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Abstract

Human-Object Interaction (HOI) detection plays a cru-
cial role in visual scene comprehension. In recent advance-
ments, two-stage detectors have taken a prominent position.
However, they are encumbered by two primary challenges.
First, the misalignment between feature representation and
relation reasoning gives rise to a deficiency in discrimi-
native features crucial for interaction detection. Second,
due to sparse annotation, the second-stage interaction head
generates numerous candidate <human, object> pairs,
with only a small fraction receiving supervision. Towards
these issues, we propose a hybrid learning method based
on pose-aware HOI feature refinement. Specifically, we de-
vise pose-aware feature refinement that encodes spatial fea-
tures by considering human body pose characteristics. It
can direct attention towards key regions, ultimately offering
a wealth of fine-grained features imperative for HOI de-
tection. Further, we introduce a hybrid learning method
that combines HOI triplets with probabilistic soft labels
supervision, which is regenerated from decoupled verb-
object pairs. This method explores the implicit connections
between the interactions, enhancing model generalization
without requiring additional data. Our method establishes
state-of-the-art performance on HICO-DET benchmark and
excels notably in detecting rare HOIs.

1. Introduction

Human-Object Interaction (HOI) detection, as a significant
computer vision task, endeavors to locate the human-object
pair <human, object> and identify the interactive rela-
tionships between them, which unveils the mechanism of
how people interact with objects. HOI detection harbors
substantial potential in defacto applications, e.g., human-
computer interaction, AR/VR, video surveillance.

HOI detectors can be categorized into one-stage and two-
stage methods based on their architecture. In the con-
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Figure 1. (a) illustrates the Object Detection performance and HOI
Detection performance based on DETR[2] and more advanced H-
DDETR [15, 49]. (b) depicts the performance enhancement of our
method compared to the previous state-of-the-art[45, 46].

text of one-stage methods, achieving model convergence
presents a formidable challenge. Due to the sparse super-
vision provided by triplet labels and the joint training of
object detector and interaction head, model convergence
typically necessitates hundreds of GPU hours. In contrast,
two-stage methods capitalize on object detectors with pre-
trained weights, which focuses exclusively on training the
interaction head and leads to expedited convergence. Fur-
ther, two-stage detectors traverse all potential human-object
interaction pairs, showcasing unparalleled flexibility in in-
ferring any specified interaction pair within a visual scene.

Due to the aforementioned advantages, researchers have
increasingly shifted their focus towards two-stage archi-
tectures. However, certain challenges impede the further
progress of two-stage detectors. Through investigative
study, we noted that two-stage methods exhibit performance
degradation induced by the inter-task gap between object
detection and HOI detection. As shown in Figure 1(a), we
showcase the performance of detectors in the object detec-
tion task and their HOI detection performance after adding
the same second-stage interaction head in UPT[45]. The ad-
vanced H-DETR outperforms DETR by a remarkable 3.65
mAP in object detection, yet it exhibits the lowest perfor-
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mance in HOI detection. This highlights the degradation of
the model’s capability with two-stage methods. The object
detector inherently incurs task bias inclination, acquiring
features well-suited for object detection but overlooking the
nuanced feature intricacies necessary for HOI. The previous
second-stage interaction heads lack the ability to refine fea-
tures and extract crucial details. On the other hand, in two-
stage methods, the interaction head combines all detected
human and object, resulting in a substantial number of can-
didate interaction pairs. However, only a small portion of
pairs are labeled for supervision. In previous paradigms, in-
discriminately categorizing the remaining interaction pairs
as negative samples would introduces undesirable noise into
the training process. This situation constrains the model’s
generalization capability, making it challenging to achieve
effective detection for rare HOIs.

To address the task bias in features, we introduce a pose-
aware HOI feature refinement strategy. In previous studies
[32, 43, 45, 50], human and object features were treated
equally as uniform queries. However, in real life, humans
observe with their eyes, hold and grasp objects with their
hands, and perform actions like jumping and standing with
their feet. This indicates that features related to human pose
and relative spatial information are often crucial for detect-
ing human-object interactions. Motivated by this insight,
we meticulously designed our strategy to leverage human
pose information. Specifically, we estimate human body
keypoints and then adaptively generate feature regions for
different body parts. We perform detailed pairwise spa-
tial encoding, utilizing criteria such as the intersection over
Body-part area (IoB) between human body parts and bound-
ing boxes of detected objects, as well as geometrical in-
formation from keypoints. This information is finely uti-
lized to guide attention, and subsequently regenerate fine-
grained HOI features from refined object queries. By in-
troducing the Pose-Aware Feature Refinement strategy, our
model demonstrates its capability to direct its attention to-
wards information-rich regions, thereby boosting the per-
formance of HOI detection. This will be examined and vi-
sually presented in the upcoming ablation studies.

In response to the limitation of detectors supervised by
sparse samples, we introduce Hybrid Learning. Leverag-
ing the flexibility of the two-stage approach, we utilize a
fully trained interaction head to generate probabilistic soft
labels for potential interaction pairs. In contrast to previ-
ous studies [40, 42] that constructed artificially annotated
additional datasets using diffusion models[31, 33] or lan-
guage models[17, 30], we opted not to use additional data,
but rather to deeply explore the correlations among interac-
tions. For example, “ride” and “straddle” exhibit positive
correlation, while “stand on” and “stand under” conflict in
spatial features. Using probabilistic soft labels allows for
the representation of implicit interactions in a probability

distribution form, enabling the model to learn decisive rep-
resentations and enhancing its generalization capabilities.

Our main contribution can be summarized as follows:

• We propose a Pose-Aware Feature Refinement to incor-
porate intricate spatial features between pose and object,
effectively mitigating the task bias within the queries.

• We devise a novel hybrid learning method for HOI de-
tection task, addressing the sparsity of triplet annotations,
thereby enhancing model’s generalization without requir-
ing additional data.

• Through extensive experimentation, our model achieves
the state-of-the-art performance, outperforming all exist-
ing HOI detectors on widely-used datasets.

In particular, on the HICO-DET dataset, we attained
35.86 mAP and 36.73 mAP using ResNet50 and ResNet101
as backbone, respectively. Our approach notably reached
46.01 mAP using the Swin-Large as backbone, effectively
overcoming the challenge of detecting rare HOI classes and
delivering a remarkable performance gain of +2.13 mAP.

2. Related Work

One-stage Methods. One-stage detectors aim to detect
HOI triplets in a single forward pass. These methods
often leverage predefined interaction points or anchors.
[7, 16, 20, 37, 48]. For instance, PPDM[20] introduced a
simple yet effective strategy by considering the midpoint
between the human and the object as the interaction point.
Alternatively, QAHOI[4] proposed a query-based anchors
method, generating reference points through deformable
transformer decoder. FGAHOI[27] advanced this concept
by generate fine-grained anchors that guide HOI feature
extraction from complex tasks. Beyond anchor strategies,
some studies have focused on innovating the detection pro-
cess in one-stage methods. ERNet[22] integrated a pre-
dictive uncertainty estimation framework in their classifi-
cation heads, thus improving prediction robustness, while
CDN[43] introduced the advantages of two-stage detectors
into one-stage methods by disentangling human-object de-
tection and interaction classification in a cascading manner.

Two-stage Methods. In recent research, the advantages
of two-stage methods have been gradually revealed. Divid-
ing the HOI detection task into object detection and inter-
action reasoning has demonstrated improved efficiency and
flexibility. Two-stage methods employ the off-the-shelf ob-
ject detector[2, 5, 11, 26] to obtain detections, enriching
HOI interaction features by effective utilization of object
queries or incorporation of additional information, such as
spatial [1, 19, 38], pose [6, 10, 13, 18, 34], and graph fea-
tures [28, 29, 35, 38, 44], along with instance-centric at-
tention mechanisms[8, 36], and linguistic cues[9, 25, 41].
Specifically, iCAN[8] developed the instance-centric atten-
tion network, leveraging contextual image features to en-
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Figure 2. Overall architecture of our method. The blue component represents the Pose-Aware Feature Refinement, which fuses human
body pose information to refine object queries. The green part represents the Hybrid Learning, generating soft label supervision for H-O
pairs. The parameters of the Pose Estimator and the Fully-trained Interaction head are not involved in gradient computation.

hance human-object pair representations. UPT[45] eluci-
dated that using self-attention on unary features and inter-
action pairs effectively enhances the confidence of positive
samples. PViC[46] reintroduced image features into the H-
O pairs representation via cross-attention to counteract the
lack of relevant contextual information, while RLIPv1[41]
incorporated linguistic features to improve few-shot HOI
detection. They performed contrastive language-image pre-
training and showcased its effectiveness. Additionally,
some studies aim to address the issue of sparse annota-
tions by augmenting the dataset[40, 42]. For instance,
DiffHOI[40] contributed to data diversity by creating a bal-
anced synthetic dataset, encompassing over 140K images
with comprehensive HOI triplet annotations.

3. Method

In this section, we provide a detailed introduction to our
method. First, we present the overall architecture, as de-
picted in Figure 2. Subsequently, we delve into the specifics
of our Pose-Aware feature refinement in Section 3.1 and the
Hybrid Learning in Section 3.2.

3.1. Pose-Aware Feature Refinement

To distill essential information from queries affected by task
bias, we center our focus on human poses. Integrating hu-
man body pose features into HOI detection offers evident
benefits. First, it refines human queries by fusing the ap-
pearance features of the human body, emphasizing the dom-
inant role of humans in interactions. Second, it enables a
finer representation of paired spatial features by considering
geometric relationships between human keypoints and ob-
jects. Building upon this idea, we design a pose-aware spa-
tial encoding to guide the attention focusing on significant
regions with rich interactive information, thereby extracting
deep representational features suitable for HOI detection.

Figure 3. Visualizations. First row illustrates the body keypoints
detected by ViTPose[39] and object bounding boxes. Second row
shows generated human body-part regions.

Body-part Region Generation. We employ an off-the-
shelf pose estimator for detecting human body keypoints,
enabling us to dynamically locate body-part regions. More
precisely, we define each body-part region by extending the
keypoint coordinates along the X and Y axes, using co-
efficients that adjust based on their proportional sizes. A
body-part region is specified by a central keypoint coordi-
nate (xi, yi) and an adjacent auxiliary keypoint coordinate
(xj , yj). The top-left and bottom-right vertices of the gen-
erated body-part region’s bounding box are determined by
(xi −∆x, yi −∆y) and (xi +∆x, yi +∆y), respectively.
This means that the regions are centered around (xi, yi),
with a width of 2 ×∆x and a height of 2 ×∆y. Here, ∆x
and ∆y represent the adaptive offsets along the X and Y
axes, respectively, calculated as indicated in Eq.1.

∆x =
(
α+ β

ri,j
1+ri,j

)
× di,j

∆y =
(
α+ β 1

1+ri,j

)
× di,j

(1)

where α, β are fixed coefficients. ri,j and di,j can be for-
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mulated as:

ri,j =
|xi − xj |
|yi − yj |

, di,j =
√
(xi − xj)2 + (yi − yj)2 (2)

In Eq. 2, ri,j specifies the aspect ratio of the rectangle de-
lineated by the central keypoint i and its auxiliary keypoint
j, with di,j quantifying their Euclidean distance. It is worth
noting that, when calculating a specific region, the central
and auxiliary keypoints are fixed. For example, the compu-
tation of the left hand region employs LWrist as the central
point and LElbow as the auxiliary point. This approach en-
sures stable and precise localization of body parts across
various human pose scenarios, as illustrated in Figure 3.

Spatial Encoding with Human Pose. Following the gen-
eration of body-part regions and keypoints, we utilize them
to encode the spatial features between Human-Object pairs.
To incorporate pose information, we include finer hand-
crafted features encoded through human keypoints. Specif-
ically, we gauge the contribution of each body part in inter-
actions by calculating the Intersection over Body-part Area
(IOB) between all body parts and detected objects. When
humans perform actions such as ‘hold’, ‘pull’, and ‘wield’,
the IOB of hands significantly increases, whereas during
distant interactions such as ‘watch’ and ‘fly’, all IOBs tend
to approach zero. This indicates that IOBs can capture dif-
ferent behavioral patterns. Additionally, we consider fac-
tors such as the center of mass, body angles, relative sizes,
and interaction directions to enrich our encoding. Then,
we process the encoded spatial features through three fully-
connected layers with ReLU activation functions to ensure
they align with the same dimension as the object queries.

HOI Feature Refinement Encoder. Humans as the main
character in interaction should not be considered as sim-
ple queries as other objects. Therefore, we enhance hu-
man queries by integrating pose features, followed by em-
ploying pose-aware spatial encoding to guide the refine-
ment of HOI queries. In detail, let Xpose ∈ Rnh×m de-
note human queries enhanced by fusing pose feature and
Xobject ∈ Rno×m represent object queries. n is the number
of all detections (humans and objects). m is the dimen-
sion of queries. Y represents the spatial encoding. We first
concatenate Xpose, Xobject, and duplicate them for n times
as X̃ ∈ Rn×n×m. Then, we utilize a modified attention
mechanism outlined in UPT [45]. This involves comput-
ing the value V through element-wise multiplication of X̃
and Y , followed by a fully-connected layer. Then using
indices of H-O pairs, we get paired features, denoted as
X ∈ Rn×n×2m. The attention map W is computed as:

W = softmax(Linear[concat(X,Y )]) (3)

Subsequently, the final output is obtained by conducting
element-wise multiplication of W and V . Thus, by fus-
ing pose features and utilizing pose-aware spatial encoding,

Human is wearing a tie.(1,5) {hold:0.8, carry:0.3, weild:0.1, ...} a flower
(3,2) {hold:0.7,  hug:0.3, catch:0.1, ...} a person
(2,6) {wear:0.7, hold:0.3, adjust:0.05, ... } a tie.

       ......
(a) Probabilistic soft label (b) Ground truth triplet

Figure 4. Illustraing our probabilistic soft label and ground truth.

we guide the attention map to refine the queries, obtaining
refined Human-Object Interaction features.

3.2. Hybrid Learning.

The Human-Object Interaction data exhibit a severe long-
tail distribution. For example, in the widely-used HICO-
DET dataset, there are 138 HOI classes that have fewer than
10 training samples. Moreover, the sparsity in HOI triplet
annotation exacerbates the issue, particularly when discern-
ing interactions with subtle variances or reasoning about
rare HOIs. One feasible approach is to search for additional
data with HOI annotations. However, this approach incurs
considerable costs. Instead of labeling new data, we delve
deeper into existing data to uncover more information. Con-
sidering the inefficiency and ambiguity in generating pre-
cise HOI triplets, we predict the probabilities of verbs for
each unsupervised human-object interaction pair. This pro-
cess fundamentally entails the learning of implicit relation-
ships among verbs, represented as a probability distribution.
Additionally, it introduces supplementary supervision for
rare HOIs through the soft labels generated from decoupled
verb-object pairs, thereby reflecting human learning mech-
anisms: wherein a person who has learned to recognize an
action, such as kissing among humans, can readily identify
the same action across different species.

Specifically, we initially train a two-stage detector, and
then extract the fully-trained interaction head from the de-
tector. During the training phase, the unlabeled Human-
Object pairs are fed into the interaction head to generate
predictions for the verbs within the interactions. We employ
the sigmoid function to convert these scores into probabil-
ities, thus generating soft labels for each H-O pair, which
are referred to as labels. We convert the original triplet an-
notation into a one-hot format, represented as labelo. It is
important to note that in order to minimize the introduction
of inherent biases associated with the interaction head, we
modify the labels. Specifically, when there are annotations
for H-O pairs in labelo, we mask the corresponding values
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within labels. Otherwise, we use labels as supervision. The
modified soft labels are denoted as labelm, and can be for-
mulated as follows:{

labelim = 0⃗, where labelio ̸= 0⃗

labelim = labelis, otherwise
(4)

Eq.5 demonstrates the computation of Lo, the loss associ-
ated with the original triplet annotations. In this context, Q
represents the set of all possible interaction queries, and n1

denotes the cardinality of Q, i.e., the number of elements
within Q. The procedure initiates by computing the Inter-
section Over Union (IOU) between the detection boxes for
both the human and object in each interaction pair and their
corresponding ground truth boxes. If both IOU values ex-
ceed 0.5, we proceed to calculate the focal loss using labelo.

Lo =

n1∑
i

Lfocal
iou≥0.5(Qi, label

i
o) (5)

For computing Lm, the loss for modified probability soft
labels, we employ the focal loss between queries and soft
labels within the set Q̂. Here, Q̂ includes all queries lacking
Human-Object Interaction triplet supervision, and n2 indi-
cates the size of Q̂. The use of focal loss helps in mitigating
the impact of class imbalance by focusing more on chal-
lenging, hard-to-classify examples.

Lm =

n2∑
i

Lfocal(Q̂i, label
i
m) (6)

In addition, hybrid loss can be expressed as follow, Lh =
Lo + λLm. We use the hyper-parameter λ to regulate the
extent of hybrid supervision, where a higher λ signifies a
firmer endorsement of the generated soft labels. In the de-
fault scheme, λ is set to 0.5.

The hybrid learning method enhances the model’s gen-
eralization without requiring additional data by effectively
capturing the underlying correlations between interactions.
For instance, for a baseball bat, actions like ‘hold,’ ‘swing,’
and ‘wield’ exhibit positive correlations while actions like
‘stand on’ and ‘stand under’ showcase negative correla-
tions. From this perspective, the expression of implicit asso-
ciations between interactions through original HOI triplets
is quite limited. In the training process, this might even sup-
press positively correlated verbs, leading to confusion. In
our hybrid learning method, the ‘a person is riding a bike’
triplet could be represented as ‘confirmed riding’, ‘possible
sitting on’ ‘slightly against standing’ ‘against flying’ and so
forth. This is equivalent to a collection of triplet labels with
weighted representations.

More Variants of Hybrid Learning. We designed several
different variants of our hybrid learning process.

Hybrid decay scheme. Different from the default scheme,
λ is not a constant coefficient, but a parameter decreases
with each epoch. It aligns better with prior knowledge.
Initially, assigning higher confidence to soft labels allows
better learning of implicit relationships between different
interactions by the fully-trained interaction head, thereby
providing a smoother gradient descent. In the later stages
of training, as the model’s performance approaches or sur-
passes that of the interaction head, reducing the confidence
in soft labels helps avoid the model being overly influenced
by potential errors in the interaction head’s understanding.
This allows the model to generate alternative interpretations
and perceptions.

λ(t) = max(σ
tstop − t

tstop
, 0) (7)

As represented in Eq. (7), λ(t) starts with the value σ and
linearly decreases until it reaches 0 at tstop. In conclusion,
we compute hybrid loss as Lh = Lo+λ(t)Lm with decaying
λ(t) in the first tstop epochs and Lo only after tstop epochs.

Hybrid layer scheme. Inspired by [15], we devised a hy-
brid layer scheme. In this scheme, distinct supervision
strategies are employed for different decoder layers. Hy-
brid supervision targets lower-level decoder layers, whereas
high-level layers use only labelo for loss calculation. Hy-
brid loss is shown in Eq.(8).

Lh =
n∑

i=nl+1

Lo
i +

nl∑
j=0

Lo
j +λLm

j =
n∑

i=0

Lo
i +

nl∑
j=0

λLm
j (8)

4. Experiments
This section covers the experiments from four perspectives:
experimental settings, performance comparison with state-
of-the-art methods, module effectiveness via ablation stud-
ies, and qualitative results with a discussion on limitations.

4.1. Experimental Settings

Dataset and Evaluation We train and test our model on
two common datasets: HICO-DET [3] and V-COCO [12].

HICO-DET comprises 47,776 images. It includes 80 ob-
ject categories and 117 verb classes, resulting in 600 types
of HOI triplets. HICO-DET consists of three subsets: (i)
Full, comprising all 600 HOI triplets. (ii) Rare, encompass-
ing 138 HOI triplets with fewer than 10 training samples.
(iii) Non-Rare, other 462 HOI triplets. V-COCO is a sub-
set of MS-COCO [23], with a smaller scale compared to
HICO-DET. It comprises 10,346 images. V-COCO con-
tains 24 interactions and 80 objects. We follow previous
approach [3, 12, 45] to evaluate our model on HICO-DET
and VCOCO. Specifically, for HICO-DET, we conducted
evaluations under both the Default setting and the Known
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Method Backbone
HICO-DET V-COCO

Default Known Object Default

Full Rare Non-rare Full Rare Non-rare APS1
role APS2

role

FCL [14]

ResNet-50

24.68 20.03 26.07 26.80 21.61 28.35 52.4 -
QPIC [32] 29.07 21.85 31.23 31.68 24.14 33.93 58.8 61.0
UPT [45] 31.66 25.94 33.36 35.05 29.27 36.77 59.0 64.5
STIP [47] 32.22 28.15 33.43 35.29 31.43 36.45 66.0 70.7

DiffHOIs [40] 34.41 31.07 35.40 37.31 34.56 38.14 61.1 63.5
PViC [46] 34.69 32.14 35.45 38.14 35.38 38.97 59.7 65.4

Ourss 35.86 32.48 36.86 39.48 36.10 40.49 61.1 66.6

HOITrans [51]

ResNet-101

26.61 19.15 28.84 29.13 20.98 31.57 52.9 -
QPIC [32] 29.90 23.92 31.69 32.38 26.06 34.27 58.3 60.7
CDN [43] 32.07 27.19 33.53 34.79 29.48 36.38 63.9 65.9
UPT [45] 32.62 28.62 33.81 36.08 31.41 37.47 61.3 67.1

GEN-VLKT [21] 34.95 31.18 36.08 38.22 34.36 39.37 63.6 65.9
Oursm 36.82 33.99 37.66 40.56 37.02 41.69 62.3 68.2

QAHOI [4]

Swin-Large

35.78 29.80 37.56 37.59 31.36 39.36 - -
FGAHOI [27] 37.18 30.71 39.11 38.93 31.93 41.02 - -
DiffHOIl [40] 40.63 38.10 41.38 43.14 40.24 44.01 65.7 68.2

PViC [46] 44.32 44.61 44.24 47.81 48.38 47.64 61.7 68.0
Oursl 46.01 46.74 45.80 49.50 50.59 49.18 63.0 68.7

Table 1. Comparison of the our method with current remarkable studies on the HICO-DET and V-COCO datasets. Bold and underline
items represent the best and the second best one. The PViC’s code for the V-COCO is being cleaned up, so we use our reproduced results.

Object setting for the Full, Rare, and Non-Rare subsets. For
V-COCO, we evaluated performance in APS1

role and APS2
role.

Implementation Details. For our hybrid learning, in the
default scheme, λ is fixed at 0.5 as a constant. In the hybrid
decay scheme, σ is set to 1, and nstop is configured as 25,
following Equation (7). For our Pose-Aware Feature Re-
finement, we use ViTPosebase as pose estimator. α and β,
as specified in Equation (1) for the Body-part Region Gen-
eration algorithm, are set to 0.25 and 0.33, respectively. All
models are trained for 30 epochs using the AdamW opti-
mizer and a multi-step learning rate decay mechanism. We
use focal loss[24] for both labelo and labelm. During infer-
ence, we multiply the object confidences of H-O pairs and
the interaction scores, following previous practices[45, 46].

4.2. Comparison to State-of-the-Art

Table 1 compares our method with previous state-of-the-
art methods on the HICO-DET and V-COCO datasets. Ap-
proaches are categorized into ResNet backbone and Swin
Transformer backbone methods. We report our model’s per-
formance with three different scale backbones to demon-
strate its scalability and facilitate direct comparison with
previous research. Our method outperforms all existing
one-stage and two-stage approaches, achieving state-of-
the-art performance across both default and Known Ob-

ject settings on the HICO-DET. Achieving a 46.01 mAP,
surpassing recent SOTA, PViC [46], by 1.69 mAP and
DiffHOIl [40] by 5.38 mAP, which was trained using a large
number of additional high-quality annotated images. This
highlights our method’s superior refining capabilities and
efficient learning. Our smallest model, based on ResNet50,
attains a 35.86 mAP, marking a 3.4% and 13.3% improve-
ment over the latest and prior SOTA methods, respectively.

Notably, our model achieves an impressive 46.74 mAP
on the rare HOIs subset, which has fewer than 10 training
samples for every interaction class. This represents a 2.13
mAP increase and a 4.8% relative improvement compared
to the most recent SOTA. In the listed methods, the aver-
age detection performance for rare classes is 4.5 mAP lower
than for the full classes. However, our approach has sig-
nificantly narrowed this gap, achieving a performance that
is even 0.73 mAP higher than for the full classes with our
largest model. This success can be attributed to the effective
label enrichment by the hybrid learning paradigm.

4.3. Ablation Study

In this section, we perform ablation studies to assess and
analyze the effectiveness of the proposed modules

Comparing different hybrid training schemes. We eval-
uated the performance of HOI detection across four distinct
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Hybrid Scheme Default Known Object

# default decay layer Full Rare N-rare Full Rare N-rare

A1 33.44 28.89 34.80 37.38 33.33 38.59
A2 ✓ 34.06+0.6 29.96+1.1 35.29+0.5 37.95+0.6 33.67+0.3 39.23+0.6

A3 ✓ 34.42+1.0 31.13+2.2 35.41+0.6 37.85+0.5 34.61+1.3 38.81+0.2

A4 ✓ 34.03+0.6 29.64+0.8 35.34+0.5 37.90+0.5 33.65+0.3 39.11+0.5

A5 ✓ ✓ 34.25+0.8 31.37+2.5 35.11+0.3 37.88+0.5 35.03+1.7 38.73+0.1

Table 2. The mAP (%) performance of our proposed method with different hybrid training scheme on the HICO-DET test set.

hybrid schemes, employing DETR with ResNet50 for de-
tection. The detailed results are summarized in Table 2. It
is clear that hybrid learning consistently surpasses the base-
line in all four schemes, achieving this without any addi-
tional data and requiring only a modest increase in training
time. The schemes exhibit an average improvement of 0.75
mAP over the baseline. When examining the performance
across the full, rare, and non-rare categories, the average
improvements are 0.75 mAP, 1.65 mAP, and 0.48 mAP, re-
spectively. Notably, hybrid learning significantly boosts the
detection performance of rare HOIs.

When comparing these four schemes specifically, the
model performs best under the decay mode, showing an
improvement of 1.0 mAP. The other three schemes exhibit
similar performance improvements, each achieving an in-
crease of approximately 0.7 mAP. As mentioned earlier, this
could be attributed to better alignment with the prior as-
sumptions. In the default scheme, using constant weights
introduces noise when the model’s performance surpasses
that of the fully-trained interaction head. In contrast, in the
decay scheme, the confidence weight λ(t) of the soft labels
gradually decreases with iterations. This approach guides a
smoother gradient descent in the early stages and avoids the
introduction of noise from misperceptions by the interaction
head in the later stages of training.

Hybrid learning on different models. Additionally, we
employed various models to validate the effectiveness of the
hybrid training module. We selected two-stage HOI detec-
tors: PViC[46], UPT[45], and a UPT variant for evaluation.

The experimental results, as shown in Table 3, demon-
strate that after applying the hybrid training method, all
three models converged faster and achieved improved per-
formance. For instance, H-PVIC with ResNet50 as the
backbone reached 33.5 mAP in 19 epochs, while PViC,
trained with only HOI triplet supervision, achieved the same
performance after 30 epochs. Besides enhancing training
efficiency, the hybrid training module has also improved the
models’ generalization capabilities. After fully training for
30 epochs on the HICO-DET dataset, the performance of
H-PViC exceeded that of PViC by 1.0 mAP and 0.9 mAP,
using ResNet50 and ResNet101 as backbones, respectively.

Method Backbone Epoch Full Rare N-rare

UPT[45] R50 20 31.6 25.6 33.4
H-UPT R50 15 31.6 26.1 33.3
H-UPT R50 20 31.9+0.3 26.2 33.6
UPT* R50 30 30.0 24.1 31.8

H-UPT* R50 21 30.1 24.9 31.6
H-UPT* R50 30 30.4+0.4 25.3 31.4
PVIC[46] R50 30 33.4 28.9 34.8
H-PVIC R50 19 33.5 29.6 34.7
H-PVIC R50 30 34.4+1.0 31.1 35.4

PVIC R101 30 34.8 31.2 35.6
H-PVIC R101 19 34.9 30.2 36.3
H-PVIC R101 30 35.7+0.9 30.8 37.0

Table 3. The mAP (%) of different models employ hybrid learn-
ing on HICO-DET test set. UPT* refers to a variant of UPT that
removed the modified attention transformer decoder. H-model de-
notes model with hybrid learning.

Module Default Setting (mAP)
# Hybrid Pose Full Rare N-rare
A1 33.44 28.89 34.80
A3 ✓ 34.42 31.13 35.41
B1 ✓ 35.39 31.51 36.55
B2 ✓ ✓ 35.86 32.48 36.86

Table 4. Effect of Hybrid learning and Pose-aware Refinement.

It is worth noting that the fully trained interaction head we
utilized was only capable of achieving a 33.4 mAP perfor-
mance. This indicates that through hybrid soft-label super-
vised training, the model found a more optimal global min-
imum during gradient descent, improving the model’s gen-
eralization capabilities without altering the model design.
Pose-Aware Feature Refinement Module. Table 4 ex-
plore the effectiveness of our Pose-aware feature Refine-
ment module. Comparing models A1 and B1, it is evident
that directly incorporating the pose-aware module results in
a notable improvement of 1.95 mAP compared to the base-
line. We also visualize the attention map in the last decoder
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Figure 5. Illustrating the average attention maps for different HOI detectors, the three rows correspond to the visualizations of UPT, PViC,
and our method, respectively. For UPT, since it doesn’t employ global cross-attention, we visualize the attention map for the queries of
human and object in interaction pairs, represented in two colors. Some qualitative results are shown in Figure (g).

layer to facilitate an intuitive interpretation of the impact
brought by the pose-aware module, as shown in Figure.5.

As previous study [46] pointed out, the frozen object fea-
tures extracted from object detector often pool information
from the box boundary since this aids localisation. As indi-
cated in the first line, this approach lacks the adaptability to
focus on information-rich regions autonomously. Our ap-
proach considers the significance of human body limbs en-
gaged in interactions, guiding attention to focus on crucial
regions. For instance, in Figure 5(b), our method accurately
directs attention to the area near the feet, enabling the cor-
rect detection of “a person standing on a skateboard”. Sim-
ilarly, in (d), owing to the refined human queries, our model
concentrates on both the person’s eyes and the hand holding
a book, accurately detecting the “reading” interaction.

Unlike previous research, which relied on pre-defined in-
teraction points or anchors and introduced noise in long-
distance scenes, our approach leverages pose-aware spatial
information for each human-object pair. In that case, our
HOI detector also performs well in scenarios involving dis-
tant interactions, such as flying kites. An example is shown
in Figure 5(g), where the model learns distant interaction
patterns from spatial encoding.

4.4. Qualitative Results and Limitations

Several qualitative results are illustrated in Figure 5(g). Our
model accurately identifies information-rich regions within
human-object pairs, producing finely-detailed features. For
instance, by concentrating on the facial expressions of a

child blowing out a candle and the grip of a person hold-
ing a rope, our model precisely detects these interactions.
However, as our model is trained with soft label supervi-
sion, it tends to encompass a wider array of potential in-
teractions. This approach leads to a decrease in confidence
when predicting specific human-object interactions. More-
over, the detector sometimes exhibits overconfidence in fre-
quently occurring actions, such as “wear” and “hold”.

5. Conclusion
In this paper, we analyze the limitations of existing two-
stage HOI detection methods, which are constrained by fea-
ture task bias and the lack of HOI annotations. To address
these issues, we propose the Pose-Aware Feature Refine-
ment, leveraging human body pose information to encode
spacial features, guiding attention to refine queries, thus
obtain fine-grained HOI interaction features. We further
introduce hybrid learning that generates probabilistic soft
labels for unsupervised potential H-O pairs, enhancing the
model’s generalization ability without additional data. We
finally achieve exceptional performance, a new state-of-the-
art on widely used datasets.
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