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“A guitar resting against an old oak tree.”“A teddy bear with a red bow.”
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Figure 1. We present a versatile and human-aligned evaluation metric for text-to-3D generative methods. To this end, we design a prompt
generator that can produce a set of input prompts targeting an evaluator’s demands. Moreover, we leverage GPT-4V to compare two 3D
shapes according to different evaluation criteria. Our method provides a scalable and holistic way to evaluate text-to-3D models.

Abstract
Despite recent advances in text-to-3D generative meth-

ods, there is a notable absence of reliable evaluation met-
rics. Existing metrics usually focus on a single criterion
each, such as how well the asset aligned with the input
text. These metrics lack the flexibility to generalize to dif-
ferent evaluation criteria and might not align well with
human preferences. Conducting user preference studies
is an alternative that offers both adaptability and human-
aligned results. User studies, however, can be very ex-
pensive to scale. This paper presents an automatic, ver-
satile, and human-aligned evaluation metric for text-to-
3D generative models. To this end, we first develop a
prompt generator using GPT-4V to generate evaluating
prompts, which serve as input to compare text-to-3D mod-
els. We further design a method instructing GPT-4V to
compare two 3D assets according to user-defined crite-
ria. Finally, we use these pairwise comparison results

∗ Equal contribution.

to assign these models Elo ratings. Experimental results
suggest our metric strongly aligns with human preference
across different evaluation criteria. Our code is available
at https://github.com/3DTopia/GPTEval3D.

1. Introduction
The field of text-to-3D generative methods has seen re-

markable progress over the past year, driven by a series
of breakthroughs. These include advancements in neural
3D representations [41, 46], the development of extensive
datasets [10, 13, 14], the emergence of scalable genera-
tive models [23, 55, 61], and the innovative application of
text–image foundational models for 3D generation [47, 50].
Given this momentum, it’s reasonable to anticipate rapidly
increasing research efforts and advancements within the
realm of text-to-3D generative models.

Despite recent advances, the development of adequate
evaluation metrics for text-to-3D generative models has not
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kept pace. This deficiency can hinder progress in further
improving these generative models. Existing metrics often
focus on a single criterion, lacking the versatility for diverse
3D evaluation requirements. For instance, CLIP-based met-
rics [28, 50] are designed to measure how well a 3D asset
aligns with its input text, but they may not be able to ad-
equately assess geometric and texture detail. This lack of
flexibility leads to misalignment with human judgment in
evaluation criteria the metric is not designed for. Conse-
quently, many researchers rely on user studies for accurate
and comprehensive assessment. Although user studies are
adaptable and can accurately mirror human judgment, they
can be costly, difficult to scale, and time-consuming. As a
result, most user studies have been conducted on a very lim-
ited set of text-prompt inputs. This leads to a question: Can
we create automatic metrics that are versatile for various
evaluation criteria and align closely with human judgment?

Designing metrics that meet these criteria involves three
essential capabilities: generating input text prompts, under-
standing human intention, and reasoning about the three-
dimensional physical world. Fortunately, Large Multimodal
Models (LMMs), particularly GPT-4Vision (GPT-4V) [45],
have demonstrated considerable promise in fulfilling these
requirements [70]. Drawing inspiration from humans’ abil-
ity to perform 3D reasoning tasks using 2D visual infor-
mation under language guidance, we posit that GPT-4V is
capable of conducting similar 3D model evaluation tasks.

In this paper, we present a proof-of-concept demonstrat-
ing the use of GPT-4V to develop a customizable, scalable,
and human-aligned evaluation metric for text-to-3D gen-
erative tasks. Building such an evaluation metric is sim-
ilar to creating an examination, which requires two steps:
formulating the questions and evaluating the answers. To
effectively evaluate text-to-3D models, it is crucial to ob-
tain a set of input prompts that accurately reflect the eval-
uators’ needs. Relying on a static, heuristically generated
set of prompts is insufficient due to the diverse and evolv-
ing nature of evaluator demands. Instead, we developed a
“meta-prompt” system, where GPT-4V generates a tailored
set of input prompts based on evaluation focus. Following
the generation of these input text prompts, our approach in-
volves comparing 3D shapes against user-defined criteria,
akin to grading in an exam. We accomplish this through de-
signing an instruction template, which can guide GPT-4V
to compare two 3D shapes per user-defined criterion. With
these components, our system can automatically rank a set
of text-to-3D models by assigning each of these models an
Elo rating. Finally, we provide preliminary empirical ev-
idence showing that our proposed framework can surpass
existing metrics in achieving better alignment with human
judgment in a diverse set of evaluation criteria. Results sug-
gest that our metric can efficiently provide an efficient and
holistic evaluation of text-to-3D generative models.

2. Related Work

Text-to-3D generation. Text-to-image generation models
have become increasingly powerful with text-to-3D exten-
sions being the next frontier (see [47] for a recent survey).
However, due to limited amounts of 3D data, text-to-3D
has mainly been driven by methods based on optimizing a
NeRF representation [41]. For example, Dreamfusion [50]
optimizes a NeRF using score-distillation-sampling-based
(SDS) loss. The quality of such optimization-based meth-
ods [11, 36, 40, 50, 59, 62, 65, 67], however, is far behind
that of text-to-image models [49, 53–55]. Compared with
their 2D counterparts, they are generally lacking diversity,
texture fidelity, shape plausibility, robustness, speed, and
comprehension of complex prompts. On the other hand,
Point-E [43] and Shap-E [29] train feed-forward 3D gener-
ative models on massive undisclosed 3D data. Though they
show promising results with fast text-to-3D inference, their
generated 3D assets look cartoonish without geometric and
texture details. Recently, we notice a rapid change in the
landscape of text-to-3D methods [37, 38] mainly due to the
public release of the large-scale Objaverse datasets [15, 16].
Feed-forward methods trained on these datasets, e.g., In-
stant3D [35], have managed to make a big jump in text-to-
3D quality, narrowing the performance gap between 3D and
2D generation. As we expect to see continuing progress
in this area, it is critical to have robust evaluation metrics
closely aligning with human judgment to measure different
aspects of 3D generative models, including shape plausibil-
ity and texture sharpness. Such an evaluation metric can
provide meaningful guidance for model design choices and
support fair comparisons among the research community.

3D Evaluation Metrics. Evaluating 3D generative mod-
els is inherently challenging, requiring an understanding of
both physical 3D worlds and user intentions. Traditional
methods for evaluating unconditional or class-conditioned
3D models typically measure the distance between distribu-
tions of generated and reference shapes [1, 5, 9, 20, 39, 69].
However, these metrics are not readily applicable to text-
conditioned generative tasks due to the difficulty in obtain-
ing a comprehensive reference set, given the vastness of
natural language inputs [6]. To alleviate this issue, prior
work tried to curate a set of text prompts to evaluate key
aspects of text-conditioned generative tasks [21, 50]. Our
work complements this effort by creating a text-prompt gen-
erator using language instruction. Additionally, prior stud-
ies utilized multimodal embeddings, such as CLIP [51] and
BLIP [33, 34], to aid the evaluation. For instance, the CLIP
Similarity metric [28, 50] employs CLIP embeddings to as-
sess text-to-3D alignment. However, these metrics are of-
ten tailored to measure specific criteria, lacking the flexibil-
ity to adapt to different requirements of text-to-3D evalua-
tion. User preference studies are considered the gold stan-
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dard for evaluating text-to-3D models, as adopted by many
papers [5, 25, 36, 52, 57, 62]. While user studies offer ver-
satility and accuracy, they are costly, time-consuming, and
difficult to scale. Our automatic metrics can serve as an al-
ternative to user preference studies, aligning well with hu-
man preferences while offering high customizability.

Large multimodality models. Following the success of
large language models (LLMs) [3, 8, 12, 24, 45, 63], the
focus has shifted to large multimodal models (LMMs) as
the next frontier in artificial intelligence. Initial efforts of
LMM involve combining computer vision with LLMs by
fine-tuning visual encoders to align with language embed-
dings [2, 4, 17, 27, 33, 34, 64] or converting visual infor-
mation to text [26, 58, 66, 71]. Most of these models are
usually limited in scale. Recently, GPT-4V [44] has risen as
the leading LMMs, benefiting from training on an unprece-
dented scale of data and computational resources. These
LMMs have demonstrated a range of emerging properties
[70], including their capability as evaluators for language
and/or vision tasks [22, 73, 74]. In our work, we explore
the use of GPT-4V in evaluating 3D generative models, a
relatively under-explored application because GPT-4V can-
not directly consume 3D information.

3. Method Overview

The goal of our evaluation metric is to rank a set of text-
to-3D models based on user-defined criteria. Our method
consists of two primary components. First, we need to de-
cide which text prompt to use as input for the evaluation
task. Toward this goal, we develop an automatic prompt
generator capable of producing text prompts with customiz-
able levels of complexity and creativity (Sec 4). The second
component is a versatile 3D assets comparator (Sec 5). It
compares a pair of 3D shapes generated from a given text
prompt according to the input evaluation criteria. Together,
these components allow us to use the Elo rating system to
assign each of the models a score for ranking (Sec 5.3).

4. Prompt Generation

Creating evaluation metrics for text-to-3D generative
models requires deciding which set of input text prompts
we should use as input to these models. Ideally, we would
like to use all possible user input prompts, but this is compu-
tationally infeasible. Alternatively, we would like to build
a generator capable of outputting prompts that can mimic
the actual distribution of user inputs. To achieve this, we
first outline the important components of an input prompt
for text-to-3D models (Sec 4.1). Building on these com-
ponents, we design a “meta-prompt” to instruct GPT-4V
how to leverage these components to generate an input text
prompt for text-to-3D models (Sec 4.2).

A dancing elephant.

A sleeping cat.

A large, multi-layered wedding cake, with smooth 
fondant, delicate piping, and lifelike sugar 
flowers in full bloom, displayed on a silver stand.

Orange monarch butterfly resting 
on a dandelion.

Frog with a translucent skin displaying 
a mechanical heart beating.
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A solid, symmetrical, smooth stone fountain, 
with water cascading over its edges into a clear, 
circular pond surrounded by blooming lilies, in 
the center of a sunlit courtyard.

Figure 2. Controllable prompt generator. More complexity or
more creative prompts often lead to a more challenging evaluation
setting. Our prompt generator can produce prompts with various
levels of creativity and complexity. This allows us to examine text-
to-3D models’ performance in different cases more efficiently.

4.1. Prompt components

A typical input text prompt for text-to-3D models con-
tains three components: subjects, properties, and composi-
tions. Subjects usually involve nouns referring to objects
or concepts the user would like to instantiate in 3D. “Cats”,
“fire”, and “universe” are all examples of subjects. Proper-
ties include adjectives a user can use to describe the subjects
or their interactions, such as “mysterious” and “weathered”.
Finally, users will compose these concepts and properties
together into a sentence or clause. The composition varies
from as simple as joining different subjects and/or proper-
ties together with commas or as thoughtful as writing it as
a grammatically correct and fluent sentence. In this work,
we prompt GPT-4V to create a comprehensive list of words
for subjects and properties. This list of subjects and proper-
ties will be used as building blocks to construct the “meta-
prompt”, which is an instruction for GPT-4V to generate in-
put text-prompts by composing these building blocks. Ap-
pendix B.1 contains more implementation details.

4.2. Meta-prompt

Provided with ingredients to create input prompts, we
now need to automatically compose these ingredients to-
gether according to the evaluator-specified requirements.
This requires the prompt generator to understand and follow
the evaluator’s instruction. In this paper, we use GPT-4V’s
ability to generate prompts following instructions. Specifi-
cally, we would like to build a text instruction asking GPT-
4V to create a list of prompts that can be used as input for
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Our task here is the compare two 3D
objects, both generated from the
same text prompt {Data Prompt}.

Data 
Prompt:

1. Text-Asset Alignment: …
2. 3D Plausibility: …
3. Texture-Geometry Coherency: … 
4. Low-Level Texture: …
5. Low-Level Geometry: …

Input 
Format:

I will provide you with some multi-
view {normal / RGB / RGB & normal
renderings} from the two objects,
where the left part is 3D object 1,
and the right part is 3D object 2.

Criteria:

Answer:

You have four options:  
1. Left is better; 
2. Right is better; 
3. Cannot decide.

Final Answer: <option 1>, <option 2>,
… , <option 5>

… text prompt a thorn rose, … multi-view RGB
& normal renderings , …
[criteria subset]
1. Text prompt & 3D Alignment: [explanations]
4. Low-Level Texture: [explanations]
[in context example]

Instruction Template

Final Answer: 3, 3, 1, 1, 1

Output Ensemble

Analysis:
1. …
4. …
Answer: …

Analysis:
1. …
2. …
3. …
4. …
5. …
Answer: …

Tuning the instruction details

Input Layout

Data Augmentation

Pure RGB

Pure Normal

Layout

Watermark

Analysis:
2. …
5. …
Answer: …

Flip Order Exchange

Figure 3. Illustration of how our method compares two 3D assets. We create a customizable instruction template that contains necessary
information for GPT-4V to conduct comparison tasks for two 3D assets (Sec 5.1). We complete this template with different evaluation
criteria, input 3D images, and random seeds to create the final 3D-aware prompts for GPT-4V. GPT-4V will then consume these inputs to
output its assessments. Finally, we assemble GPT-4V’s answers to create a robust final estimate of the task (Sec 5.2)

text-to-3D models. We coin this instruction “meta-prompt”.

In order for GPT-4V to output prompts for text-to-3D
models, we first provide GPT-4V with the necessary ingre-
dients, i.e. a list of subjects and properties from the previous
section. In addition to these, the meta-prompt needs to in-
clude a description of how the evaluator wants the output
prompt set to be. For example, the evaluator might want to
focus on complex prompts containing multiple subject in-
teractions and properties, testing a text-to-3D models’ abil-
ity to generate complex objects. One might also be curi-
ous about these models’ performance in creative prompts
involving subjects and descriptions that are not commonly
seen in the real world. How complex and creative the input
prompt can influence how challenging the evaluation task
is. These two axes, complexity and creativity, are examples
of evaluator’s criteria. Such criteria should be specified as
language instructions attached to the “meta-prompt” along
with all the ingredients. With both the prompt ingredient
and the evaluator’s criteria properly included in the meta-
prompt, our GPT-4V-based prompt generator can now com-
pose sentences that adhere to the evaluator’s requirement.
Appendix B.1 contains more details about our meta-prompt
and prompt generation pipeline.

Figure 2 shows prompts outputted from our generator
with instruction asking for different complexity and creativ-
ity. We can see that high complexity introduces a larger
number of objects, multifaceted descriptions, and occasion-

ally, a completely broken scene. Similarly, more creative
prompts combine subjects, verbs, or adjectives in unconven-
tional ways. Text-to-3D models also tend to struggle with
these more creative prompts, failing to follow the descrip-
tion of these input prompts exactly. This suggests that input
prompts distribution can greatly affect how challenging the
evaluation task is. Being able to control the distributions of
the input prompt allows us to examine the performance of
these text-to-3D models through a more focused lens.

5. 3D Assets Evaluator

Now we can sample a set of text prompts, T = {ti}i,
using our generator. In this section, we will evaluate the
performance of a set of text-to-3D generative models us-
ing T as input prompts. Given a set of these models,
M = {Mj}j , we use each model to generate one or more
3D shapes for each prompt. This results in a set of tuples:
{(Mk, tk,Mj(tk, zk))|Mk ∈ M, tk ∈ T }k, where zk rep-
resents the random noise influencing the shape generation.
Our objective is to rank the text-to-3D models in M based
on a user-defined criterion. To accomplish this, we first
prompt GPT-4V to compare two 3D assets generated from
the same input text prompt (Sec 5.1 and Sec 5.2). We then
use these pairwise comparison results to assign each of the
models an Elo rating reflecting its performance (Sec 5.3).
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5.1. Pairwise Comparison

At the core of our evaluation metric is the ability to an-
swer the following question: given a text prompt t, and two
3D shapes generated from two different models, say Mi and
Mj , which 3D shape is better according to the evaluation
criteria? As discussed in previous sections, we hypothesize
that one can leverage GPT-4V to achieve this task. How-
ever, since GPT-4V is trained on language and visual data,
it lacks the ability to analyze 3D shapes directly. Therefore,
our input to GPT-4V should include both text instructions
and 2D visual renderings that can capture 3D information.

Specifically, for each of the two 3D assets, we will cre-
ate a large image containing renderings of the 3D asset from
four or nine viewpoints. These two images will be concate-
nated together before passing into GPT-4V along with the
text instructions. GPT-4V will return a decision of which of
the two 3D assets is better according to the instruction.

Text instruction. We need to communicate three pieces
of information for GPT-4V to compare two 3D assets: in-
structions to complete a 3D comparison task, the evaluation
criteria, and descriptions of the output format. We found
it important to emphasize that the provided images are ren-
ders from different viewpoints of a 3D object. In addition
to a plain description of the user-defined evaluation crite-
ria, providing instruction about what kind of image features
one should use when analyzing for a particular criteria is
also useful. Finally, instead of requesting only the answer
of which shape is better directly, we also prompt GPT-4V
to explain how it arrives at its conclusion [7, 68].

Visual features of 3D shapes. Once GPT-4V has been
prompted to understand the evaluation criteria and task of
interest, we now need to feed the 3D shape into the GPT-
4V model. Specifically, we need to create images that can
convey the appearance and the geometry features of the 3D
shapes. To achieve that, for each 3D object, we create im-
age renders of the object from various viewpoints. For each
of these viewpoints, we also render a surface normal image.
These normal surface renders will be arranged in the same
layout as the RGB render before being fed into GPT-4V.
Using world-space surface normal renders leads to better re-
sults because they provide geometric information about the
surface and allow reasoning for correspondence between
views. Appendix B.2 has more implementation details.

5.2. Robust Ensemble

Even though GPT-4V is able to provide an answer to
the pairwise shape comparison problem, its response to the
same input can vary from time to time due to the probabilis-
tic nature of its inference algorithm. In other words, we can
view our GPT-4V 3D shape comparator’s outputs as a cate-
gorical distribution, and each response is a sample from the
distribution. As a result, a single response from GPT-4V

might not capture its true prior knowledge since it can be
affected by the variance during sampling. This is particu-
larly the case when the variance of the output distribution is
high (e.g., when both choices are equally likely). Note that
this is not a weakness of GPT-4V as similar situations can
happen to human annotators when two objects are equally
good according to a criterion. In other words, we are not
interested in sampling one instance of how GPT-4V would
make a decision. Instead, estimating with what probability
GPT-4V will choose this answer is more useful.

One way to estimate such probability robustly from sam-
ples with variance is through ensembling, a technique that
has also been explored in other tasks [70]. Specifically,
we propose to ensemble outputs from multiple slightly per-
turbed inputs. The key is to perturb input prompts to GPT-
4V without changing the task or evaluation criteria. The
input includes the text instruction, visual images, as well as
the random seed. Our methods deploy different perturba-
tions, including changing random seeds, the layout of ren-
ders, the number of rendered views, and the number of eval-
uation criteria. Figure 3 illustrates how we perturb the in-
put and ensemble the results from these perturbed inputs
together. Appendix D includes more details.

5.3. Quantifying Performance

We have now obtained a list of comparisons among a set
of models M. The comparisons are over a variety of sam-
pled prompts denoted as T according to the user-defined
criteria. Our goal is now to use this information to assign a
number for each model in M such that it best explains the
observed result. Our quantification method should consider
the fact that the comparison results are samples from a prob-
ability distribution, as discussed in the previous subsection.

This problem is commonly studied in rating chess play-
ers, where a game between two players can have different
outcomes even if one player is better than the other. In chess
and many other competitions, the Elo score [18] is perhaps
the most widely adapted method to produce a numerical es-
timation that reflects players’ performance. The Elo rat-
ing system has also been adapted in prior works to evaluate
image generative models [42, 60]. In this paper, we adapt
the version proposed by Nichol et al. [42]. Specifically, let
σi ∈ R denote the Elo score of the ith model in M. A higher
score σi indicates better performance. We assume that the
probability of model i beats model j is:

Pr(“i beats j”) =
(
1 + 10(σj−σi)/400

)−1

. (1)

Our goal is to find score σi that can best explain the ob-
served comparison results given the abovementioned as-
sumption. This can be achieved via maximum likelihood
estimation. Specifically, let A be a matrix where Aij de-
notes the number of times model i beats model j in the list
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Table 1. Alignment with human judgment (higher is better). Here we present Kendall’s tau ranking correlation [30] between rankings
provided by a metric and those provided by human experts. Higher correlation indicates better alignment with human judgment. We
bold-face the most aligned method and underline the second place for each criterion. Our method achieves top-two performances for all
evaluation criteria, while prior metrics usually only do well for at most two criteria.

Methods Alignment Plausibility T-G Coherency Tex Details Geo Details Average

PickScore [32] 0.667 0.484 0.458 0.510 0.588 0.562
CLIP-S [22] 0.718 0.282 0.487 0.641 0.667 0.568
CLIP-E [22] 0.813 0.426 0.581 0.529 0.658 0.628
Aesthetic-S [56] 0.795 0.410 0.564 0.769 0.744 0.671
Aesthetic-E [56] 0.684 0.297 0.555 0.813 0.684 0.611

Ours 0.821 0.641 0.564 0.821 0.795 0.710

Table 2. Pairwise rating agreements (lower is better). We mea-
sure the average probability that the decision of the metric matches
that of human’s for each comparison. Our method achieves strong
alignment across most criteria.

Metrics Align. Plaus. T-G. Text. Geo. Avg.

PickS. 0.382 0.369 0.386 0.380 0.353 0.374
CLIP 0.384 0.441 0.423 0.375 0.374 0.400
Aest. 0.318 0.386 0.353 0.261 0.311 0.326

Ours 0.292 0.278 0.369 0.244 0.350 0.307

of comparisons. The final Elo score for this set of models
can be obtained by optimizing the following objective:

σ = argmin
σ

∑
i ̸=j

Aij log
(
1 + 10(σj−σi)/400

)
. (2)

In this paper, we initialize σi = 1000 and then use the Adam
optimizer [31] to minimize the loss to obtain the final Elo
score. Please refer to Appendix B.3 for more mathematical
intuition about the formulation of the Elo score.

6. Results
In this section, we provide a preliminary evaluation of

our metric’s alignment with human judgment across differ-
ent criteria. We first introduce the experiment setup. We
will discuss the main alignment results in Sec 6.1. Finally,
we briefly showcase how to extend our models to different
criteria in Sec 6.2. Analysis on more baseline methods and
holistic evaluation can be find in the Appendix E.

Text-to-3D generative models to benchmark. We in-
volve 13 generative models in the benchmark, including ten
optimization-based methods and three recently proposed
feed-forward methods. Please refer to Appendix C for the
complete list. We leverage each method’s official imple-
mentations when available. Alternatively, we turn to Three-
studio’s implementation [19]. For methods designed mainly
for image-to-3D, we utilize Stable Diffusion XL [48] to

generate images conditioned on text as input to these mod-
els. All experiments are conducted with default hyper-
parameters provided by the code.

Baselines metrics. We select three evaluation metrics
with various considerations. 1) CLIP similarity measures
the cosine distance between the CLIP features [51] of the
multi-view renderings and the text prompt. This metric is
chosen because it is widely used in previous works as the
metric for text–asset alignment [25, 28, 50]. 2) Aesthetic
score [56] is a linear estimator on top of CLIP that predicts
the aesthetic quality of pictures. We choose this because
it is trained on a large-scale dataset. 3) PickScore [32]
is a CLIP-based scoring function trained on the Pick-a-Pic
dataset to predict human preferences over generated images.
To compute the metrics above, we uniformly sample 30
RGB renderings for each of the generated assets. The CLIP
similarity and aesthetic score can be directly computed from
the multi-view renderings and averaged for each prompt.
Since PickScore takes paired data as input for comparison,
we assign 30 paired renderings for each pair of objects be-
fore averaging the PickScore results.

Evaluation criteria. While our method can potentially be
applied to all user-defined criteria, in this work we focus
on the following five criteria, which we believe are impor-
tant for current text-to-3D evaluation tasks. 1) Text–asset
alignment: how well a 3D asset mirrors the input text de-
scription. 2) 3D plausibility: whether the 3D asset is plau-
sible in a real or virtual environment. A plausible 3D asset
should not contain improbable parts such as multiple dis-
torted faces (Janus problem) or noisy geometry floaters. 3)
Texture details: whether the textures and appearance of
the shape are realistic, high resolution, and have appropri-
ate saturation levels. 4) Geometry details: whether the ge-
ometry makes sense and contains appropriate details. 5)
Texture–geometry coherency: whether geometry and tex-
tures agree with each other. For example, eyes of a character
should be on reasonable parts of the face geometry.

Expert annotation. To evaluate the performance of our
method, we need to conduct user preference studies to ob-
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Left Right

Left Right

Left Right

Text-Asset Alignment: The right model shows … without any tendrils obstructing 
it. The left one … and seems more consistent with the "peeking out" aspect.
3D Plausibility: The left model‘s fish appears distorted and blended with the 
anemone tendrils, while the right model depicts both the fish and anemone as 
distinct and solid entities, being more plausible in the real world. 
Texture-Geometry Coherency: The left object is less compelling due to the less 
integrated positioning of the fish. The right object shows a strong correspondence 
between the geometry and the texture; the anemone tendrils and clownfish 
stripes align well across both the RGB and normal maps.
Texture Details: The texture on the left has more blur and less sharpness. The 
right clownfish presents with sharper, clearer textures and distinct patterns.
Geometry Details: When observing the local geometry of the normal maps, the 
right object exhibits sharper details and more defined structures. It is particularly 
evident within the tendrils of the anemone and the body of the clownfish, where 
individual scales and tentacle textures appear more pronounced.
Final answer: left right right right right

” A twisted tower.”

”A rough rock.”

”Clownfish peeking out from sea anemone tendrils.”

3D Plausibility: The left model has disjointed parts and lacks solidity, while 
the right model is more coherent and structurally sound.
Final answer: right

Geometry Details: Looking at the normal maps, the left model's geometry is 
fairly basic and smooth. The right model's normal map reveals greater sharpness, 
and variation in the surface, suggesting a more detailed geometry. 
Final answer: right

Left Right
” An old-fashioned rotary phone with a tangled cord.”
3D Plausibility: The left model is abstract with a highly distorted structure, 
showing excessive twists and deformations. The right model shows a clear and 
recognizable form of a rotary phone with consistent solidity.
Texture Details: The left object features a somewhat vivid but highly distorted 
texture that doesn‘t contribute to the realism or clarity of the object as a phone. 
Right Object presents a texture that is more coherent and detailed, matching 
specific parts of the phone , being more realistic and sharp. 
Final answer: right right

Figure 4. Examples of the analysis by GPT-4V. Given two 3D assets, we ask GPT-4V to compare them on various aspects and provide
an explanation. We find that GPT-4V’s preference closely aligns with that of humans.

tain ground truth preference data. Our user studies will
present the input text prompt alongside a pair of 3D assets
generated by different methods for the same input. The user
will be asked to identify which 3D asset satisfies the crite-
ria of interest better. We recruited 20 human experts who
are graduate students experienced in computer vision and
graphics research to annotate the data. We assigned 3 anno-
tators per comparison question per evaluation criteria. We
compute a reference Elo rating using the formula in Sec 5.3
using all expert annotations.

6.1. Alignment with Human Annotators.

In this section, we evaluate how well our proposed met-
ric aligns with human preference. To achieve that, we use
each metric to assign a score for each text-to-3D model for
each evaluation criteria. Then, we compute Kendell’s tau

correlation [30] between the scores computed by the met-
rics and the reference scores. Table 1 shows the ranking
correlations between scores predicted by different evalua-
tion metrics and the reference Elo scores computed from
expert annotators. We can see that our metrics achieve the
best correlation in 4 out of 5 criteria, as well as the best
average correlation. Note that our method achieves consis-
tent performance across different criteria, while prior met-
rics usually perform well in only one or two. This highlights
that our method is versatile in different evaluation criteria.

Our metric also shows strong human correlation for each
3D asset comparison question, which is a harder task. To
measure that, we assume the response to each comparison
question follows a Bernoulli distribution with probability p
to select the first shape. Let pi be the probability that the
evaluation metric will select the first shape at question i and

22233



”A shouting leaf.”

Diversity: The left model shows various interpretations of a leaf with a mouth, 
as if it is shouting. The right is less variety in form and pose, some images are
abstract, and the concept of a "shouting leaf" is not immediately clear.

Left Right

Figure 5. Diversity evaluation. Our method can be extended to
evaluate which text-to-3D models output more diverse 3D assets.

qi be that of a human annotation. We measure the pairwise
rating agreement using the L1 distances: 1

N

∑N
i=1 |pi − qi|,

where N is the number of total questions. Table 2 shows
that our method achieves top-two agreement across all but
one criteria.

Figure 4 shows some exemplary outputs from our
method. We can see that GPT-4V is also able to provide
some analysis justifying its final choice.

6.2. Extension to Other Criteria

While we focus our empirical studies in five criteria, our
metric can be adapted to evaluating a different criteria users
might care about. For example, it is important that a genera-
tive model can produce different outputs given different ran-
dom seeds. This aspect is commonly underlooked by most
text-to-3D metrics. With small modification of the text and
image prompt input into GPT-4V, our method can be ap-
plied to evaluate diversity. Figure 5 shows the visual image
we provide GPT-4V when prompting it to answer the ques-
tion about which model’s output has more diversity. For
each method, we produce 9 3D assets using different ran-
dom seeds. We render each of these assets from a fixed
camera angle to create the input image fed into GPT-4V.
The text in Figure 5 is an excerpt of GPT-4V’s answer. We
can see that GPT-4V is able to provide a reasonable judg-
ment about which image contains renders of more diverse
3D assets. Currently, we are restricted to qualitative studies
because most existing text-to-3D models are still compute-
intensive. We believe that large-scale quantitative study is
soon possible with more compute-efficient text-to-3D mod-
els, such as Instant3D, becoming available.

7. Discussion
In this paper, we have presented a novel framework

leveraging GPT-4V to establish a customizable, scalable,
and human-aligned evaluation metric for text-to-3D gener-

ative tasks. First, we propose a prompt generator that can
generate input prompts according to the evaluator’s needs.
Second, we prompt GPT-4V with an ensemble of customiz-
able “3D-aware prompts.” With these instructions, GPT-4V
is able to compare two 3D assets according to an evaluator’s
need while remaining aligned to human judgment across
various criteria. With these two components, we are able to
rank text-to-3D models using the Elo system. Experimental
results confirm that our approach can outperform existing
metrics in various criteria.

Limitations and future work. While promising, our
work still faces several unresolved challenges. First, due
to limited resources, our experiment and user studies are
done on a relatively small scale. It’s important to scale up
this study to better verify the hypothesis. Second, GPT-
4V’s responses are not always true. For example, GPT-
4V sometimes shows hallucinations—a prevalent issue for
many large pretrained models [72]. GPT-4V can also pro-
cess some systematic errors, such as bias toward certain im-
age positions [73, 74]. Such biases, if unknown, could in-
duce errors in our evaluation metric. While our ensembling
technique can mitigate these issues, how to solve them effi-
ciently and fundamentally remains an interesting direction.
Third, a good metric should be “un-gamable”. However
one could potentially construct adversarial patterns to at-
tack GPT-4V. This way one might gain a high score without
needing to produce high-quality 3D assets. Last, while our
method is more scalable than conducting user preference
studies, we can be limited by computation, such as GPT-4V
API access limits. Our method also requires a quadratically
growing number of comparisons, which might not scale
well when evaluating a large number of models when com-
pute is limited. It would be interesting to leverage GPT-4V
to intelligently select input prompts to improve efficiency.
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