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Abstract

With the escalating complexity and investment cost of
training deep neural networks, safeguarding them from unau-
thorized usage and intellectual property theft has become
imperative. Especially the rampant misuse of prediction
APIs to replicate models without access to the original data
or architecture poses grave security threats. Diverse defense
strategies have emerged to address these vulnerabilities, yet
these defenses either incur heavy inference overheads or
assume idealized attack scenarios. To address these chal-
lenges, we revisit the utilization of noise transition matrix as
an efficient perturbation technique, which injects noise into
predicted posteriors in a linear manner and integrates seam-
lessly into existing systems with minimal overhead, for model
stealing defense. Provably, with such perturbed posteriors,
the attacker’s cloning process degrades into learning from
noisy data. Toward optimizing the noise transition matrix,
we proposed a novel bi-level optimization training frame-
work, which performs fidelity on the victim model while the
surrogate model adversarially. Comprehensive experimen-
tal results demonstrate that our method effectively thwarts
model stealing attacks and achieves minimal utility trade-
offs, outperforming existing state-of-the-art defenses.

1. Introduction

Machine learning (ML) models, especially deep neural net-
works (DNNs), have attained human-level capabilities across
various domains, such as pattern recognition tasks [24, 27]
and generation tasks [2, 52], becoming indispensable in fa-
cilitating convenience for society [53]. With the burgeoning
of ML application scenarios and the proliferation of data,
training large and sophisticated models and making them
publicly accessible has become a new profit trend for compa-
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nies. However, considering the steep costs of tuning models,
directly divulging model parameters potentially engenders
no returns on investment and even adverse societal impacts
from malicious use. To alleviate those concerns, prediction
APIs have emerged as an alternative by enabling black-box
inferences through querying. This allows models to provide
services without exposing the underlying parameters and
details, and has been harnessed in Machine Learning as a
Service (MLaaS) platforms (e.g., Amazon AWS, Microsoft
Azure, Google Cloud).

Unfortunately, recent research has demonstrated that pre-
diction APIs are still vulnerable to intellectual property theft
through model stealing attacks [39, 51, 54, 62]. Despite not
exposing model details, attackers can query the APIs using
carefully-crafted samples or surrogate samples to obtain re-
sponded predictions. Through this, they can then train a
clone model on the gathered query-response pairs to repli-
cate the victim model’s functionality with high accuracy and
fidelity, without needing to access the original training data
or model architecture [22, 39]. Such a clone model poses
the following security threats: (a) acquiring a functionally
similar copy of the victim model, illegally circumventing
the expensive process of manual data curation and under-
mining the intellectual property of MLaaS; (b) extracting
confidential data through membership inference attacks [47],
model inversion attack [6] and property inference attack [7];
(c) conducting adversarial attacks [31, 33, 35, 36, 49, 55] by
creating malicious examples based on the white-box substi-
tute model [42].

To address such vulnerabilities, considerable researches
[3, 5, 9, 17, 29, 50, 64] have focused on thwarting model
stealing attacks. These defenses can be categorized into three
strategies: detection, perturbation, and post-hoc verification.
Detection-based defenses [19, 20, 23, 23] are predicated on
the idea that malicious queries exhibit aberrant statistical dis-
tributions compared to normal queries. If a query sequence
appears anomalous, the defender may discard the requests
or corrupt the outputs. However, if an attacker carefully con-
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Figure 1. Illustrations of the noise transition matrix serving for
noisy label learning and model stealing defense. In noisy label
learning, it transforms the predicted posteriors to align with the
noisy label. In model stealing defense, it perturbs the predicted
posterior to impede attacker training while preserving the original
predicted label for benign users.

structs queries matching the benign distribution, detection
techniques will fail to discern the attack, yielding excessive
false positives. Perturbation-based defenses [30, 40, 51] can
preserve or constraint model accuracy to foil model stealing
attacks. The accuracy-preserving defense truncates predicted
posteriors to a minuscule fraction of their original size, which
may reduce model lucidity and utility for critical applications
like autonomous driving. The accuracy-constraint defense
[38, 40] introduces perturbation into predicted posteriors,
which incurs additional computational burdens or substan-
tially degrading utility. Furthermore, the latency resulting
from such perturbation methods leads to extended user re-
sponse times, making the approach impractical. Post-hoc
verification techniques such as watermarking [15] remain
useful for post-attack prevention and validation. However,
their retroactive nature means they cannot take proactive
measures before an attack occurs. Considering inference
latency and utility trade-offs, in this paper, we concentrate
on a novel and efficient model stealing defense strategy.

To overcome the limitations of existing defenses, we ex-
plore an efficient method to inject noise into predicted poste-
riors via linear mapping, while preserving utility for benign
users. Motivated by memorization effects [11, 63] that neu-
ral networks can easily overfit noisy data, thus hampering
model generalization, we revisit the utilization of noise tran-
sition matrix (NTM) in noisy labels learning [43, 58], where
the matrix models the noise process. Unlike related work,
we aim to leverage the NTM to introduce noise into pre-
dicted posteriors for model defense, as shown in Figure 1.
Our goal is to find an optimized NTM that injects noise
while retaining original prediction labels with minimal util-
ity trade-offs. Intuitively, regardless of whether the victim
model produces extremely confident one-hot vectors or un-
certain flat vectors, we can readily derive a uniform NTM
where the diagonal elements remain maximal for each row
to meet our defense needs. To estimate the NTM with maxi-
mum utility, we propose a bi-level optimization method that
alternately optimizes it and updates the surrogate network

weights. Specifically, we first make a one-step-forward vir-
tual optimization of weights, then optimize the matrix guided
by the loss with the one-step-forward weights fixed. Finally,
we optimize the unrolled weights with the updated matrix.
The contributions of this work are as follows:
• We propose a novel perturbation-based defense that effi-

ciently introduces noise through linear mapping, adding
minimal overhead. Furthermore, it deteriorates attacker
training to a level equivalent to training on noisy-labeled
data with instance-wise weight.

• Our method pioneers using the transition matrix to thwart
model stealing attacks. The explicit matrix helps under-
stand noise relationships among classes and makes the
defense strategy more interpretable

• A bi-level optimization approach is proposed to optimize
the transition matrix, which is model-agnostic and can
adapt to different backbone networks.

• Extensive experiments exhibit our method consistently mit-
igates stealing and outperforms state-of-the-art defenses.

2. Related Work

Model Stealing Attacks aim to replicate the functionality
of a victim model by interrogating its prediction APIs. The
attacker sends queries and collects the resultant predictions,
typically probability vectors or labels, as query-response
pairs. These collected pairs are used to train a clone model
that approximates the victim model. Tramèr et al. [51] first
proposed the idea of model stealing and demonstrated the fea-
sibility of extracting simple models utilizing queries. Juuti
et al. [19] presented extraction attacks leveraging jacobian-
based data augmentation [42], synthesizing data by perturb-
ing a small set of in-distribution samples. However, these
attacks presume the ability to optimally probe the APIs,
which could be detected by monitoring for anomalous query
patterns [19, 41]. Therefore, we concentrate on scenarios
without carefully engineered input queries or sequences. One
classic scenario to achieve this is by utilizing knowledge dis-
tillation techniques [12], where some studies exhibit model
stealing is viable using weakly correlated [39] or random
[25] queries, even when the teacher model declares itself
undistillable [13, 28].

Model Stealing Defenses can be taxonomized into three
primary strategies: detection, perturbation, and post-hoc
verification. Detection strategies [20, 21] aim to iden-
tify malicious queries or nefarious users by scrutinizing
the queries received by the victim model. For example,
Kariyappa and Qureshi [20] regarded malicious queries as
out-of-distribution samples and devised an adaptive misin-
formation (AM) defense to mislead attackers with modified
outputs. However, such detection strategies rely on strong
assumptions about adversarial query patterns that may not
reflect reality. Perturbation strategies mitigate model stealing
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attacks by returning perturbed posterior, which can be further
subcategorized into accuracy-preserving [30] and accuracy-
constrained defenses [29, 38, 40]. Accuracy-preserving de-
fenses guarantee that the maximal class of the perturbed pre-
dictions matchs the original prediction. The most straight-
forward such defense is truncating the posterior or only
outputting the predicted label [51]. However, this dimin-
ishes utility for benign users, precluding specific applications
and harming external transparency. In contrast, accuracy-
constrained defenses permit a higher level of perturbation,
trading off benign accuracy for enhanced security against
model stealing attacks. In general, existing defense strategies
that poison the attacker’s update gradient [38, 40] are compu-
tationally expensive, even if they yield a comparative defense.
Post-hoc verification, including watermarking [15, 32, 50],
dataset inference [37], and proof of learning [16], embeds
concealed patterns in the model during training [1] or in-
ference [50] to distinguish a stolen model. Unfortunately,
these approaches only work after a model theft, requiring
the model owner to obtain partial or full access to the stolen
model. This means if an attacker uses the stolen model
as a proxy to attack the victim model, it is impossible for
the model owner to protect themselves with these defenses.
Overall, while existing ante-hoc defensive approaches miti-
gate knowledge leakage, they rely on strong assumptions or
incur high computational costs during inference.

Noise Transition Matrix (NTM) is often utilized to solve
classification with noisy labels or ambiguous labeled data
[10, 46, 61], where the matrix reflects probabilities of true
label flipping to the other label. A typical application is loss
correction [43], which modifies the loss of each example
by multiplying the estimated matrix by the model output.
For NTM estimation, there are two main approaches. One
is a two-step solution that pre-estimates the matrix with an-
chor point assumptions, then uses it to train the classifier
[56, 65]. For instance, backward correction [43] initially ap-
proximates the NTM using the softmax output of the model
trained without correction. It then retrains the model while
correcting the original loss based on the estimated matrix.
The other jointly estimates the matrix and classifier parame-
ters in a unified framework without employing anchor points
[18, 48, 60]. Differently, our work aims to estimate and
apply the transition amtrix to intentionally inject noise into
predicted posteriors, thus defending against model stealing.

3. Threat Model

We consider a model stealing scenario involving a defender
and an attacker interacting on image classification tasks.
The defender grants access to its black-box model through
prediction API. Leveraging the API, the attacker collects
query-response pairs, aiming to mimic the defender model
(victim model) functionalities by training a clone model on

this dataset. To evade detection defenses [19], we assume
the attacker adopts non-adaptive querying strategies with-
out anomalous patterns [39, 42]. Therefore, we consider
the knockoff nets attack without adaptive querying [39] ,
which resembles knowledge distillation [12] where the vic-
tim model distills knowledge into the attacker model.

3.1. Attacker’s Objective

Let θf and θh denote the parameters of the defender’s
model f and attacker’s clone model h, respectively. The
attacker prepares a query dataset Dquery, and sends queries
x ∈ Dquery in random order to obtain the defender’s pos-
terior f(x;θf ) from the prediction API. The classification
loss of the attacker’s clone model on the query x is Lkna =
−
∑

i f(x;θf )i log h(x;θh)i. The attacker aims to mini-
mize the classification loss on the defender’s test set. How-
ever, since the test set is unavailable, the attacker’s learning
objective becomes minimizing the loss based on the collected
query-response dataset Dpair = {(x, f(x;θf ))|x∈Dquery}.
Therefore, the attacker’s objective can be formulated as:

min
θh

Ex∼Dpair [Lkna(h(x;θh), f(x;θf ))] (1)

Query Distribution. In practice, due to the knowledge
limitation of attackers about the defender’s training set, the
collected query dataset Dquery may be similar [30, 51] or
unrelated [20, 40] to the defender’s training distribution.
Hence, we consider both possibilities in our threat model.
We refer to attackers as distribution-aware if their queries
share semantic content with the defender’s training distribu-
tion. Attackers are referred to as knowledge-limited if their
queries are semantically disjoint from the defender’s training
distribution.

3.2. Defender’s Objective

In defenses against model stealing, the defender aims at
preventing its model functionality from being stolen. In real-
world scenarios, attackers may disguise themselves as benign
users, executing attacks anytime. Therefore, the defender
must persistently mitigate model stealing attempts while
preserving the API’s utility for legitimate users. Specifically,
the defender needs to keep its own small classification loss,
while maximizing the classification loss of the attacker’s
cloned model θ∗

h(θf ) obtained from Eq. (1) on the test set
Dtest. The defender’s objective can be formulated as:

min
θf

E(x,y)∼Dtest [LCE(f(x;θf ), y)]

s.t. maxE(x,y)∼Dtest [LCE(h(x;θ
∗
h(θf )), y)],

(2)

where LCE means the cross-entropy loss function.

4. Approach
To develop an efficacious and inference-efficient defense
against model stealing, we propose an Efficient Model de-
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fense with noise transition MAtrix (EMMA) to mitigate
model stealing attacks. As depicted in the “Defense phase”
of Figure 2, the attacker iteratively queries the victim model
using unlabeled data to obtain posteriors via the prediction
API. The victim model receives these queries and outputs cor-
responding predicted probability vectors. These posteriors
then multiply the optimized matrix Tn, becoming perturbed
posteriors that remain useful to benign users, and returned
to the attacker. However, if the attacker collects these query-
responses as training data to reconstruct a clone model, in
that case, this dataset is equivalent to noisy labeled data with
instance-wise weight, thus impeding cloning model training.
To optimize the transition matrix with maximum utility, as
shown in the “Optimizing phase”, we devise a bi-level opti-
mization between the victim and surrogate model which is
devised to represent the attacker model. In each round, given
initial T t and surrogate weights θt

g, the optimized matrix
T t+1 stems from two gradient descents (GD) on the attack
loss and defense loss, respectively. The surrogate model then
updates through a GD on the attack loss. This process loops
until reaching the termination condition, yielding the final
optimized matrix Tn. In this section, we first elucidate the
defense mechanism of incorporating the transition matrix
during the defensive phase. Then, a bi-level optimization
approach is expounded to alternately optimize the matrix
and update the surrogate model.

4.1. The underlying mechanism

To understand how the transition matrix defends against
attacks, we analyze the classification risks of two scenarios:
“learning on noisy labels” and “learning on query-response
pairs with perturbed posteriors”. It is found that the two
classification risks differ only by an instance-wise weight
coefficient multiplied to the latter. Let ỹ ∈ Y denote the
noisy label, where ỹ is selected based on the transition matrix
and the true label. Theorem 1 formalizes the defensive
mechanism.

Theorem 1. Let L(·, ·) denote the classification loss func-
tion. With sufficiently many queries, the classification risk
R(h) of learning with noisy labels is E(x,ỹ)[L(h(x), ỹ)].
The classification risk RT (h) of learning with query-
response pairs is E(x,ỹ)[q(x, ỹ)·L(h(x), ỹ)], where q(x, ỹ)
denotes the instance-wise weight, proportional to the close-
ness between the predicted posterior and the true label.

The proof can be found in Appendix 8. Theorem 1 demon-
strates that training a clone model on such query-response
pairs with perturbed posteriors is equivalent to training it
on noisy-labeled data with instance-wise weights. It can be
further deduced that the more closely the victim model’s pre-
dicted posteriors match the true label, the more this training
process resembles learning with noisy labels. In addition,
the clone model’s generalization can be futher degraded by

Figure 2. An illustration of “Optimizing phase” and “Defense
phase” in the framework. “Optimizing phase” demonstrates the
process of updating the noise transition matrix T and surrogate
network weights θg alternatively. “Defensive phase” shows the
interaction process where the attacker tries to steal the functionality
from the defender.

increasing the transition matrix noise rate or exploring more
difficult noise type through inter-class correlations, such as
using class-conditional noise instead of random noise.

4.2. The overall training framework

Since the attacker’s network is unknown, we cannot directly
measure its cloning performance. Instead, we represent the
attacker with a surrogate model g parameterized by θg and
design optimal perturbations for it. By using the surrogate
model to simulate the cloning process, we can continuously
optimize the transition matrix during this process to mini-
mize the utility trade-off between attacker performance and
defender utility. To achieve this, we first introduce the re-
spective objective functions for the attacker and defender.
Then, a bi-level optimization approach is proposed.

Given the perturbed posterior f(x;θf )T , the attacker’s
objective function is defined as the loss on the gathered
query-response pairs, formulated as:

Lattack(θg,T )= Ex∼Dpair [Lkna(g(x;θg), f(x;θf )T )]. (3)

Notably, the optimization of θg is influenced by T . To
defend against model stealing, we would like T to regular-
ize θg to have poor generalizability. To achieve this, we
instantiate a misinformation loss that inhibits the attacker
model’s outputs on the victim model’s original predicted
label k = argmaxi f(x,θf )i . Formally, we derive the
following modified negative log-likelihood loss:

Lmis(θg) = Ex∼Dpair [− log(1− g(x;θg)k)]. (4)
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The underlying principle is quite simple: The log-likelihood
of the original prediction label on the output should be mini-
mized. Despite its simple form, optimizing this loss has been
empirically shown to be an effective defense against model
stealing attacks [20, 59].

Moreover, to maintain fidelity for the victim model, a
straightforward strategy is aligning the perturbed output with
the predicted label k. This is implemented by minimizing
the divergence between the output and the predicted label,
formulated as:

Lalign(T ) = Ex∼Dpair [− log(f(x;θf )T )k]. (5)

In summary, the overall objective function of the defender
can be represented as the following defense loss:

Ldefense(θg, T ) = λ·Lalign(T ) + (1− λ)·Lmis(θg), (6)

where the multiplicative factor λ is used to balance the con-
tribution of these two loss terms.

Bi-level optimization. Given the defense loss Ldefense, the
surrogate model weights θg need to be updated first before
optimizing the transition matrix T . For a mini-batch sample,
we propose that surrogate model weights could be treated as
a latent variable and optimized alternatively with the matrix.
This yields the following bi-level optimization problem:

argmin
T

Ldefense(θ
∗
g , T )

subject to θ∗
g = argmin

θg

Lattack(θg, T )
(7)

Bi-level optimization problem has been proved strongly NP-
hard [14], so getting such an exact solution for problem (7)
is impossible in polynomial time. Fortunately, the inner
optimization problem in (7) can be transformed into an op-
timized result θg(T ) as a function of T . Then θg(T ) can
then substitute θg in the outer optimization to acquire an ob-
jective solely in terms of T . This allows approximating the
solution using gradient descent. Therefore, we employ an
alternating optimization strategy to approximately solve this
problem. In each iteration θg and T are updated on-the-fly
in an alternating manner.

Optimizing the transition matrix. In step t+ 1 of optimiz-
ing T t, guided by the attack loss, surrogate model weights
θt
g are updated in a one-step-forward manner to obtain θ̃t+1

g .
Specifically, with the fixed T t, then θt

g is updated via gradi-
ent descent with learning rate α as:

θ̃t+1
g (T t) = θt

g − α·▽θt
g
Lattack. (8)

Note that the surrogate model g does not actually update in
this step, but makes preparations for estimating T t+1. We
then optimize T t with θ̃t+1

g fixed under the defense loss. The
motivation is that we would like to find a T t+1 that achieves

Algorithm 1 The overall training procedure

Input: Query dataset Dquery;
The surrogate model g and its parameters θg;
The noise transition martix T .
The number of iterations I;
The multiplicative factor λ;

Procedure:
1: Initialize T and θg;
2: for i = 1 to I do
3: Fetch a random batch B from Dquery;
4: Calculate the one-step-forward surrogate model

weights via Eq. (8);
5: Update the transition matrix via Eq. (9-12);
6: Update surrogate model weights via Eq. (13);
7: end for

Output: Learned noise transition matrix.

minimal utility trade-offs between the defender and attacker.
The transition matrix T t is updated via gradient descent with
learning rate β:

wt+1 = T t − β ·▽T tLDefense. (9)

Apply chain rule to Eq. (9), we can get:

wt+1 = T t − β ·{λ·▽T tLalign

+ (1− λ)·▽θ̃t+1
g

Lmis ·(−α▽2
θt
g,T

t Lattack)}.
(10)

Note that wt+1 is not the final transition matrix, as its entries
may not satisfy the properties of a valid transition matrix.
Specifically, all elements must be non-negative and each row
must be normalized. To address this, we first replace any
negative elements in wt+1 with zeros via:

w̃t+1 = max(wt+1, 0). (11)

Then, each row is normalized to get the final valid transition
matrix. For the jth row of w̃t+1, which indicates the probabil-
ities of class j transitioning to other classes, a normalization
is performed to obtain the final matrix T t+1

j,i :

T t+1
j,i =

w̃t+1
j,i∑

i w̃
t+1
j,i + δ(

∑
i w̃

t+1
j,i )

, δ(a)=

{
1, if a=0

0, if a ̸=0

(12)
where δ(·) is used to avoid division by 0.

Updating surrogate model weights. After optimizing the
matrix, we conduct the surrogate model update by keeping
T t+1 fixed and minimizing the attack loss. New surrogate
model weights θt+1

g are obtained via gradient descent with
learning rate γ:

θt+1
g = θt

g − γ ·▽θt
g
Lattack. (13)

The whole training procedure is summarized in Algorithm 1.
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Method
CIFAR100 → CIFAR10 CIFAR10 → CIFAR100 Caltech256 → CUB200

∆Acc=1 ∆Acc=2 ∆Acc=5 ∆Acc=1 ∆Acc=2 ∆Acc=5 ∆Acc=1 ∆Acc=2 ∆Acc=5

Random 84.17 77.21 74.21 43.23 39.81 32.12 33.50 31.14 28.01
AM 77.10 72.93 57.56 39.82 32.98 19.36 26.17 21.27 14.31

MAD 80.57 77.54 69.07 36.56 32.59 26.65 37.16 35.23 31.50
NASTY 76.65 74.31 64.19 38.53 33.61 26.95 31.06 28.23 24.70
GARD2 77.42 73.88 71.40 41.21 39.29 35.94 35.69 33.67 32.34
MIN-IP 78.88 73.40 70.66 42.33 38.67 34.26 34.73 32.26 28.94
EMMA 61.79 52.91 42.21 28.01 18.34 13.37 19.10 15.79 13.11

ImageNet-C10 → CIFAR10 ImageNet-C100 → CIFAR100 ImageNet-CUB200 → CUB200

∆Acc=1 ∆Acc=2 ∆Acc=5 ∆Acc=1 ∆Acc=2 ∆Acc=5 ∆Acc=1 ∆Acc=2 ∆Acc=5

Random 88.99 88.18 87.07 63.16 61.76 58.64 46.58 44.06 40.49
AM 87.55 84.60 76.72 60.57 56.09 47.10 45.12 39.65 30.15

MAD 88.67 85.70 78.44 58.74 56.23 50.85 50.98 48.57 44.47
NASTY 87.33 85.33 81.68 59.79 56.05 48.95 46.56 43.23 37.76
GARD2 87.29 86.06 85.93 58.39 56.71 53.63 50.27 47.55 43.11
MIN-IP 87.40 86.81 84.45 61.17 56.35 51.98 50.09 46.45 42.06
EMMA 84.10 80.60 77.52 56.73 49.18 31.48 36.35 33.10 26.33

Table 1. Accuracy (%) of attacker model on defender’s test set under knowledge-limited (top row) and distribution-aware (bottom row)
attack scenarios with varying budgets. The best result in each column is highlighted in bold.

Eval Data Defender Accuracy
Attacker Accuracy

KL DA

CIFAR10 95.33 ± 0.13 85.17 ± 0.83 91.78 ± 0.19
CIFAR100 75.96 ± 0.09 51.95 ± 1.12 66.82 ± 0.16
CUB200 81.44 ± 0.46 48.93 ± 0.37 62.12 ± 0.22

Table 2. Accuracy (%) of the defender model and the attacker
model with no defense applied.

5. Experiments

To demonstrate the effectiveness of our proposed defense
method, we conduct experiments on multiple image datasets
and present the results in this section.

5.1. Experiment Setup

Datasets. We employ three datasets for evaluation: CI-
FAR10, CIFAR100 [26] and CUB200 [57]. For each dataset,
we explore two attacker scenarios - knowledge-limited (KL)
and distribution-aware (DA). The KL scenario uses query
sets of CIFAR100, CIFAR10, and Caltech256 [8], paired
with CIFAR10, CIFAR100, and CUB200 evaluation datasets
respectively. The DA scenario employs tailored query sets
from ImageNet-1K [4] manually selected by prior work [38],
specifically ImageNet-C10, ImageNet-C100, and ImageNet-
CUB200 containing 183,763, 161,653, and 30,000 examples
matched to the evaluation datasets, with their further details
provided in the Appendix 9.

Compared methods. We compare our method against the
following six model stealing defense baselines: (1) No De-
fense, a naive approach where no defense is attemptted. (2)

Random, an interpolation-based method that perturbs the de-
fender’s predicted posterior by interpolating it with a one-hot
posterior vector, where the index of single non-zero entry is
randomly selected from the non-argmax prediction labels.
(3) AM [20], a detection-based method that identifies out-
of-distribution queries and interpolates with posteriors from
a misinformation network, where the interpolation weight
is denoted by the confidence of the argmax prediction label.
(4) MAD [40], an accuracy-constrained method that adds
controlled noise to original posteriors so that it maximizes
the angular deviation between the perturbed and original
gradient signal on a surrogate model. The surrogate model
is randomly initialized. (5) NASTY [34], a self-undermining
knowledge distillation approach which trains a nasty teacher
network by maximizing the difference between the output
of the nasty teacher and a normal pretrained network. (5)
GARD2 [38], a coordinated gradient redirection defense
method, which perturbs original posteriors by setting the tar-
get gradient direction to be the all-ones vector. This redirects
the attacker to update towards a consistent target direction.
(6) MIN-IP [38], an uncoordinated gradient redirection de-
fense method, which perturbs original posteriors by setting
the target gradient direction opposite the original gradient di-
rection, redirecting the update gradient of attackers opposite
to the original gradients. The surrogate model of MIN-IP and
GARD2 train on the attacker’s queries with early stopping
after 10 epochs.

For fair comparisons, we basically use the same network
architecture, learning rate, optimizer, and augmentation strat-
egy across all the comparing methods.

Implementation. Our experiment pipeline has three stages:
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(a) Heatmap of transition matrix.
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Figure 3. Qualitative analysis of the transition matrix. (a-b): Heatmaps of optimized transition matrixes for distribution-aware attacks (a)
Imagenet-C10→CIFAR10 and (b) Imagenet-C100→CIFAR100, respectively. (c-d): Average (c) predicted and (d) perturbed posteriors
across the query set of (top) Imagenet-C10 and (bottom) Imagenet-C100 datasets.

Figure 4. Visualizations of predicted and perturbed posteriors.

First, the defender model trains on each evaluation dataset.
Second, defense methods generate perturbed posteriors for
query dataset and evaluation dataset at various defense bud-
gets. Finally, the attacker model trains on the collected
query-response pairs. We denote attacks with query data Q
and evaluation data D as Q → D.

We use ResNet34 for CIFAR10/100 and ResNet50 pre-
trained on ImageNet for CUB200. For all models training,
we utilize SGD as the optimizer with a momentum of 0.9 and
weight decay of 5e-4 for 100 epochs. Initial learning rates
are set as 0.01 for CUB200 and 0.1 for other datasets, with
a cosine annealing schedule. For optimizing the transition
matrix, the learning rate γ is set as 0.3 for CIFAR10 and 1.0
for other datasets. The surrogate model’s one-step-forward
learning rate α and the actual learning rate β are set the
same value as specified in the model training settings. Ad-
ditionally, an early stopping mechanism is set to terminates
optimization when the average change in T between consec-
utive epochs falls below a specified threshold. The threshold
is 1e-2 for CIFAR10 and 1e-4 for other datasets. Further-
more, the balancing factor λ is adjusted to achieve different
utility budgets. Recent work [38] proposed a novel approach
to initialize the surrogate model. They suggested to train the
surrogate model through distilling from the victim model
with early stopping. This would make it more representative
of the actual attacker’s behavior. Following this approach,
we initialize our surrogate model by training it on the query
dataset with the same early stopping mechanism.

5.2. Experiment Results

Table 2 presents the accuracy of the defender model and
the attacker model, without any defense applied under two
different query distributions. This shows the upper bound for
the usage performance of the defender and stealable perfor-
mance of the attacker. Table 1 compares the accuracy of an
attacker’s clone model at different defender accuracy drop
budgets ∆Acc. The budget refers to the average decrease in
accuracy the defender causes across the test set by adding
perturbations. Corresponding visualizations of these results
are provided in the Appendix 10. As shown, our defense
method achieves the lowest utility trade-off across budgets.
For example, in the CIFAR100→CIFAR10 attack scenario,
our method reduces the attacker model’s accuracy by 23%
while only decreasing the defender’s accuracy by 1%.

5.3. Qualitative Analysis

Perturbed posteriors make cloning difficult. We visual-
ize the predicted and perturbed posteriors using t-SNE in
Figure 4. The perturbed posteriors clearly exhibit degraded
inter-class distances compared to the predicted posteriors.
This degradation obfuscates the decision boundaries between
classes, making it difficult for the attacker to clone the de-
fender model by imitating the posteriors. Notably, such ef-
fective defenses are achieved solely through linear mapping
of the posteriors, demonstrating the simplicity and efficiency
of our proposed noise perturbation strategy.

The transition matrix induces challenging noise. We ana-
lyze the defense details of two attack scenarios: Imagenet-
C10→CIFAR10 and Imagenet-C100→CIFAR100 in Fig-
ure 3. Specifically, Figure 3 (a-b) visualizes corresponding
optimized transition matrixes. It can be observed that the
diagonal elements are maximized for fidelity, while latent
inter-label relationships are also exploited. As shown the op-
timized matrix in Figure 3 (a), despite it causes a 2.35% drop
in the defender’s accuracy on the test set, the optimization
makes it have a noise rate as high as 77%. This negatively af-
fects the cloning process of the attacker, reducing the cloned
model’s accuracy by 14%.

24311



In Figures 3 (c-d), we visualize the average posterior of
predicted and perturbed predictions. Given that ImageNet-
C10/C100 follow long-tail distributions as illustrated in ap-
pendix 9, the predicted posteriors also exhibit long-tailed
shapes as expected. However, the perturbations significantly
increase the confidence of tail classes, distorting the true
inter-class relationships. This distortion of class relation-
ships also makes stealing more difficult for the attacker.

5.4. Ablation Study

Effectiveness of optimized transition matrix. To validate
the effectiveness of the optimized transition matrix, we com-
pare the defense performance between it and the uniform
transition matrix with an identical noise rate. The results
in Table 3 show that the optimized transition matrix can
further reduce the attacker’s accuracy while maintaining the
defender’s accuracy. This demonstrates that the optimized
matrix provides improved defense over the uniform matrix.
Overall, this shows that capturing the inter-class relation-
ships during optimization contributes to generating a matrix
that is more adversarial against the attacker.

Attack Scenarios
Optimized matrix Uniform matrix

Defender Attacker Defender Attacker

CIFAR100→CIFAR10 93.87±0.14 32.41±7.54 94.81±0.06 71.43±2.26
CIFAR10→CIFAR100 74.48±0.25 15.65±0.72 74.75±0.07 35.67±3.44
Caltech256→CUB200 80.45±0.13 18.25±0.43 80.89±0.22 30.15±0.21

Table 3. Defender and attacker accuracy (%) with optimized and
uniform transition matrix under attack scenarios for CIFAR10,
CIFAR100 and CUB200 evaluation datasets.

Effects of the number of queries. We also verify the
effectiveness of our defense against attacks with varying
number of queries in Figure 5. The EMMA-top1 result is
depicted as a reference, which denotes the victim model only
outputting the predicted label rather than the full posterior.
As formalized in Theorem 1, when the victim model assigns
full confidence to the true label, the attacker’s cloning task
degrades to learning from noisy labels. Thus, EMMA-top1
signifies the optimal defense under the same transition ma-
trix. EMMA defense consistently forces degradation of the
attacker accuracy across all query set sizes, remaining close
to the EMMA-top1. As the query increases, the attacker
model obtained from the victim model suffers more accuracy
drops, revealing that our defense induces more significant
detrimental impacts when the attacker uses more queries.

Transferability across attack scenarios. To explore the
transition matrix’s transferable defense capabilities, we test it
against an attack type different from the one it was optimized
for. As shown in Figure 6, we use the matrix optimized
under DA attack to defend against KL attack, denoted as
“DA→KL”. Compared to a matrix specifically optimized
for KL attack, denoted as “KL→KL”, it still maintained
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Figure 5. Effects of the number of queries.

considerable defensive efficacy, exhibiting the optimized
transition matrix’s robust transferable defense capabilities
across different attack types.
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Figure 6. Transferability across attack scenarios.

Due to the space limitation, additional experiments of our
method are provided in Appendix.

6. Conclusion
In this work, we revisited the noise transition matrix in a
novel way by applying it to model stealing defense for the
first time. This deteriorates the attacker’s cloning process
to a level equivalent to training on noisy labels, hampering
attacker model generalization. To optimize the transition
matrix, we proposed a novel bi-level optimization training
framework that incorporats fidelity training for the victim
model and adversarial training for the surrogate model. Ex-
perimental results under various attack scenarios showed
the effectiveness and robustness of our proposed defense
method compared to current state-of-the-art methods, achiev-
ing strong defense with minimal utility trade-off.
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