
Domain Separation Graph Neural Networks for Saliency Object Ranking

Zijian Wu1 Jun Lu1 Jing Han1 Lianfa Bai1 Yi Zhang1 Zhuang Zhao1,† Siyang Song2,†

1Nanjing University of Science and Technology 2University of Leicester
{wuzijian, lujunchenhao, eohj, blf, zhy441}@njust.edu.cn

zhaozhuang3126@gmail.com, ss1535@leicester.ac.uk

(a) SA-SOR vs. MAE on ASSR and IRSR dataset.

Image GT ASSR[45] IRSR[31] OCOR[49] Ours

(b) Results on the ASSR dataset of our methods with existing saliency ranking approaches.

Figure 1. Comparison with other state-of-the-art methods. (a) The comparison of SA-SOR and MAE on ASSR and IRSR dataset. The
closer to the upper-left corner, the more accurate the saliency ranking and segmentation results. (b) A visual comparison of our method
with other approaches illustrates that it is challenging for other methods to produce accurate segmentation and ranking results in scenarios
with multiple saliency objects.

Abstract

Saliency object ranking (SOR) has attracted significant
attention recently. Previous methods usually failed to ex-
plicitly explore the saliency degree-related relationships be-
tween objects. In this paper, we propose a novel Domain
Separation Graph Neural Network (DSGNN), which starts
with separately extracting the shape and texture cues from
each object, and builds an shape graph as well as a tex-
ture graph for all objects in the given image. Then, we pro-
pose a Shape-Texture Graph Domain Separation (STGDS)
module to separate the task-relevant and irrelevant infor-
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mation of target objects by explicitly modelling the rela-
tionship between each pair of objects in terms of their
shapes and textures, respectively. Furthermore, a Cross Im-
age Graph Domain Separation (CIGDS) module is intro-
duced to explore the saliency degree subspace that is robust
to different scenes, aiming to create a unified representa-
tion for targets with the same saliency levels in different
images. Importantly, our DSGNN automatically learns a
multi-dimensional feature to represent each graph edge, al-
lowing complex, diverse and ranking-related relationships
to be modelled. Experimental results show that our DS-
GNN achieved the new state-of-the-art performance on both
ASSR and IRSR datasets, with large improvements of 5.2%
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and 4.1% SA-SOR, respectively. Our code is provided in
https://github.com/Wu-ZJ/DSGNN .

1. Introduction
Saliency object ranking (SOR) aims to simulate the human
visual attention system that jointly ranks the saliency de-
grees of multiple human-defined saliency objects in an im-
age (i.e., their relative importance [31, 45, 49]). While SOR
techniques can benefit various real-world applications, in-
cluding image captioning [57], non-photorealistic render-
ing [18], human–robot interaction [48], etc, it is a challeng-
ing task as human attention is always influenced by various
factors such as the spatial locations, sizes, color brightness,
contrasts and clarity of the objects as well as their contexts
in the image [45].

Current SOR methods [13, 45] usually start with
detecting multiple saliency objects using existing in-
stance segmentation methods (e.g., Mask-RCNN [20] and
Mask2former [8]), based on which saliency degree-related
features are specifically extracted to predict their saliency
scores, where CNNs [20, 28], and Transformers [8, 50]
have been frequently employed. While these methods have
already demonstrated significant effectiveness in modeling
relationships between each object and the scene through
various spatial attention mechanisms, they frequently ig-
nore the relationships between candidate saliency objects,
which are also crucial for human observers to determine
their relative importance within a scene [9, 36, 37]. Con-
sequently, several approaches attempted to explore the re-
lationships between saliency objects via either graph edges
[31] or attention maps between objects [49].

Although the aforementioned approaches can partially
model the relationship among objects as well as their re-
lationships with the scene, they still failed to comprehen-
sively explore the underlying saliency degree-related rela-
tionships between objects. Firstly, both shape and texture
play crucial roles in determining objects’ saliency degrees.
However, none of existing methods [13, 31, 45, 49] consid-
ered to specifically model saliency degree-related relation-
ship cues between objects’ shapes as well as their textures,
respectively, while suppressing unrelated noises contained
in them. Secondly, since objects of the same saliency de-
gree in different images may exhibit similar distributions
in the task space [38], their relationships could also con-
tribute to saliency degree estimation, which also has been
ignored by existing approaches. Thirdly, existing graph-
based method [31] describes the relationship between each
pair of objects through a single-value graph edge, which
failed to describe complex and diverse underlying relation-
ships between them. Although attention-based method [49]
could model more comprehensive relationships, they could
introduce noises unrelated to the task.

In this paper, we propose a novel Domain Separation
Graph Neural Network (DSGNN) for the saliency ob-
ject ranking (SOR) task, which can specifically address the
aforementioned three problems. Our DSGNN starts with
separately extracting the shape and texture cues from each
object, and builds an shape graph as well as a texture graph
for all objects in the given image. Then, a novel Shape-
Texture Graph Domain Separation (STGDS) module
separates the task-relevant and irrelevant information in tar-
gets by explicitly modelling the relationship between shapes
of all objects and texture of all objects via their graph
edges, respectively. After that, a Cross Image Graph Do-
main Separation (CIGDS) module is introduced to seek
a unified representation for targets with the same saliency
level across different images via exploring a saliency de-
gree subspace that is robust to different scenes. Importantly,
our DSGNN automatically learns a multi-dimensional fea-
ture [47] to represent each graph edge, allowing complex,
diverse and ranking-related relationships between objects’
shape/texture as well as objects in different images to be
comprehensively captured. In summary, the main contribu-
tions and novelties of this paper are summarized as follows:
• We propose a novel DSGNN for the SOR task, which

specifically considering three key factors: (1) shape inter-
actions of the objects in a scene; (2) texture interactions
of the objects in a scene; and (3) intrinsic relationships
among objects across different scenes. It is inspired by
[3] but can explicitly decouple task-relevant and irrelevant
cues while inferring the complex relationships among tar-
gets within and across scenes.

• We propose the first multi-dimensional edge GNN in the
field of saliency object analysis, which can comprehen-
sively and effectively model the relationship (i.e., saliency
degrees) among target objects via a deep-learned multi-
dimensional graph edge feature.

• The experimental results show that the proposed STGDS
and CIGDS-based multi-level object relationship mod-
elling as well as the introduced multi-dimensional edge
feature learning strategy contribute complementary and
crucial cues for the SOR task, making our DSGNN
becoming the new state-of-the-art SOR approach, with
5.2% SA-SOR and 3.2% MAE improvements on ASSR
dataset [45] while 4.1% SA-SOR and 1.8% MAE im-
provements on IRSR dataset [31] over the previous SOTA
methods [31, 49].

2. Related Work
Saliency Object Detection: Saliency Object Detection,
as a classical computer vision task, has been extensively
studied and discussed in the community. In recent years,
SOD has made great progress with the rapid development
of deep learning algorithms, with convolutional neural net-
works (CNNs) [2, 19, 34, 44] being at the forefront, leading
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to the emergence of diverse algorithms. Given that Fully
Convolutional Networks (FCNs) can capture rich spatial
and multi-scale information, numerous approaches have at-
tempted to effectively integrate these multi-scale features to
obtain more accurate representations. Early methods, such
as [6, 22], involved resizing the feature maps from differ-
ent stages of the backbone network to a unified spatial size
and performing one-time fusion. In contrast, some recent
works, for example [21, 52, 60–62], employ a decoder to
progressively fuse the deep features in the encoder with the
shallow ones.
Saliency Object Ranking: Saliency Object Ranking is
built upon the foundation of saliency object detection,
which not only requires detecting each saliency object but
also determining the degree of saliency for each individ-
ual object. Islam et al. [24] proposed the task of saliency
object ranking. However, their approach to determining
the saliency degree of an instance involves predicting the
saliency value for each pixel of the instance and then av-
eraging them. Siris et al. [45] were the first to construct a
model for the saliency object ranking task based on instance
segmentation (Mask-RCNN) [20], which reduced the diffi-
culty of the task. Similarly, Liu et al. [31] and Fang et
al. [13] also chose to build saliency object ranking models
based on Mask-RCNN [20]. The former introduced multi-
ple graphs to infer relationships between objects, while the
latter incorporated object position coordinates before ex-
tracting target features. Tian et al. [49] were the first to
employ a query-based instance segmentation algorithm [14]
to construct the saliency object ranking task, and they de-
signed a sophisticated object-context attention mechanism
to understand the importance of the object in the image.
Instance Segmentation: Instance segmentation aims to
distinguish each interested instance in an image and as-
sign a pixel-level mask with a corresponding category la-
bel to it. In 2017, He et al. [20]proposed Mask-RCNN,
which builds upon Faster-RCNN [41] by introducing the
ROI-Align module to more accurately extract target fea-
tures. Mask-RCNN has been widely applied in various
downstream tasks, including the field of Saliency Object
Ranking, such as [13, 31, 45]. In recent years, with the rapid
development of Transformers in the visual domain [11, 33],
a novel and straightforward approach [5] for object detec-
tion has been devised. Instead of generating a huge number
of proposals nor considering a complex anchor design, it
simply uses a fixed number of queries to represent different
instances. This has led to a series of query-based instance
segmentation algorithms, such as [7, 8, 10, 14, 29].
Graph representation learning and Graph Neural Net-
works: Graph representation learning focuses on mapping
graph structures while preserving the topological properties
for more effective analysis, modelling, and prediction. Tra-
ditional methods in graph representation learning include

DeepWalk [39], node2vec [16], etc. With the advancement
of deep learning, graph neural networks (GNNs) [15, 42]
have gradually become the cornerstone of graph represen-
tation learning. In recent years, numerous excellent GNN
algorithms have emerged, such as GCN [27], GAT [51],
GraphSage [17], GIN [58], GGCN [4], and many more.
Graph representation learning has also piqued the interest
of researchers in the computer vision domain, such as im-
age captioning [59], action recognition [53], etc. In par-
ticular, automatically learned multi-dimensional edge fea-
tures within graph representations have shown strong per-
formances for facial analysis [1, 26, 35, 47, 56], audio
analysis [23], recommendation system [32] and personality
recognition [43, 46]. In the field of saliency object ranking,
Liu et al. [31] also successfully employed GNNs to model
relationships between objects [31].

3. Methodology

Algorithm 1: The pipeline of the proposed DS-
GNN.

Input: Input data samples x; initial shape queries
Qs; initial texture queries Qt; a backbone
named B; a Pixel Decoder named PD; a
Shape Transformer Decoder named STD; a
Texture Transformer Decoder named TTD;
a STGDS module; and a CIGDS module.

Output: Saliency predictions of input data samples
p(x).

1 Generating image features F ← B(x);
2 Generating pixel embeddings E ← PD(F );
3 Generating shape queries of candidate saliency

objects Q̂s ← STD(Qs, E);
4 Generating texture queries of candidate saliency

objects Q̂t ← TTD(Qt, E);
5 Generating shape predictions, texture predictions

and fusion features of candidate saliency objects
S, T, V̂ f ← STGDS(Q̂s, Q̂t, E);

6 Generating saliency classification and ranking
predictions of candidate saliency objects
sc, sr ← CIGDS(V̂ f );

7 Combining S with the predicted sc, sr to generate
the final saliency ranking map p(x).

Network Overview: As illustrated in Fig. 2, our model
is built at the top the Mask2Former [8], which extracts
saliency object-related latent feature maps from the in-
put image. Under this setting, our DSGNN starts with
a pair of transformer decoders attached at the top of the
Mask2former, where each individually extracts the shape
Queries Qs = {qsi }Ni=0 and texture Queries Qt = {qti}Ni=0

of the target objects detected by the Mask2Former (N
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Figure 2. Overview of the proposed network architecture. Our model starts with a pair of transformer decoders attached at the top of
the Mask2former [8], to extract the shape and texture relationship cues of all objects. Then, we use a STGDS Module to disentangle
the saliency ranking-relevant cues from the shape and texture relationships and subsequently fuse these features. Furthermore, we use a
CIGDS Module to capture a unified representations for objects with the same saliency level across different images. Finally, we combine
the predictions from the Shape Head, Class Head, and Rank Head to obtain the ultimate saliency object ranking map.

deotes the number of object queries). Then, a Shape-
Texture Graph Domain Separation (STGDS) module is
proposed to disentangle the saliency ranking-relevant and
irrelevant cues within both shape and texture features for
each object, where multi-dimensional edge features are
learned to comprehensively describe the saliency-relevant
shape and texture relationships between every pair of ob-
jects, respectively. After that, a Cross Image Graph Do-
main Separation (CIGDS) module is proposed to fur-
ther seek a unified representation for targets with the same
saliency level across different images. The main novelty
of our approach lies in: (1) in comparison to the meth-
ods [13, 31, 45, 49] that directly handle features of all ob-
jects, ours explicitly models the relationship between each
pair of objects by individually considering their shapes and
textures, where task-irrelevant information in both domains
are specifically removed; (2) ours is the first approach that
captures a unified representation for targets with the same
saliency level across different images, which has been ig-
nored by aforementioned approaches; (3) existing graph-
based method [31] describes the relationship between ob-
jects via single-value graph edge, while our approach firstly
learns multi-dimensional graph edges to capture complex,
diverse and ranking-related relationships.

3.1. Shape-Texture Graph Domain Separation
Module

Both shape and texture information contain not only crucial
cues for determining the saliency level of the target objects
but also ranking-unrelated noises. Thus, our STGDS mod-
ule introduces a saliency ranking-irrelevant subspace and a
saliency ranking-aware subspace for objects’ shape and tex-
ture representation learning, aiming to disentangle ranking-
specific properties from features that is irrelevant or detri-
mental to the saliency judgement.

As shown in Fig. 3, the STGDS module takes a set of
objects’ shape features Q̂s = {q̂si }Ni=0 and texture features
Q̂t = {q̂ti}Ni=0 as the input, where N denotes the num-
ber of object queries. These features are individually fed
into a GNN Encoder to be first encoded as two individual
graphs (i.e., shape graph Gs = (V s, Es) and texture graph
Gt = (V t, Et)), where nodes vsi ∈ V s and vti ∈ V t repre-
sent the shape feature q̂si and texture feature q̂ti of an object,
respectively. For any two nodes vsi and vsj in Gs, there are
two edges esi,j , e

s
j,i ∈ Es connecting them, while each node

vsi also has a self-loop edge esi,i. Specifically, the edge esi,j
from node vsi to vsj is generated by computing the cross at-
tention [50] between them, where vsi is served as query and
vsj is treated as key and value. This process is defined as:

esi,j = softmax(
vsiWq(v

s
jWk)

T

√
dk

)vsjW v (1)

where Wq , Wk and Wv are learnable weights; dk is a
scaling factor. After obtaining the set of all edges Es =
{esi,j}

N,N
i=0,j=0, we can construct the shape graph Gs =

(V s, Es), and the texture graph Gt has the same topology
and generation method as Gs.

Then, the shape and texture graphs are separately passed
through a L-layer GGCN [4] (L = 2 in this paper) to learn
relationship cues between objects’ shapes as well as their
textures via graph edges, and encoded into the node fea-
tures ultimately. In this paper, all the GNN Encoders men-
tioned below follow the same methodology for constructing
graphs and have identical network architectures. The whole
process can be described as:

V̂ s = GEncS(Q̂s; θs), V̂
t = GEncT(Q̂t; θt) (2)

where GEnc(x; θ) represents a GNN Encoder parameter-
ized by θ; V̂ s = {v̂si }Ni=0 and V̂ t = {v̂ti}Ni=0 denote the
graph node feature sets produced by GEncS and GEncT,
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Figure 3. Structure of our STGDS (left) and CIGDS (right) module. Each unit employs a two-layer GGCN [4].

which encode saliency degree-related shape and texture
cues of all objects, respectively. The obtained V̂ s and V̂ t

are jointly fed to a GNN encoder GEncC with shared pa-
rameters that are responsible for capturing saliency-relevant
shared domain representations V̂ s

c and V̂ t
c as:

V̂ s
c = GEncC(V̂ s; θc), V̂

t
c = GEncC(V̂ t; θc) (3)

where V̂ s
c and V̂ t

c separated the saliency degree-related rela-
tionships cues between objects’ shapes as well as their tex-
tures from V̂ s and V̂ s, respectively.

Moreover, V̂ s and V̂ t are passed through their saliency
degree-unrelated GNN Encoders at the same time to extract
the task-irrelevant features:

V̂ s
p = GEncPS(V̂ s; θsp), V̂

t
p = GEncPT(V̂ t; θtp) (4)

where V̂ s
p and V̂ t

p are node features obtained after GEncPS
and GEncPT individually encoded the saliency degree-
irrelevant cues that are specific to each domain in shape
and texture relationship node features V̂ s and V̂ s. By es-
tablishing orthogonal saliency degree-unrelated Encoders
GEncPS and GEncPT to the shared parameter Encoder
GEncC, we can ensure the extracted features V̂ s

p and V̂ t
p

are distinct from the shared features. Then, to prevent the
model from producing trivial solutions (ensure the function-
ality of the saliency degree-unrelated domain), we aim to
use the features from the saliency degree-related and unre-
lated domain to recover the pre-disentangled features:
V̂ s
r = GDecR((V̂ s

c +V̂ s
p ); θr), V̂

t
r = GDecR((V̂ t

c +V̂ t
p ); θr)

(5)
where V̂ s

r and V̂ t
r represent the recovered shape and

texture features of all objects, which contain saliency
degree-related relationship cues as well as saliency degree-
unrelated relationship cues. GDecR(x; θ) represents a
GNN Decoder, which shares the same architecture as the
GNN Encoder. Finally, we fuse the task-relevant portions
V̂ s
c , V̂ t

c and utilises the fused features to accomplish the fi-
nal prediction task:

V̂ f = GEncF((V̂ s
c + V̂ t

c ); θf ) (6)

where V̂ f represent the fused task-relevant node features.

3.2. Cross Image Domain Separation Module

As the goal is to learn a model that can accurately estimate
saliency levels of objects in different images, this module
aims to explicitly explore the saliency degree subspace that
is robust to different scenes by creating a unified represen-
tation that can encompass the characteristics of targets with
the same saliency levels in different images. Building upon
this hypothesis, we employ a GNN Encoder to capture the
unified representations across images (Fig. 3 right). The
features {V̂ f

i } of the target graph acquired by the STGDS
module can be formulated as:

{V̂ task
i }Bi = GEncCI(V̂ f

i ; θd)
B
i (7)

where B represents the batch size of the input. As the
saliency degree-unrelated attributes of each image are dis-
tinct, creating a saliency degree-unrelated subspace for each
image is computationally inefficient. As a result, we di-
rectly subtract the original input features from the shared
representation we captured in order to obtain the saliency
degree-unrelated features for each image:

{V̂ noise
i }Bi = {V̂ f

i − V̂ task
i }Bi (8)

where V̂ noise
i represent the noise attributes for each image.

3.3. Training Strategy

To train our DSGNN, the overall loss function consists of
three parts, including task-specific loss Ltask, loss Lst for
the STGDS module and loss Lci for the CIGDS module,
which is formulated as:

L = αLtask + βLst + λLci (9)
where α, β and λ are weights to describe the relative impor-
tance of these three loss parts. Specifically, the task-related
loss Ltask jointly supervises the model to generate the final
saliency predictions, which is a combination of segmenta-
tion loss, restoration loss, classification loss and saliency
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ranking loss as:
Ltask = Lseg + Lrestor + Lcls + Lrk (10)

Within this framework, Lseg and Lcls utilize the same loss
configurations as Mask2former [8]. Specifically, Lseg trains
the model to predict the shape predictions from the shape
head while Lrestor is applied for the restoration of texture
predictions from the texture head using the Mean Squared
Error (MSE) loss. Lcls serves to discern whether predictions
in class head qualifies as a saliency object and Lrk is guided
by the saliency ranking loss [31] for ranking the saliency
level of predictions in the rank head.
Lst denotes the loss used for the STGDS module. To

separate the feature representations as intended, we apply
a difference loss between V̂ s

p and V̂ s
c , as well as between

V̂ t
p and V̂ t

c to encourage the divergence of saliency degree-
related and unrelated representations. Additionally, a simi-
larity loss is employed between V̂ s

c and V̂ t
c for maintaining

the similarity of the shared-domain representations. Finally,
to prevent the model from producing trivial solutions, we in-
troduce a reconstruction loss between between V̂ s

r and V̂ s,
as well as between V̂ t

r and V̂ t:
Lst = Lrecon + Ldiff + Lsim (11)

where Lrecon is the MSE loss, Ldiff utilizes the loss from
[3], and Lsim is the Pearson correlation loss, where Pearson
similarity can be expressed as:

Psim(x, y) =

n∑
i=1

xiyi − 1
n

n∑
i=1

xi

n∑
i=1

yi√
(

n∑
i=1

x2
i− 1

n (
n∑

i=1

xi)2)(
n∑

i=1

y2i− 1
n (

n∑
i=1

yi)2)

(12)
Hence, the Pearson correlation loss is defined as:

Lpearson(x, y) = 1− Psim(x, y) (13)
where x, y are two node features.

Finally, Lci is the loss function in the CIGDS module. To
ensure the successful separation of the desired shared rep-
resentations during this process, we also apply a similarity
loss in {V task

i }Bi to facilitate the learning of similar distri-
butions. At the same time, we employ a difference loss in
{V noise

i }Bi to compel distinct features between the saliency
degree-related and unrelated domain, ensuring the preven-
tion of trivial solutions as:

Lci = Ldiff + Lsim (14)
where Ldiff and Lsim have equivalent roles to the respective
parts in Lst. See Supplementary Material for more details.

4. Experiments

4.1. Experimental Setup

Datasets. Our experiments were conducted on two widely-
used datasets, ASSR [45] and IRSR [31], both of which

are derived from the MS-COCO [30] and SALICON
[25] datasets. However, they differ in determining tar-
get saliency: The ASSR dataset primarily assesses target
saliency based on the eye gaze order, which annotates the
top-5 saliency objects in each image and provides 7,646,
1,436, and 2,418 images for training, validation, and test-
ing, respectively. Meanwhile, the IRSR dataset assesses tar-
get saliency based on the eye gaze duration, which consists
of 6,059 images for training and 2,929 images for testing,
where each image is annotated up to 8 objects.
Metrics. We follow previous studies [31, 49] to em-
ploy three metrics: (1) Mean Absolute Error (MAE) that
compares the difference between the predicted saliency
ranking mask and the ground-truth at the pixel-level; (2)
Saliency Object Ranking (SOR) that measures the degree
of correlation between the predicted saliency value list
and the ground-truth using Spearman correlation; and (3)
Segmentation-Aware SOR (SA-SOR) that employs Pear-
son correlation to assess the correlation between the pre-
dicted saliency ranking and the ground-truth ranking, which
considers both false positives and false negatives related to
saliency objects. Please refer to [31, 45] for details.
Implementation Details. We employ ResNet [19] and
Swin Transformer [33] pretrained on MS-COCO [30] train-
ing split as the backbones for our approach. Following the
training strategy of Mask2former [8], we employed ran-
dom horizontal flipping and multi-scale cropping as data
augmentations. All images were fixed to 480×640 before
feeding into the network. Our model was trained with a to-
tal batch size of 8 for 36,000 iterations. The initial learn-
ing rate was set to 5e-5 and was reduced by a factor of
0.1 at the 15,000th and 30,000th iteration. We utilized the
AdamW optimizer with a weight decay of 0.05 to optimize
our model. The number of queries was set to 5 and 8 for the
ASSR [45] and IRSR [31] datasets. The weight ratios of the
loss terms are set as α : β : λ = 1 : 1 : 1. Our approach
was implemented using the mmdetection toolkit and trained
on four RTX 3090 GPUs.

4.2. Comparison to existing methods

Quantitative Evaluation: Table 1 shows the proposed
method compared with state-of-the-art approaches, such as
saliency object ranking (e.g., RSDNet [24], ASSR [45],
IRSR [31], SOR [13], and OCOR [49] methods) and
saliency object detection (e.g., S4Net [12], BASNet [40],
CPD-R [54], and SCRN [55] methods). To ensure a fair
comparison, we report the results using ResNet50 [19]
and Swin-L [33] as backbones. Significant progress was
noted, particularly in the MAE and SA-SOR metrics. Our
ResNet50-based model even surpasses previous Swin-L
backbone models, indicating significant advantages in seg-
mentation and ranking accuracy. When Swin-L was used as
the backbone, the best scores to date were observed. How-
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Table 1. Quantitative comparison with the current state-of-the-art methods for saliency object detection and ranking. SID, SOD, and SOR
represent saliency instance detection, saliency object detection and saliency object ranking, respectively. Methods marked with † denote
results directly replicated from the original paper. Methods with ∗ indicate results testing using their open-source model. − symbolizes
missing results due to a lack of results/models. The best and second best results are indicated with bold font and brackets, respectively.

Method Task Backbone
ASSR Dataset [45] IRSR Dataset [31]

MAE↓ SOR↑ SA-SOR↑ MAE↓ SOR↑ SA-SOR↑

S4Net† [12] SID ResNet-50 0.150 0.891 - - - -

BASNet† [40] SOD ResNet-34 0.115 0.707 - - - -

CPD-R† [54] SOD ResNet-50 0.100 0.766 - - - -

SCRN† [55] SOD ResNet-50 0.116 0.756 - - - -

RSDNet [24] SOR ResNet-101 0.158 0.717 0.499 0.129 0.735 0.460
ASSR [45] SOR ResNet-101 0.101 0.792 0.667 0.125 0.714 0.388
IRSR [31] SOR ResNet-50 0.105 0.811 0.709 0.085 [0.806] 0.565
SOR [13] SOR VOVNet-39 0.081 0.841 - - - -
OCOR∗ [49] SOR Swin-L 0.079 0.883 0.687 - - -

Ours SOR ResNet-50 [0.060] 0.843 [0.716] [0.073] 0.785 [0.568]
Ours SOR Swin-L 0.047 [0.853] 0.761 0.067 0.807 0.606

ever, we did not achieve SOTA results on the SOR met-
ric, which disregards scenarios where targets are missed,
thereby diminishing its reliability. This is also the reason
why S4Net [12], despite recording the highest MAE results,
still obtains exceptionally good outcomes on the SOR met-
ric. Here, we did not compare our results with those re-
ported in OCOR [49], as the results reproduced from their
open-source code have been frequently claimed to be dif-
ferent from their reported results 1.
Qualitative Evaluation: We further qualitatively evaluate
our approach. As shown in Fig. 1a, our DSGNN outperform
current SOTA methods [24, 31, 45, 49] by a large margin.
While we can further observed in Fig. 1b, most methods in
the first two rows either miss or falsely identify the target,
indicating that the proposed method can locate the saliency
targets in the image more accurately. The third row shows
most methods can accurately find the saliency subjects but
fail to understand the context of the image, such as the
“horse” in the example. This instance shows the method’s
powerful ability to understand contexts. The last two rows
indicate all methods can find and segment the target but of-
ten find it challenging to judge saliency accurately, partic-
ularly cases with lower saliency rankings, which shows the
strength of our saliency reasoning module.

4.3. Ablation Studies

To validate the effectiveness of each module, Table 2 shows
the first experiments using the shape and texture informa-
tion of the target. After the STGDS module is included,
the effects of adding the CIGDS module are evaluated. The
results indicate that, as each module is incorporated, perfor-

1https://github.com/GrassBro/OCOR

Table 2. Comparison between STGDS and CIGDS modules.

Backbone STGDS
CIGDS MAE↓ SOR↑ SA-SOR↑

shape texture shape texture

✓ 0.054 0.835 0.739
✓ ✓ 0.054 0.836 0.744
✓ ✓ ✓ 0.049 0.847 0.755
✓ ✓ ✓ 0.052 0.849 0.758
✓ ✓ ✓ ✓ 0.049 0.851 0.759
✓ ✓ ✓ 0.053 0.845 0.754
✓ ✓ ✓ ✓ ✓ 0.047 0.853 0.761

mance metrics gradually improve. The final results outper-
form all others, indicating the effectiveness of each module.
Fig. 4 shows that the targets can be segmented well by us-
ing either the shape or texture information. After adding the
STGDS module, the judgement of target saliency is signifi-
cantly improved, particularly in those with higher saliency.
Due to similarity loss, most results for the shape and texture
branches were consistent. However, after merging the shape
and texture branches, the results were still enhanced. After
adding the CIGDS module, clear improvements in saliency
rankings were noted.

Tables 3 and 4 validate the effects of the different pro-
cesses in the STGDS and CIGDS modules. For instance,
when the effects of individual or partial losses on the final
performance were assessed, it was found that each process
contributes to performance improvement. These results val-
idate the two hypotheses: (1) task-irrelevant noise is present
in the shape and texture information of the targets; task-
relevant data shows similar distribution in saliency-aware
space; (2) despite variations in the feature distribution of
targets in different images, targets with the same saliency
level share similar relationships.
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Figure 4. Qualitative Results for Ablation Study. From left to right, the qualitative results are presented for the baseline using the shape
information, baseline using texture information, the results of the shape branch after incorporating the STGDS module, the results of texture
branch after incorporating the STGDS module, the results of combining shape and texture information, and the final results after adding
the CIGDS module. It is evident from the results that both saliency object recognition and ranking accuracy progressively improved.

Table 3. Comparison between losses in STGDS module.

STGDS
MAE↓ SOR↑ SA-SOR↑

similarity difference reconstruction

✓ 0.058 0.843 0.746
✓ 0.052 0.849 0.750

✓ 0.053 0.848 0.747
✓ ✓ 0.052 0.844 0.758

✓ ✓ 0.051 0.849 0.756
✓ ✓ 0.054 0.849 0.753
✓ ✓ ✓ 0.047 0.853 0.761

Table 4. Comparison between losses in CIGDS module.

CIGDS
MAE↓ SOR↑ SA-SOR↑

similarity difference

✓ 0.051 0.849 0.759
✓ 0.050 0.852 0.760

✓ ✓ 0.047 0.853 0.761

Table 5 shows experiments with MLP, Conv layers, and
Transformer Blocks [50] and various graph neural net-
works (GNNs) including GCN [27], GAT [51], Graph-
Sage [17], and GGCN [4], where GGCN-ME denotes
GGCN with multi-dimensional edges. The results indi-
cate that, compared to MLP, Conv, and Transformer Blocks,
graphs have a clear advantage in relation inference. Im-
portantly, when multi-dimensional edges are employed, the
proposed method shows significant improvement, confirm-
ing the complexity and diversity of relationships among tar-
gets. The details of the learned multi-dimensional edges are
visualized and discussed in the Supplementary Material.

Table 5. Comparison between different components in STGDS
and CIGDS modules.

Method MAE↓ SOR↑ SA-SOR↑
MLP 0.052 0.849 0.749
Conv 0.053 0.844 0.750

Transformer [50] 0.051 0.852 0.753
GCN [27] 0.052 0.850 0.754
GAT [51] 0.050 0.846 0.755

GraphSage [17] 0.051 0.848 0.754
GGCN [4] 0.049 0.851 0.757

GGCN-ME [4] 0.047 0.853 0.761

5. Conclusion

In this paper, we propose a novel method for saliency ob-
ject ranking that takes into account both the shape and tex-
ture information of targets while suppressing task-unrelated
noise in these features. Additionally, we uncover a unified
representation encompassing the characteristics of targets
with the same saliency levels in different images. Finally,
we infer complex relationships between targets using multi-
edge graphs. Our approach achieves state-of-the-art perfor-
mance on widely used open-source datasets.
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