in videos highlights the sig-
nificance of maintaining temporal order, even in scenarios
with potential event overlap, as observed in ActivityNet.

Effects of Boundary Refinement To assess the impact of
boundary refinement, we employ two distinct settings on the
YouCook2 and ActivityNet Caption datasets. In the first set-
ting, we examine performance by omitting the ground truth
boundary, utilizing pseudo boundaries both with and with-
out refinement. In the second setting, we perform pretrain-
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Dataset ‘ Pretrain  Refine ‘ M C S Rec. Pre.
X X 588 28.04 447 19.72 3543

YouCook2 X v 590 29.62 4.96 30.80 45.13
v X 9.04 5498 8.13 31.55 4495

v v 941 5935 797 30.80 45.13

X X 723 16.63 4.68 42.44 65.46

ActivityNet X v 733 1586 4.67 4221 65.79
v X 8.94 3049 539 5145 57.49

v v 893 31.89 5.85 53.14 58.31

Table 6. Comparison between models with and without pseudo
boundary refinement.

Dataset | Pretrain  Features | M C S Rec.  Pre.

X CLIP 547 2837 500 21.76 31.92

YouCook2 v CLIP 751 4444 639 2624 39.18
“ X UniVL | 7.87 46.02 6.87 29.66 42.04

v UniVL | 941 5935 7.97 30.80 45.13

X CLIP 8.31 30.11 5.63 50.82 55.73

ActivityNet v CLIP 893 31.89 585 53.14 5831
iy X UniVL | 824 2821 543 5321 59.46

v UniVL | 8.25 2885 535 53.02 58.39

Table 7. Comparative analysis of model performance with and
without pretraining on YouCook?2 and ActivityNet Datasets.

ing on the HowTo100M subset with and without refinement,
followed by fine-tuning the pretrained models on target
datasets like YouCook2 and ActivityNet within our study.
In Table 6, we present a comprehensive model performance
comparison with and without refinement. Refinement en-
hances model performance on localization and caption met-
rics across both YouCook2 and ActivityNet datasets. How-
ever, while most metrics improve, a few experience a slight
drop, and this discrepancy varies between the YouCook2
and ActivityNet datasets. We attribute this observation to
the domain gap between the two datasets.

Effect of Pretraining To examine pretraining effects, we
conducted a comprehensive comparison of model perfor-
mance with and without pretraining using CLIP and UniVL
backbones on YouCook2 and ActivityNet datasets. Ta-
ble 7 details performance for event localization and cap-
tion generation. It indicates improved caption generation
on both datasets after pretraining, yet stable improvements
in event localization are not consistently observed, espe-
cially on ActivityNet. The enrichment of pseudo captions
from large-scale unlabeled videos, generated by LLMs,
likely contributes to enhanced caption performance. De-
spite employing diverse strategies to improve the quality
of pseudo boundaries, the substantial distance from ground
truth boundaries persists, possibly explaining the limited
impact of pretraining on event localization. We also exam-
ined the impact of varying pretraining data amounts, please
refer to our supplementary materials.

Dataset ‘Pretrain FTData‘ M C S Rec. Pre. F1

X 100% | 7.87 46.02 6.87 29.66 42.04 34.78

v 25% 781 46.69 7.17 2893 41.08 33.95
YouCook2 v 50% 8.60 5573 7.84 30.14 4273 3534
v 75% 9.11 59.09 7.86 2997 4454 3583
v 100% | 941 59.35 7.97 30.80 4513 36.61
X 100% | 831 30.11 5.63 50.82 5573 53.16
v 25% 8.66 2824 501 51.08 5624 53.54
ActivityNet v 50% 8.56 30.09 539 5196 5626 54.02
v 75% 883 30.80 555 5290 57.19 5496
v 100% | 893 31.89 5.85 53.14 5831 55.61

Table 8. Few-shot performance fine-tuning on partial data. “FT
data” represents the percentage of data used for fine-tuning.

Few-shot Dense Video Captioning In Table 8, we depict
the model’s performance concerning varying proportions
of fine-tuning data on YouCook2 and ActivityNet datasets.
The results show a direct association with the amount of
fine-tuning data used. Notably, even with a fraction of the
complete training set post-pretraining, the model surpasses
the performance of the setting without pretraining and using
the entire training set. This distinction is particularly promi-
nent on YouCook2, where achieving superior performance
with only half of the target training set is feasible. Con-
versely, ActivityNet requires more training data to achieve
comparable advancements.

Backbone Influence in Dense Video Captioning Table 7
compares CLIP and UniVL features, both with and with-
out pretraining. UniVL demonstrates better performance
on YouCook2, possibly due to its pretraining on instruc-
tional videos, narrowing the domain gap. In contrast,
CLIP excels on ActivityNet, leveraging its strong gener-
alization abilities. Our findings emphasize the importance
of selecting backbones pretrained on tasks aligned with the
dataset. UniVL suits instructional videos like YouCook2,
while CLIP’s broader generalization is advantageous for di-
verse datasets like ActivityNet, highlighting the need for a
tailored approach based on dataset characteristics and back-
bone pretraining specifics in dense video captioning tasks.

5. Conclusion

We introduce DIBS, a novel pretraining framework for
DVC that improves the quality of pseudo event bound-
aries and captions derived from large-scale unlabeled
videos. Leveraging LLMs, we generate and optimize
pseudo boundaries and captions simultaneously, emphasiz-
ing objectives like diversity and coherence. We also propose
an online boundary refinement strategy to further improve
the quality of pseudo boundaries. Extensive experiments
validate the effectiveness of DIBS.
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