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Abstract

We present GLEE in this work, an object-level founda-
tion model for locating and identifying objects in images
and videos. Through a unified framework, GLEE accom-
plishes detection, segmentation, tracking, grounding, and
identification of arbitrary objects in the open world sce-
nario for various object perception tasks. Adopting a cohe-
sive learning strategy, GLEE acquires knowledge from di-
verse data sources with varying supervision levels to formu-
late general object representations, excelling in zero-shot
transfer to new data and tasks. Specifically, we employ an
image encoder, text encoder, and visual prompter to han-
dle multi-modal inputs, enabling to simultaneously solve
various object-centric downstream tasks while maintain-
ing state-of-the-art performance. Demonstrated through
extensive training on over five million images from di-
verse benchmarks, GLEE exhibits remarkable versatility
and improved generalization performance, efficiently tack-
ling downstream tasks without the need for task-specific
adaptation. By integrating large volumes of automatically
labeled data, we further enhance its zero-shot generaliza-
tion capabilities. Additionally, GLEE is capable of being
integrated into Large Language Models, serving as a foun-
dational model to provide universal object-level informa-
tion for multi-modal tasks. We hope that the versatility and
universality of our method will mark a significant step in
the development of efficient visual foundation models for
AGI systems. The models and code are released at https:
//github.com/FoundationVision/GLEE.

1. Introduction
Foundation model [7] is an emerging paradigm for build-
ing artificial general intelligence (AGI) systems, signify-
ing a model trained on broad data that is capable of be-
ing adapted to a wide range of downstream tasks in an
general paradigm. Recently, NLP foundation models such
as BERT [21], GPT-3 [9], T5 [70] developed with unified
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Figure 1. The performance of GLEE on a broad range of object-
level tasks compared with existing models.

input-output paradigms and large-scale pre-training, have
achieved remarkable generalization capabilities to address
nearly all NLP tasks.

In computer vision, the diversity of task types and the
lack of a unified form make visual foundation models only
serve specific subdomains, such as CLIP [69] for multi-
modal visual model, MAE [32] for visual representations
model, SAM [39] for segmentation model. Despite being
widely studied, current visual foundation models are still
focusing on establishing correlations between global image
features and language descriptions or learning image-level
feature representations. However, locating and identifying
objects constitute foundational capabilities in computer vi-
sion systems, serves as a basis for solving complex or high
level vision tasks such as segmentation, scene understand-
ing, object tracking, event detection, and activity recogni-
tion and support a wide range of applications.

In this work, we advance the development of object-level
foundation models within the visual domain. To address the
aforementioned limitation, providing general and accurate
object-level information, we introduce a general object vi-
sual foundation model, coined as GLEE, which simultane-
ously solve a wide range of object-centric tasks while ensur-
ing SOTA performance, including object detection, instance
segmentation, grounding, object tracking, interactive seg-
mentation and tracking, etc., as shown in Figure 1. Through
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a unified input and output paradigm definition, our model is
capable of learning from a wide range of diverse data and
predicting general object representations, which makes it
generalize well to new data and tasks in a zero-shot manner
and achieve amazing performance. In addition, thanks to
the unified paradigm, the training data can be scaled up at
low cost by introducing a large amount of automatically la-
beled data, and further improve the zero-shot generalization
ability of the model.

A general object foundation model framework. Our
objective is to build an object visual foundation model ca-
pable of simultaneously addressing a wide range of object-
centric tasks. Specifically, we employ an image encoder, a
text encoder, and a visual prompter to encode multi-modal
inputs. They are integrated into a detector to extract objects
from images according to textual and visual input. This
unified approach to handle multiple modalities enables us
to concurrently solve various object-centric tasks, including
detection [10, 52, 81, 119], instance segmentation [15, 31],
referring expression comprehension [35, 55, 93, 118], inter-
active segmentation [1, 12, 122], multi-object tracking [20,
60, 99, 113, 116], video object segmentation [16, 17, 65,
98], video instance segmentation [34, 87, 90, 92, 102], and
video referring segmentation [77, 91, 93], all while main-
taining state-of-the-art performance.

Multi-granularity joint supervision and scalable
training paradigm. The design of the unified framework
capable of addressing multiple tasks enables joint train-
ing on over five million images from diverse benchmarks
and varying levels of supervision. Existing datasets dif-
fer in annotation granularity: detection datasets like Ob-
jects365 [79] and OpenImages [42] offer bounding boxes
and category names; COCO [52] and LVIS [29] provide
finer-grained mask annotations; RefCOCO [64, 108] and
Visual Genome [40] provide detailed object descriptions.
Additionally, video data enhance the temporal consistency
of model, while open-world data contribute class-agnostic
object annotations. An intuitive display of the supervision
types and data scales of the datasets employed is presented
in Figure 2. The unified support for multi-source data in
our approach greatly facilitates the incorporation of addi-
tional manually or automatically annotated data, enabling
easy scaling up of the dataset. Furthermore, the alignment
of model optimization across tasks means that joint training
serves not only as a unifying strategy but also as a mecha-
nism to boost performance across individual tasks.

Strong zero-shot transferability to a wide range of
object level image and video tasks. After joint training
on data from diverse sources, GLEE demonstrates remark-
able versatility and zero-shot generalization abilities. Ex-
tensive experiments demonstrate that GLEE achieves state-
of-the-art performance compared to existing specialist and
generalist models in object-level image tasks such as detec-

tion, referring expression comprehension, and open-world
detection, all without requiring any task-specific designs
or fine-tuning. Furthermore, we showcase the extraordi-
nary generalization and zero-shot capabilities of GLEE in
large-vocabulary open-world video tracking tasks, achiev-
ing significantly superior performance over existing models
even in a zero-shot transfer manner. Additionally, by incor-
porating automatically annotated data like SA1B [39] and
GRIT [67], we are able to scale up our training dataset to an
impressive size of 10 million images at a low cost, which is
typically challenging to achieve for object-level tasks and
further enhances the generalization performance. More-
over, we replace the SAM [39] component with GLEE in
a multimodal Large Language Model (mLLM) [43] and ob-
serve that it achieves comparable results. This demonstrates
that GLEE is capable of supplying the visual object-level in-
formation that modern LLMs currently lack, thus laying a
solid foundation for an object-centric mLLMs.

2. Related Work

2.1. Visual Foundation Model

As foundation models [9, 18, 21, 70, 82] in the NLP field
have achieved remarkable success, the construction of vi-
sual foundation models attracts increasing attention. Unlike
NLP tasks that are predominantly unified under a text-to-
text paradigm, tasks in Computer Vision still exhibit signif-
icant differences in formulation. This disparity leads to the
fact that visual models are typically trained in a single-task
learning frameworks, limiting their applicability to tasks
within certain sub-domains. For instance, multi-modal vi-
sual foundation models like CLIP [69], ALIGN [37], Flo-
rence [109], BEIT3 [86], Flamingo[2] make significant ad-
vancements in efficient transfer learning and demonstrate
impressive zero-shot capabilities on vision-language tasks
by employing contrastive learning and masked data model-
ing on large-scale image-text pairs. DALL-E [71, 72] and
Stable Diffusion [74] are trained on massive pairs of im-
ages and captions, enabling them to generate detailed im-
age content conditioned on textual instruction. DINO [11],
MAE [32], EVA [25], ImageGPT [13] obtain strong visual
representations through self-supervised training on large-
scale image data, which are then employed to adopt down-
stream tasks. These foundation models learn image-level
features and are not directly applicable to object-level tasks.
The recently proposed SAM [39], capable of segmenting
any object of a given image based on visual prompt such
as points and boxes, provides rich object-level information
and demonstrates strong generalization capabilities. How-
ever, the object information lacks semantic context, limiting
its application in object-level tasks. Unlike existing visual
foundation models, we aim to develop an object foundation
model that directly solve downstream tasks without the need
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Figure 2. An illustrative example showcasing annotations of varying granularities from different datasets, along with the scale of data we
utilized. Training on datasets from multiple sources endows the model with more universal representations.

for additional parameters or fine-tuning.

2.2. Unified and General Model

Unified models share similarities with foundation models
in the aspect of multi-task unification for their ability to
handle multiple vision or multi-modal tasks within a single
model. MuST [27] and Intern [78] propose to train across
multiple vision tasks and solving them simultaneously. In-
spired by the success of sequence-to-sequence NLP mod-
els [9, 70], models such as Uni-Perceiver [120], OFA [84],
Unified-IO [58], Pix2Seq v2 [14], and UniTAB [103] pro-
pose modeling various tasks as sequence generation tasks
within a unified paradigm. While these approaches have
demonstrated promising cross-task generalization capabili-
ties, they focus mainly on image-level understanding tasks.
In addition, their auto-regressive generation of boxes and
masks results in significantly slower inference speeds and
the performance still falls short of state-of-the-art task-
specific models. Building upon on detectors [45, 119], Uni-
Perceiver v2 [46] and UNINEXT [100] utilize unified max-
imum likelihood estimation and object retrieval to support
various tasks, effectively resolves the challenges of local-
ization. Nonetheless, they are trained on closed-set data,
thereby not exhibiting zero-shot generalization capabilities.
X-decoder [121] and SEEM [122] construct a generalized

decoding model capable of predicting pixel-level segmen-
tation and language tokens. Diverging from unified models,
the proposed GLEE not only directly addresses object-level
tasks in a unified manner but also provides universal ob-
ject representations, which generalize well to new data and
tasks, serving as a cornerstone for a broader range of tasks
that require detailed object information.

2.3. Vision-Language Understanding

Open-vocabulary detection (OVD) and Grounding models
both necessitate the localization and recognition of as many
objects as possible. With the recent advancements in vision-
language pre-training [37, 69, 107, 109], a commonly em-
ployed strategy for OVD involves transferring the knowl-
edge from pre-trained vision-language models (VLMs) to
object detectors [28, 41, 63]. Another group of studies
leverages extensive image-text pair datasets to broaden the
detection vocabulary [26, 47, 51, 59, 101, 105, 110, 115].
However, these language-based detectors are inherently
constrained by the capabilities and biases of language mod-
els, making it challenging to excel simultaneously in both
localization and recognition. Our objective is to optimally
utilize existing datasets to construct a general object-level
foundation model, aims to not only detect and identify ob-
jects effectively but also to offer universal object represen-
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tations for a wide range of downstream tasks.

3. Method
3.1. Formulation

The proposed GLEE consists of an image encoder, a text
encoder, a visual prompter, and an object decoder, as il-
lustrated in Figure 3. The text encoder processes arbitrary
descriptions related to the task, including object categories,
names in any form, captions about objects, and referring ex-
pressions. The visual prompter encodes user inputs such as
points, bounding boxes, or scribbles during interactive seg-
mentation into corresponding visual representations of tar-
get objects. Then they are integrated into a detector for ex-
tracting objects from images according to textual and visual
input. We build the object decoder upon MaskDINO [45]
with a dynamic class head by compute similarity between
object embedding from detector and text embedding from
the text encoder. Given an input image I ∈ R3×H×W , we
first extract multi-scale features Z with backbones such as
ResNet [30]. Then we feed them into the object decoder
and adopt three prediction heads (classification, detection,
and segmentation) on the output embedding qd ∈ RN×C

from decoder. Following other object segmentation mod-
els [15, 45, 50], we construct a 1/4 resolution pixel embed-
ding map Mp ∈ RC×H

4 ×W
4 which is obtained by upsam-

pling and fusing multi-scale feature maps from the back-
bone and Transformer encoder. Finally, we obtain each bi-
nary mask prediction m ∈ RN×H

4 ×W
4 via a dot product be-

tween the N mask embeddings and pixel embedding map:

m = FFN(qd)⊗Mp, (1)

where FFN is a 3-layer feed forward head with ReLU acti-
vation function and a linear projection layer.

To support arbitrary vocabularies and object descrip-
tions, we replace the FFN classifier with text embeddings
following DetCLIP [104]. Specifically, we feed K category
names as separate sentences into the text encoder EncL and
use the average of each sentence tokens as the output text
embedding et ∈ RK×D for each category or description.
Then we compute the alignment scores Salign ∈ RN×K

between object embedding and text embedding:

Salign = qd ·Wi2t ⊗ et, (2)

where Wi2t ∈ RC×D is image-to-text projection weights.
We use logits Salign to replace traditional classification log-
its to compute Hungarian matching cost during training and
assign categories to objects during inference. To make
the original visual features prompt-aware, an early fusion
module is adopted before Transformer encoder following
UNINEXT [100], which takes image feature from backbone

and prompt embedding as input and perform bi-directional
cross-attention between them.

3.2. Task Unification

Based on the above designs, GLEE can be used to seam-
lessly unify a wide range of object perception tasks in im-
ages and videos, including object detection, instance seg-
mentation, grounding, multi-target tracking (MOT), video
instance segmentation (VIS), video object segmentation
(VOS), interactive segmentation and tracking, and sup-
ports open-world/large-vocabulary image and video detec-
tion and segmentation tasks.

Detection and Instance Segmentation. For detection
task, a fixed-length category list is given and all objects in
the category list are required to be detected. For a dataset
with category list length K, the text input can be formulated
as {pk}Kk=1 where pk represents for the k-th category name,
e.g., P = [“person”, “bicycle”, “car”, ... , “toothbrush”] for
COCO [52]. For datasets with large vocabulary, calculating
the text embedding of all categories is very time-consuming
and redundant. Therefore, for datasets with a category num-
ber greater than 100, such as objects365 [79] and LVIS [29],
suppose there are K̂ positive categories in an image, we take
the K̂ positive categories and then pad the category number
to 100 by randomly sampling from the negative categories.
For instance segmentation, we enable the mask branch and
add mask matching cost with mask loss.

Grounding and Referring Segmentation. These tasks
provide reference textual expressions, where objects are
described with attributes, for example,Referring Expres-
sion Comprehension (REC) [108, 118], Referring Expres-
sion Segmentation (RES) [55, 108], and Referring Video
Object Segmentation (R-VOS) [77, 91] aim at finding ob-
jects matched with the given language expressions like “The
fourth person from the left”. For each image, we take the
all the object expressions as text prompt and feed the them
into the text encoder. For each expressions, we apply global
average pooling along the sequence dimension to get text
embedding et. The text embeddings are feed into early fu-
sion module and additionally interacte with object queries
through self-attention module in the decoder.

MOT and VIS. Both Multi-object Tracking (MOT)[4,
20, 60, 113, 116] and Video Instance Segmentation
(VIS)[34, 68, 92, 102] need to detect and track all the ob-
jects in the predefined category list, and VIS requires addi-
tional mask for the objects. These two tasks can be consid-
ered as extended tasks of detection and instance segmenta-
tion on videos. We found that with sufficient image expo-
sure, object embeddings from the decoder effectively dis-
tinguish objects in a video, showing strong discriminability
and temporal consistency. As a result, they can be directly
employed for tracking without the need for an additional
tracking head. Training on image-level data can address
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interactive tracking
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arbitrary name: bollard, manhole cover
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object caption: air conditioner outdoor unit
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Image Backbone
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Object
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Figure 3. Framework of GLEE. The text encoder accepts textual descriptions in various forms from diverse data sources, including
object categories, names, captions, and referring expressions. The visual prompter encodes points, bounding boxes, or scribbles into
corresponding visual representations.The object decoder take them and image features to predict objects in images. (b) illustrates the
application of GLEE to image tasks tailored for different language descriptions and visual prompts. (c) demonstrates the application across
various object-level video tasks.

straightforward tracking scenarios, but in cases of severe
occlusion scenes, such as OVIS [68], image-level training
cannot guarantee that the model exhibits strong temporal
consistency under occlusion conditions. Therefore, for oc-
clusion scenarios, it is essential to utilize video data for
training. Following IDOL [92], we sample two frames from
a video and introduce contrastive learning between frames
to make the embedding of the same object instance closer
in the embedding space, and the embedding of different ob-
ject instances farther away. During Inference, the detected
objects are tracked by simple bipartite matching of the cor-
responding object queries following MinVIS [36].

Visual Prompted Segmentation. Interactive
segmentation[8, 12, 56, 75, 80, 89, 97] takes various
forms of visual prompt, such as points, boxes, or scribbles,
to segment the specified objects within an image. On the
other hand, VOS [22, 98] aims to segment the entire object
throughout the entire video based on a mask provided in
the first frame of the video. We extract visual prompt
embeddings twice in the model. First, we crop the prompt
square area from RGB image and send it to the backbone to
obtain the visual prompt feature of the corresponding area,
and send it to the early fusion module before the Trans-
former encoder. Second, we sample fine-grained visual
embeddings from the pixel embedding map Mp according
to visual prompt and make them interacte with object
queries through self-attention module in the Transformer
decoder layer, as the same with text embeddings.

3.3. Training Unification

Tasks with Dynamic Loss. We jointly train GLEE in an
end-to-end manner on over 5 million images from diverse
benchmarks with various levels of supervision. Different
loss functions are selected for training on various datasets.
There are six types of losses for our GLEE: semantic loss,
box loss, mask loss, confidence loss, contrastive tracking
loss, and distillation loss. For all tasks with category list
or object expressions, we apply Focal loss [53] as seman-
tic loss on logits Salign to align the text concepts with ob-
ject features. For box prediction, we use a combination of
L1 loss and generalized IoU loss [73]. The mask loss is
defined as a combination of the Dice loss [62] and Focal
loss. For the Visual Prompt Segmentation tasks, we employ
an additional FFN to predict the confidence score for each
object queries supervised by Focal loss. For video tasks
fine-tuning, we sample two frames and apply contrastive
tracking loss on the object query from the last layer of de-
coder following IDOL [92]. For the text encoder, we distill
the knowledge from the frozen teacher CLIP text encoder
to ensure the text embedding in pre-trained vison-language
embedding space. We apply an L1 loss between our text
encoder and CLIP text encoder to minimize their distance:

Ltext =
1

K

K∑
i=0

∥EncL(pk)− EncCLIP (pk)∥ , (3)

where {pk} is the category name from the category list P .

3787



Method Type
Generic Detection & Segmentation Referring Detection & Segmentation OpenWorld

COCO-val COCO-test-dev LVIS RefCOCO RefCOCO+ RefCOCOg UVO

APbox APmask APbox APmask APbox APr−box APmask APr−mask P@0.5 oIoU P@0.5 oIoU P@0.5 oIoU ARmask

MDETR [38]

Specialist

- - - - - - - - 87.5 - 81.1 - 83.4 - -
SeqTR [118]

Models

- - - - - - - - 87.0 71.7 78.7 63.0 82.7 64.7 -
PolyFormer (L) [55] - - - - - - - - 90.4 76.9 85.0 72.2 85.8 71.2 -
ViTDet-L [50] 57.6 49.8 - - 51.2 - 46.0 34.3 - - - - - - -
ViTDet-H [50] 58.7 50.9 - - 53.4 - 48.1 36.9 - - - - - - -
EVA-02-L [24] 64.2 55.0 64.5 55.8 65.2 - 57.3 -
ODISE [95] - - - - - - - - - - - - - - 57.7
Mask2Former (L) [15] - 50.1 - 50.5 - - - - - - - - - - -
MaskDINO (L) [45] - 54.5 - 54.7 - - - - - - - - - - -

UniTAB (B) [103]

Generalist

- - - - - - - - 88.6 - 81.0 - 84.6 - -
OFA (L) [84]

Models

- - - - - - - - 90.1 - 85.8 - 85.9 - -
Pix2Seq v2 [14] 46.5 38.2 - - - - - - - - - - - - -
Uni-Perceiver-v2 (B) [46] 58.6 50.6 - - - - - - - - - - - - -
Uni-Perceiver-v2 (L) [46] 61.9 53.6 - - - - - - - - - - - - -
UNINEXT (R50) [100] 51.3 44.9 - - 36.4 - - - 89.7 77.9 79.8 66.2 84.0 70.0 -
UNINEXT (L) [100] 58.1 49.6 - - - - - - 91.4 80.3 83.1 70.0 86.9 73.4 -
UNINEXT (H) [100] 60.6 51.8 - - - - - - 92.6 82.2 85.2 72.5 88.7 74.7 -
GLIPv2 (B) [111] - - 58.8 45.8 - - - - - - - - - - -
GLIPv2 (H) [111] - - 60.6 48.9 - - - - - - - - - - -
X-Decoder (B) [121] - 45.8 - 45.8 - - - - - - - - - - -
X-Decoder (L) [121] - 46.7 - 47.1 - - - - - - - - - - -
Florence-2 (L) [94] 43.4 - - - - - - - 93.4 - 88.3 - 91.2 - -

GLEE-Lite Foundation 55.0 48.4 54.7 48.3 44.2 36.7 40.2 33.7 88.5 77.4 78.3 64.8 82.9 68.8 66.6
GLEE-Plus Models 60.4 53.0 60.6 53.3 52.7 44.5 47.4 40.4 90.6 79.5 81.6 68.3 85.0 70.6 70.6
GLEE-Pro 62.0 54.2 62.3 54.5 55.7 49.2 49.9 44.3 91.0 80.0 82.6 69.6 86.4 72.9 72.6

Table 1. Comparison of GLEE to recent specialist and generalist models on object-level image tasks. For REC and RES tasks, we report
Precision@0.5 and overall IoU (oIoU). For open-world instance segmentation task, we reported the average recall of 100 mask proposals
(AR@100) on the UVO [85].

Data Scale Up. A visual foundation model should be
able to easily scale up the training data and achieve better
generalization performance. Thanks to the unified train-
ing paradigm, the training data can be scaled up at low
cost by introducing a large amount of automatically labeled
data from SA1B [39] and GRIT [67]. SA1B provides large
and detailed mask annotations, which enhance the gen-
eral object perception capabilities of model, while GRIT
offers a more extensive collection of referring-expression-
bounding-box pairs, improving the object identification
abilities and the understanding capability of object descrip-
tions. Ultimately, we introduced 2 million SA1B data and
5 million GRIT data into the training process, bringing the
total training data to 10 million.

4. Experiments

4.1. Experimental Setup

We conducted training in three stages. Initially, we
performed pretraining for object detection task on Ob-
jects365 [79] and OpenImages [42], initializing the text en-
coder with pretrained CLIP [69] weights and keeping the
parameters frozen. In the second training stage, we intro-
duced additional instance segmentation datasets, including
COCO [52], LVIS [29], and BDD [106]. Furthermore, we
treat three VIS datasets: YTVIS19 [102], YTVIS21 [96],
and OVIS [68], as independent image data to enrich the
scenes. For datasets that provide descriptions of objects,
we included RefCOCO [108], RefCOCO+ [108], Ref-
COCOg [64], Visual Genome [40], and RVOS [77]. Addi-

tionally, we introduced two open-world instance segmenta-
tion datasets, UVO [85] and a subset of SA1B [39]. Build-
ing upon this, we perform the third training stage by in-
troducing more SA1B data and GRIT [67] data to scale
up the training set, resulting in a model named GLEE-
scale, which exhibited even stronger zero-shot performance
on various downstream tasks. During the second and third
stages, text encoder is unfrozen but supervised by distilla-
tion loss to ensure the predicted text embedding in CLIP
embedding space. After the second step, GLEE demon-
strated state-of-the-art performance on a range of down-
stream image and video tasks and exhibited strong zero-
shot generalization capabilities, unless otherwise specified,
all the experimental results presented below were obtained
by the model from this stage. We developed GLEE-Lite,
GLEE-Plus, and GLEE-Pro using ResNet-50 [30], Swin-
Large [57], and EVA-02 Large [24] as the vision encoder
respectively, and train GLEE on 64 A100 GPUs for 500,000
iterations in each stage. More detailed information on data
usage, data sampling strategies, and model training can be
found in the supplementary materials.

4.2. Comparison with Generalist Models

We demonstrate the universality and effectiveness of our
model as an object-level visual foundation model, directly
applicable to various object-centric tasks while ensuring
SOTA performance without needing fine-tuning. We re-
port detection and instance segmentation results on both
the COCO-2017 [52] and LVIS val v1.0 [29]. While shar-
ing almost identical image sets, LVIS is distinguished by
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Method
Tracking Any Object (TAO [19]) BURST [3] LV-VIS [83]

TETA LocA AssocA ClsA
ALL Common Uncommon

AP APb APn

HOTA mAP HOTA mAP HOTA mAP
Tracktor [5] 24.2 47.4 13.0 12.1 - - - - - - - - -
DeepSORT [88] 26.0 48.4 17.5 12.1 - - - - - - - - -
Tracktor++ [19] 28.0 49.0 22.8 12.1 - - - - - - - - -
QDTrack [66] 30.0 50.5 27.4 12.1 - - - - - - - - -
TETer [48] 33.3 51.6 35.0 13.2 - - - - - - - - -
OVTrack† [49] 34.7 49.3 36.7 18.1 - - - - - - - - -
STCN Tracker† [3] - - - - 5.5 0.9 17.5 0.7 2.5 0.6 - - -
Box Tracker† [3] - - - - 8.2 1.4 27.0 3.0 3.6 0.9 - - -
Detic [117]-SORT† [6] - - - - - - - - - - 12.8 21.1 6.6
Detic [117]-XMem †[16] - - - - - - - - - - 16.3 24.1 10.6
OV2Seg-R50† [83] - - - - - 3.7 - - - - 14.2 17.2 11.9
OV2Seg-B† [83] - - - - - 4.9 - - - - 21.1 27.5 16.3
UNINEXT (R50) [100] 31.9 43.3 35.5 17.1 - - - - - - - - -

GLEE-Lite† 40.1 56.3 39.9 24.1 22.6 12.6 36.4 18.9 19.1 11.0 19.6 22.1 17.7
GLEE-Plus† 41.5 52.9 40.9 30.8 26.9 17.2 38.8 23.7 23.9 15.5 30.3 31.6 29.3
GLEE-Pro† 47.2 66.2 46.2 29.1 31.2 19.2 48.7 24.8 26.9 17.7 23.9 24.6 23.3

Table 2. Comparison of GLEE to recent specialist and generalist models on object-level video tasks in a zero-shot manner. Evaluation
metrics of BURST are reported separately for ‘common’, ‘uncommon’ and ‘all’ classes. The mAP computes mask IoU at the track
level, HOTA is a balance of per-frame detection accuracy (DetA) and temporal association accuracy (AssA), and TETA that deconstructs
detection into localization and classification components. The AP, APb, and APn in LV-VIS mean the average precision of overall
categories, base categories, and novel categories. † does not use videos for training. The under-performance of Pro relative to Plus on
LV-VIS is due to Pro employing larger training and inference resolutions, which prove to be sub-optimal for this specific dataset.

its annotations of over 1,200 object categories, showcasing
a long-tail distribution. This distinction makes LVIS more
representative of challenging real-world scenarios due to its
broader category coverage. As indicated in Table 1, our
model outperforms all generalist models on both COCO and
LVIS benchmarks. Even when compared to SOTA special-
ist approaches, which are tailored with specific designs, our
model remains highly competitive. This demonstrates that
GLEE, while mastering universal and general object repre-
sentations, concurrently maintains advanced performance.
This characteristic is vitally important for adapting to a
broad spectrum of downstream tasks requiring precise ob-
ject localization. For the REC and RES tasks, we evaluated
our model on RefCOCO [108], RefCOCO+ [108], and Ref-
COCOg [64], as show in Table 1, GLEE achieved compara-
ble results with SOTA specialist methods PolyFormer [55],
demonstrating strong capability to comprehend textual de-
scriptions and showcasing potential to adapt to a broader
range of multi-modal downstream tasks. In open-world in-
stance segmentation tasks, GLEE outperforms previous arts
ODISE [95] by 8.9 points, demonstrating the capability of
identifying all plausible instance in an open-world scenario.

4.3. Zero-shot Evaluation Across Tasks

Zero-shot Transfer to Video Tasks. The proposed GLEE
is capable of adapting to new data and even new tasks in
a zero-shot manner, without the need for additional fine-
tuning. We evaluate its zero-shot capability on three large-

scale, large-vocabulary open-world video tracking datasets:
TAO [19], BURST [3], and LV-VIS [83]. TAO comprises
2,907 high-resolution videos across 833 categories. BURST
builds upon TAO, encompassing 425 base categories and
57 novel categories. LV-VIS offers 4,828 videos within
1,196 well-defined object categories. These three bench-
marks require the model to detect, classify, and track all
objects in videos, while BURST and LV-VIS additionally
require segmentation results from the model. In Table 2, we
compare the performance of our proposed model with ex-
isting specialist models. Notably, the GLEE here is from
the second training stage, which has not been exposed to
images from these three datasets nor trained on video-
level data. Despite these constraints, GLEE achieves state-
of-the-art performance that significantly exceeds existing
methodologies. Specifically, GLEE surpasses the previous
best method OVTrack by 36.0% in TAO, nearly triples the
performance of the best baseline in BURST, and outper-
forms OV2Seg [83] by 43.6% in LV-VIS. This outstanding
performance strongly validates the exceptional generaliza-
tion and zero-shot capabilities of GLEE in handling object-
level tasks across a range of benchmarks and tasks. It can
be observed that GLEE yields more impressive results on
video tasks, since the image tasks have progressed with
plentiful data and models from lower costs, while video
tasks have not due to higher costs. The models trained on
extensive image data with strong general perception capa-
bilities can effectively transfer to video tasks.
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Method Backbone YTVIS 2019 val [102] OVIS val [68]

AP AP50 AP75 AP AP50 AP75

SeqFormer [90]

ResNet-50

47.4 69.8 51.8 15.1 31.9 13.8
IDOL [92] 49.5 74.0 52.9 30.2 51.3 30.0
VITA [33] 49.8 72.6 54.5 19.6 41.2 17.4
GenVIS [34] 51.3 72.0 57.8 34.5 59.4 35.0
DVIS [112] 52.6 76.5 58.2 34.1 59.8 32.3
NOVIS [61] 52.8 75.7 56.9 32.7 56.2 32.6
UNINEXT [100] 53.0 75.2 59.1 34.0 55.5 35.6
GLEE-Lite 53.1 74.0 59.3 27.1/32.3 45.4/52.2 26.3/33.7

SeqFormer [90]

Swin-L

59.3 82.1 66.4 - - -
VITA [33] 63.0 86.9 67.9 27.7 51.9 24.9
IDOL [92] 64.3 87.5 71.0 42.6 65.7 45.2
GenVIS [34] 63.8 85.7 68.5 45.4 69.2 47.8
DVIS [112] 64.9 88.0 72.7 49.9 75.9 53.0
NOVIS [61] 65.7 87.8 72.2 43.5 68.3 43.8
GLEE-Plus 63.6 85.2 70.5 29.6/40.3 50.3/63.8 28.9/39.8

UNINEXT [100] ConvNeXt-L 64.3 87.2 71.7 41.1 65.8 42.0
UNINEXT [100] ViT-H 66.9 87.5 75.1 49.0 72.5 52.2
GLEE-Pro EVA02-L 67.4 87.1 74.1 38.7/50.4 59.4/71.4 39.7/55.5

Table 3. Performance comparison on video instance segmentation
tasks. ( / ) reports results from zero-shot and after fine-tuning.
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RegionCLIP [114] 2.7 2.7 2.6 3.2 3.6 2.7 2.3
Detic [117] 8.0 15.6 5.4 8.0 5.7 5.4 6.2
MDETR [38] - - 4.7 9.1 6.4 4.6 4.0
GLIP-T [47] 19.3 23.6 16.4 25.8 29.4 14.8 8.2
GLIP-L [47] 25.8 32.9 21.2 33.2 37.7 18.9 10.8
FIBER-B [23] 25.7 30.3 22.3 34.8 38.6 19.5 12.4
GLEE-Lite 20.3 37.5 14.0 19.1 23.0 12.7 10.0
GLEE-Lite-Scale 22.7 35.5 16.7 22.3 33.7 14.3 10.2
GLEE-Plus 25.4 46.7 17.5 23.9 28.4 16.3 12.5
GLEE-Plus-Scale 27.0 44.5 19.4 25.9 36.0 17.2 12.4

Table 4. Evaluation on the OmniLabel benchmark. The final AP
value is the geometric mean of categories (AP-categ) and free-
form descriptions (AP-descr).

We additionally provide performance comparison on
classic video instance segmentation tasks, whose data is in-
corporated as image-level data during the second stage of
training. As shown in Table 3, on the YTVIS2019 [102]
benchmark, our model achieves SOTA results across vari-
ous model sizes, surpassing all specialist models with com-
plex designs to enhance temporal capabilities and the video
unified model UNINEXT [100]. On the OVIS [68] bench-
mark, which features lengthy videos with extensive object
occlusions where temporal capabilities of object features
are particularly crucial, our model does not directly reach
SOTA. However, after a few hours of simple fine-tuning,
it still achieves SOTA performance. More details on VOS,
RVOS and demonstrations of interactive segmentation and
tracking can be found in supplementary materials.

Zero-shot Transfer to Real-world Downstream Tasks.
To measure generalization on real-world tasks, we evalu-
ate zero-shot performance on OmniLabel [76], which is a
benchmark for evaluating language-based object detectors
and encourages diverse free-form text descriptions of ob-
jects. As show in Table 4, compared to language-based
detectors trained on large-scale caption data, GLEE signif-
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Figure 4. The performance comparison of replacing SAM with
GLEE in LISA, GLEE achieves the same effectiveness as SAM in
extracting objects.

icantly outperforms previous models in AP-categ. Due to
the limited captions in our training dataset, it scores lower
in AP-descr. By incorporating a more diverse set of box-
caption data from the GRIT [67] to scale up our training
set, the AP-descr can be elevated to a level comparable with
existing models. A more comprehensive report on the zero-
shot and few-shot performance on ODinW [44] and ablation
studies are provided in the supplementary materials.

4.4. Serve as Foundation Model

To explore whether GLEE can serve as a foundation model
for other architectures, we selected LISA [43] for analy-
sis, a mVLLM that combines LLAVA [54] with SAM [39]
for reasoning segmentation. We substituted its vision back-
bone with a frozen, pretrained GLEE-Plus and fed the ob-
ject queries from GLEE into LLAVA and remove decoder of
LISA. We directly dot product the output SEG tokens with
GLEE feature map to generate masks. As shown in Fig-
ure 4, after training for the same number of steps, our mod-
ified LISA-GLEE achieved comparable results to the origi-
nal version, demonstrating the versatility of representations
from GLEE and its effectiveness in serving other models.

5. Conclusion
We introduce GLEE, a cutting-edge object-level foundation
model designed to be directly applicable to a wide range of
object-level image and video tasks. Crafted with a unified
learning paradigm, GLEE learns from diverse data sources
with varying levels of supervisions. GLEE achieves state-
of-the-art performance on numerous object-level tasks and
excels in zero-shot transfer to new data and tasks, showing
its exceptional versatility and generalization abilities. Ad-
ditionally, GLEE provides general visual object-level infor-
mation, which is currently missing in modern LLMs, estab-
lishing a robust foundation for object-centric mLLMs.
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