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(a) MVSFormer [2] (b) RA-MVSNet [45] (c) ET-MVSNet [14] (d) GeoMVSNet [46] (e) Ours

Figure 1. Comparison of reconstruction errors on Tanks and Temple benchmark. We show precision and recall error maps for the
“Horse” scan. Our method demonstrates notable improvements over existing methods in challenging areas.

Abstract

Matching cost aggregation plays a fundamental role in
learning-based multi-view stereo networks. However, di-
rectly aggregating adjacent costs can lead to suboptimal
results due to local geometric inconsistency. Related meth-
ods either seek selective aggregation or improve aggregated
depth in the 2D space, both are unable to handle geomet-
ric inconsistency in the cost volume effectively. In this pa-
per, we propose GoMVS to aggregate geometrically consis-
tent costs, yielding better utilization of adjacent geometries.
More specifically, we correspond and propagate adjacent
costs to the reference pixel by leveraging the local geomet-
ric smoothness in conjunction with surface normals. We
achieve this by the geometric consistent propagation (GCP)
module. It computes the correspondence from the adjacent
depth hypothesis space to the reference depth space using
surface normals, then uses the correspondence to propa-
gate adjacent costs to the reference geometry, followed by
a convolution for aggregation. Our method achieves new
state-of-the-art performance on DTU, Tanks & Temple, and
ETH3D datasets. Notably, our method ranks 1st on the
Tanks & Temple Advanced benchmark. Code is available
at https://github.com/Wuuu3511/GoMVS.

* indicates equal contributions and ✝ indicates corresponding authors.

1. Introduction
Multi-view stereo (MVS) is a fundamental computer vi-
sion problem that recovers 3D shapes from posed im-
ages by multi-view correspondence matching [21]. Recent
learning-based MVS [11, 25, 30, 38] estimates scene depth
from the cost volume computed by geometric matching,
which delivers latent geometric cues crucial for the final
depth [7]. However, the initial cost volume can suffer from
challenging matching conditions, e.g., varying illumination,
textless areas, or repetitive patterns, leading to suboptimal
pixel-wise costs that hamper accurate estimations.

To mitigate this issue, cost aggregation plays an impor-
tant role in removing matching ambiguities and improving
discriminativeness by using the neighboring information.
However, the adjacent costs may deliver inconsistent depth
cues due to the gradual changes in local geometry. As a
result, the aggregated costs are not geometrically guaran-
teed to have the highest matching score at the real refer-
ence depth, leading to suboptimal depth predictions. The
widely adopted cascade framework [7] can potentially ex-
acerbate this issue as the adjacent costs can have more di-
vergent costs due to the shifted depth hypotheses.

As the geometric inconsistency is a common challenge in
multi-view stereo and 2-view stereo matching, related meth-
ods either adopt learned aggregation [25, 31] or enforce
consistency to the aggregated depth [9, 15, 42]. Specif-
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ically, some methods [25, 31] adopt adaptive aggregation
schemes to allow networks to select pixels that potentially
correlate well and contribute to the reference pixel’s geome-
try. However, they heavily rely on network capabilities and
do not guarantee geometric plausibility from the selected
costs. Other methods [9, 19] seek to refine or regularize the
aggregated depth values using jointly estimated surface nor-
mals. However, these methods only refine the output depth
in 2D image space and are inherently unable to handle in-
consistencies in the cost volume, which is vital for MVS
methods.

In this paper, we propose GoMVS that aggregates ge-
ometrically consistent costs, allowing better utilization of
adjacent geometries. Considering that the local geometry
is usually smooth and exhibits gradual changes, we lever-
age the local smoothness to correspond and propagate ad-
jacent costs to the reference cost. We achieve this by the
geometrically consistent aggregation scheme, which oper-
ates on the local convolution window and propagates ad-
jacent costs with the geometrically consistent propagation
(GCP) module. The GCP module computes the correspon-
dences from the adjacent cost’s hypothesized depth space
to the reference cost’s depth space, using back-projected
depth hypotheses and the surface normal. Then, it prop-
agates the adjacent costs to the reference by interpolating
cost scores with respect to the correspondence. After prop-
agating adjacent costs within a local window, we aggregate
them using standard convolutions. Unlike previous methods
[9, 15, 19] that refine the predicted depth in the 2D space,
our method incorporates geometric consistency in the cost
space, yielding a better utilization of adjacent geometries.
As surface normal is crucial for corresponding and propa-
gating local costs, we further investigate different choices
of normal predictions. We find appropriately applying off-
the-shelf monocular normal models enables smooth and ro-
bust aggregation across datasets. We conduct extensive ex-
periments to evaluate our method’s effectiveness, and our
method achieves new state-of-the-art on DTU, Tank & Tem-
ple, as well as the ETH3D dataset. Our contributions are
summarized as follows:

• We propose GoMVS to aggregate geometrically consis-
tent costs, allowing better utilization of adjacent geome-
tries.

• We propose a geometrically consistent propagation
(GCP) module that allows geometrically plausible corre-
spondence and propagation in cost space.

• We investigate different choices of normal computation
and find that properly applying the monocular surface
normal model performs well across datasets.

2. Related Works
2.1. Learning-based MVS Methods

Multi-View Stereo (MVS) aims to reconstruct 3D scenes
from multiple posed images. In recent years, learning-
based methods have exhibited promising results. MVS-
Net [38] uses differentiable homography to construct the
cost volume and employs a 3D U-Net for regularization.
Subsequent works improve this framework in several ways.
RNN-based methods [29, 35, 39]and coarse-to-fine ap-
proaches [3, 7, 17, 25, 36] reduce memory consumption
through by designing efficient structures. Another group
of methods [4, 12, 14] devises local or global attention
modules to enhance input feature representations. MVS-
Former [2] incorporates an additional pre-trained trans-
former network, enhancing the performance of MVS with
a powerful feature extractor. However, it lacks further ex-
ploration in terms of geometry. GeoMVSNet [46] utilizes
the coarse depth map to extract additional geometric fea-
tures. In addition, [27, 34, 44] have designed pixel-wise
visibility modules to handle occlusions.

2.2. Cost Volume Aggregation

As cost volume is vital for multi-view depth estimation,
recent works introduce different cost aggregation methods
to the depth network. NP-CVP-MVSNet [37] introduces
sparse convolution to aggregate matching costs at the same
depth range. WT-MVSNet [12] employs a cost transformer
to generate a more complete and smoother probability vol-
ume. GeoMVSNet [46] incorporates the coarse probabil-
ity volume to enhance the matching discriminative ability.
While these methods improve the capability of regulariza-
tion networks, the local geometric inconsistency of the cost
volume still remains and poses challenges for the final ag-
gregation results.

2.3. Normal Assisted Depth Estimation

Surface normal provides rich geometric details and has been
widely applied in recent years to depth estimation tasks.
Traditional MVS methods [20, 32, 33] optimize depth and
normal hypotheses simultaneously by constructing a pla-
nar prior model. Inspired by traditional methods, SP-
Net [28] performs slanted plane cost aggregation by learn-
ing parameterized local planes. NAPV-MVS [24] uses lo-
cal normal similarity to emphasize the most relevant adja-
cent costs. NR-MVSNet [10] utilizes depth-normal con-
sistency to adaptively expand the hypothesis range, provid-
ing broader matchings to assist depth inference. However,
these methods do not address the local inconsistency is-
sue. GeoNet [19] proposes a monocular depth estimation
method that uses kernel regression to refine output depth
with normals. However, it is sensitive to noisy outputs and
is inherently incapable of handling cost volume inputs. An-
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Figure 2. Overview of our method. Given a reference image and a set of source images, we use FPN to extract multi-scale features for
cost volume reconstruction. To conduct geometrically consistent aggregation within the local window, we collect adjacent geometric cues
and send them to the proposed geometrically consistent propagation (GCP) module, which computes the correspondence from the adjacent
depth hypothesis space to the reference depth space. The resulting costs are endowed with geometric consistency, which facilitates better
utilization of adjacent geometry and can be aggregated by the convolution.

other line of works [9, 15, 42] proposes the depth-normal
consistency loss to enhance the network’s perception of ge-
ometric cues. Unlike these methods, our method leverages
the normal to yield geometrically consistent costs in the 3D
space, yielding better utilization of adjacent costs.

3. Methodology

Given a reference image I0 ∈ RH×W×3 and N source
images {Ii}Ni=1, as well as camera intrinsic {Ki}Ni=0 and
extrinsic parameters {[R0→i; t0→i]}Ni=1, our goal is to es-
timate the depth map of I0 from multiple posed images.
Fig. 2 shows an overview of our method. We first uti-
lize multi-scale image features to build the cost volume
(Sec. 3.1). We then introduce the geometrically consistent
aggregation scheme (Sec. 3.2), which consists of the blocks
in the depth network. We then investigate different choices
for obtaining surface normals (Sec. 3.3).

3.1. Cost Volume Construction

We first apply a Feature Pyramid Network [13] to extract
multi-scale image features {Fs

i}Ni=0 ∈ R H
2s ×W

2s ×M , where
s is the scale factor. For simplicity, we omit the superscript
of s below. To build the cost volume in each stage, we first
sample depth hypotheses d for each pixel in a predefined
depth range. Through differentiable homography, we can
compute the corresponding position p′ of the reference im-
age’s pixel p in the source image,

p′ = Ki[R0→i(K
−1
0 pd) + t0→i], (1)

where R and t denote the rotation and translation parame-
ters and K are the intrinsic matrix. Let F(p) represents the
feature vector at pixel p, then the two-view feature correla-
tion volume V at pixel p can be represented as

Vi(p) = F0(p) · Fi(p
′), (2)
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where · refers to the dot product. To aggregate multiple
pair-wise cost volumes, we utilize a shallow network [25] to
learn the pixel-wise weight maps W. The weight computa-
tion takes place exclusively in the initial stage, while weight
maps for subsequent stages are derived through upsampling
from the previous stage. Then the multi-view aggregated
cost volume C can be represented as:

C =

∑N
i=1Wi ⊙Vi∑N

i=1Wi

. (3)

3.2. Geometrically Consistent Aggregation

An essential idea of cost aggregation is to leverage neigh-
boring information to improve the discriminativeness of the
cost volume, where the key is to find the most relevant
neighbors and effectively aggregate their matching costs.
To achieve this, typical convolution-based methods are lim-
ited to the size of the convolution kernel (e.g., 3 × 3 × 3),
and geometric inconsistency is very likely to happen in this
local region due to non-constant depth distributions within
this kernel. It’s also computationally inefficient to directly
increase the kernel size to get improved performance.

In this paper, we observe in a small local region, many
scenes can be approximated with a plane, which frequently
exists in real-world scenarios. To this end, we propose to
leverage this locally approximated planar structure to guide
the cost aggregation process in a geometrically consistent
manner. There exists an analytic relationship between the
reference pixel’s depth and its local neighbors, which can be
leveraged to obtain more reliable cost candidates. Specifi-
cally, for each reference pixel, we first collect the geometric
clues of its k× k spatial window to compute the correspon-
dences of the depth hypothesis. Depending on the corre-
sponding location, we propagate the adjacent costs to the
reference pixel’s depth space. Finally, we use a convolution
layer to aggregate the propagated costs.

3.2.1 Local Geometric Clues Collection

We first collect local depth hypotheses and normal maps
for each pixel within a spatial window. Specifically, given
the depth hypotheses of shape L×H ×W and the normal
map of shape 3×H ×W , where L is the depth hypothesis
number and H , W denotes the spatial dimension, we unfold
each pixel with a k× k spatial window, yielding local inter-
mediate depth hypotheses volume and normal map of shape
k2 × L×H ×W and k2 × 3×H ×W , respectively. We
then compute the depth hypothesis correspondences based
on these intermediate geometric clues.

3.2.2 Geometrically Consistent Propagation

To better aggregate the high-quality costs of the adjacent
pixels, we align the adjacent pixels’ depth hypothesis to the

depth space of the reference pixel. Based on depth corre-
spondence, we perform geometrically consistent cost prop-
agation (GCP). Firstly, we introduce the depth relationship
among pixels within the same plane. Given a pixel’s image
coordinates (u, v) and depth d(u, v), its 3D point X(u, v)
in the camera coordinate system can be represented as

X(u, v) =

 x
y
z

 =


u−cx
fx

v−cy
fy

1

 d(u, v), (4)

where cx, cy , fx, and fy are the parameters of camera intrin-
sic K. For the given reference pixel i and adjacent pixel j,
we model the relationship between X(ui, vi) and X(uj , vj)
by leveraging local planar assumption and the surface nor-
mal n. They satisfy the equation of

n⊤(X(ui, vi)−X(uj , vj)) = 0. (5)

According to Eq. (4) and Eq. (5) , the depth relationship
between the reference pixel i and the adjacent pixels j can
be represented as:

d(uj , vj)

d(ui, vi)
=

n⊤
[

ui−cx
fx

vi−cy
fy

1
]⊤

n⊤
[

uj−cx
fx

vj−cy
fy

1
]⊤ . (6)

We use rji =
d(uj ,vj)
d(ui,vi)

to denote the depth ratio be-
tween j and i, which describes the linear transformation
of depth within the plane. Based on this, we can compute
the depth hypothesis correspondences. Specifically, define
[d1i , ..., d

L
i ] as the depth hypothesis in the pixel i’s depth

space, where L refers to the number of depth sampling lev-
els. Each depth hypothesis is then mapped to pixel j’s depth
space through the depth ratio rji.

[d1i→j , ..., d
L
i→j ] = [rji × d1i , ..., rji × dLi ], (7)

where di→j represents the mapping depth of pixel i’s depth
hypothesis in pixel j’s depth space. We then propagate the
matching cost of pixel j at the di→j to di. Let Cj denote
the cost for pixel j. The propagated matching cost Cj→i

can be expressed as:

Cj→i(d
0
i , ..., d

l
i) = Cj(d

0
i→j , ..., d

l
i→j). (8)

Since depth hypotheses are discretely sampled at regular
depth intervals within the depth range, we can conveniently
use linear interpolation to implement the above process.
With the definition dmi→j = dnj , Cj→i(d

m
i ) can be expressed

as:

Cj→i(d
m
i ) = (Cj(d

⌈n⌉
j )−Cj(d

⌊n⌋
j ))

n− ⌊n⌋
⌈n⌉ − ⌊n⌋

. (9)
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We refer to this process as geometrically consistent prop-
agation from j to i. It can generate geometrically consis-
tent cost candidates for each reference pixel. Due to vary-
ing depth relationships between each pixel and its adjacent
pixels, cost propagation generates an intermediate cost of
k2M × L×H ×W , where M is the channel dimension.

3.2.3 Aggregating Propagated Costs

Since the intermediate costs include k × k spatial informa-
tion in the channel dimension, we thus aggregate the costs
using convolutions with a kernel size of 1 × 1 × k and an
expanded channel dimension k2M , leading to the same pa-
rameters as the generic 3D convolutions with kernel size
k × k × k.

We encapsulate GCP and the convolution into one geo-
metrically consistent aggregation operator used to build the
depth network. In particular, we still keep the 3D U-Net ar-
chitecture proposed by MVSNet [38], while replacing each
standard 3D convolution block with our proposed geomet-
rically consistent aggregation operator. For the upsampling
layer in the U-Net structure, we use the pixel shuffle to re-
organize features and obtain a high-resolution cost volume.

3.3. Extracting Normal Cues

Since our approach uses the surface normal for cost ag-
gregation, in this section, we study different methods for
obtaining surface normals. We conduct experiments to
demonstrate the effectiveness of each method in Sec. 4.4.
Depth to normal. The surface normal can be directly com-
puted from the estimated depth. Since we use a three-stage
cascade structure, we leverage the depth map from the g
stage to generate the surface normal for the g+1 stage. The
normal n can be computed [19] in closed form as:

n =
(ATA)−1AT1

∥(ATA)−1AT1∥
, (10)

where A is a matrix composed of the coordinates of all pix-
els within the local window. In addition to using estimated
depth maps, we also compute the GT normal from the GT
depth maps following the same protocol and use it to train
our method for evaluating performances.
Cost to normal. In addition, inspired by [9], we use an ad-
ditional network branch to directly regress the normal map
from the cost volume in each stage, which is then used as a
prior for geometrically consistent aggregation.
Off-the-shelf monocular surface normal. Monocular net-
works directly perceive surface geometry from deep fea-
tures and can estimate reasonable solutions in regions with
multi-view consistency ambiguities, which complements
the task of MVS. Therefore, we explore an existing monoc-
ular normal estimation network Omnidata [5] to generate

the surface normal. Since Omnidata is trained on low-
resolution images, its normal prediction might become un-
reliable when the testing input resolution is increased. To
tackle this, we adopt a divide-and-conquer approach fol-
lowing MonoSDF [43] to generate high-resolution normal
cues. Specifically, we first divide the high-resolution image
into multiple overlapping patches. Surface normal estima-
tion is then independently conducted for each patch. Sub-
sequently, the surface normal results are aligned and fused
to generate a high-resolution normal map.

3.4. Optimization

We treat the MVS task as a classification problem and em-
ploy the winner-takes-all strategy to obtain the final depth
map [39]. We use the cross-entropy loss (Eq. 11) in each
stage, which is applied to the probability volume P and the
ground truth one-hot volume P

′
. Following [17], all depth

out-of-range will be masked during the training stage.

L =

d∑
i=1

−P
′

i log(Pi). (11)

4. Experiments
In this section, we evaluate our method on the DTU [1],
ETH3D [22], and Tanks and Temple [8] datasets, respec-
tively. Furthermore, we conducted multiple ablation exper-
iments on the DTU dataset to validate the effectiveness of
our method.

4.1. Datasets

DTU [1] dataset comprises 128 scenes in controlled labora-
tory environments, with models captured using structured
light scanners. Each scene was scanned from the same
49 or 64 camera positions under 7 different lighting con-
ditions. The official evaluation assesses the point cloud us-
ing distance metrics of accuracy and completeness. Blend-
edMVS [40] is a large-scale MVS dataset that consists of
over 17,000 high-resolution images covering a variety of
scenes, including urban environments, architecture, sculp-
tures, and small objects. Tanks and Temples (TNT) [8] is a
real-world dataset, divided into two sets, including 8 scenes
in the intermediate set and 6 scenes in the advanced set.
ETH3D [22] dataset consists of multiple indoor and out-
door scenes with large viewpoint variations. The quality of
point clouds on the ETH3D and TNT datasets is measured
using the percentage of precision and recall.

4.2. Implementation Details

Training Following the data partitioning of MVSNet, we
first train the model on the DTU training set. Our network
employs a three-stage cascade structure, with depth sam-
pling at 48, 32, and 8 in each stage and depth intervals of
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(a) TransMVSNet [4] (b) GeoMVSNet [46] (c) Ours (d) GT

Figure 3. Comparison of reconstruction results. Our method reconstructs more complete results in challenging areas.

4, 1, and 0.5, respectively. We train our model with 5 input
images, each having a resolution of 512×640. The model is
optimized using Adam for 12 epochs, starting with an ini-
tial learning rate of 0.001 which is reduced by 0.5 after the
6 and 8 epochs. We then fine-tune the model on the Blend-
edMVS dataset with 9 images at a resolution of 576×768
for evaluation on Tanks and Temples and ETH3D datasets.
During fine-tuning, we reduce the depth sampling interval
of the last stage by half of its original value.

Evaluation When testing on the DTU dataset, we use 5
images at a resolution of 864×1152 as input and employ
the depth map filtering method following [46] to generate
the final point cloud. For the tanks and temple dataset,
we carried out tests using 11 images with a resolution of
960×1920. In terms of depth map fusion, we employ the
widely adopted dynamic fusion strategy [35]. Moreover, we
conducted tests on the ETH3D dataset using images with
a size of 1152×1536 and the depth map fusion strategy is
consistent with IterMVS [26].

4.3. Benchmark Performance

Evaluation on DTU dataset. We compare both tradi-
tional methods and deep learning-based approaches. The
quantitative evaluation results for point cloud reconstruc-
tion are shown in Tab 1. Our method achieves SOTA com-
pleteness and overall performance. It is worth noting that
our method shows obvious improvement in completeness
compared to previous methods. This demonstrates that our
method can better use adjacent costs to propagate local ge-
ometries, resulting in a more complete reconstruction. Fig.
3 shows a comparison of our point cloud results with previ-

Method Acc. ↓ Comp. ↓ Overall↓
Gipuma [6] 0.283 0.873 0.578
COLMAP [21] 0.400 0.664 0.532
NAPV-MVS [24] 0.367 0.375 0.371
AA-RMVSNet [29] 0.376 0.339 0.357
Vis-MVSNet [44] 0.369 0.361 0.365
CasMVSNet [7] 0.325 0.385 0.355
UniMVSNet [18] 0.352 0.278 0.315
MVSTER [27] 0.350 0.276 0.313
TransMVSNet [4] 0.321 0.289 0.305
GbiNet* [17] 0.314 0.295 0.305
RA-MVSNet [45] 0.326 0.268 0.297
GeoMVSNet [46] 0.331 0.259 0.295
ET-MVSNet [14] 0.329 0.253 0.291
MVSformer [2] 0.327 0.251 0.289

GoMVS 0.347 0.227 0.287

Table 1. Quantitative results on DTU [1]. Our method achieves
the best completeness and overall score. Moreover, the complete-
ness of our point cloud outperforms previous methods by large
margins.

ous SOTA methods. We have more detailed and complete
reconstructions in the challenge areas.

Evaluation on Tanks and Temples dataset. We vali-
dated the generalization of our model on the Tanks and
Temples dataset, and the quantitative results are shown in
Table . We achieved the best performance on both the in-
termediate and advanced sets. Moreover, we ranked 1st
among all submitted results on the advanced set of the
TNT benchmark, which contains more complex scenes. It
demonstrates the strong robustness and generalization abil-
ity of our method. Fig. 4 shows point cloud results on
intermediate and advanced sets. Our method achieves de-
tailed and complete reconstructions across different indoor
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(a) Family (b) Francis (c) Courtroom (d) Musume

Figure 4. Qualitative results on Tanks and Temples. Our method achieves detailed and complete reconstructions across different scenes.

Methods
Intermediate Advanced

Mean↑ Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra. Mean↑ Aud. Bal. Cou. Mus. Pal. Tem.

COLMAP [21] 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
CasMVSNet [7] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
Vis-MVSNet [44] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
GBiNet [17] 61.42 79.77 67.69 51.81 61.25 60.37 55.87 60.67 53.89 37.32 29.77 42.12 36.30 47.69 31.11 36.93
EPP-MVSNet [16] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75
TransMVSNet [4] 63.52 80.92 65.83 56.94 62.54 63.06 60.00 60.20 58.67 37.00 24.84 44.59 34.77 46.49 34.69 36.62
UniMVSNet [18] 64.36 81.20 66.43 53.11 64.36 66.09 64.84 62.23 57.53 38.96 28.33 44.36 39.74 52.89 33.80 34.63
D-MVSNet [41] 64.66 81.27 67.54 59.10 63.12 64.64 64.80 59.83 56.97 41.17 30.08 46.10 40.65 53.53 35.08 41.60
ET-MVSNet [14] 65.49 81.65 68.79 59.46 65.72 64.22 64.03 61.23 58.79 40.41 28.86 45.18 38.66 51.10 35.39 43.23
RA-MVSNet [45] 65.72 82.44 66.61 58.40 64.78 67.14 65.60 62.74 58.08 39.93 29.17 46.05 40.23 53.22 34.62 36.30
GeoMVSNet [46] 65.89 81.64 67.53 55.78 68.02 65.49 67.19 63.27 58.22 41.52 30.23 46.53 39.98 53.05 35.98 43.34
MVSFormer [2] 66.37 82.06 69.34 60.49 68.61 65.67 64.08 61.23 59.33 40.87 28.22 46.75 39.30 52.88 35.16 42.95

GoMVS 66.44 82.68 69.23 69.19 63.56 65.13 62.10 58.81 60.80 43.07 35.52 47.15 42.52 52.08 36.34 44.82

Table 2. Quantitative results of F-score on Tanks and Temples benchmark. Our method achieves the best F-score on both the “Inter-
mediate” and the challenging “Advanced” set. Note that our method ranks 1st on the official TNT Advanced Benchmark.

Method Acc. ↓ Comp. ↓ Overall ↓
Standard 3D-convolution [38] 0.365 0.265 0.315
Sparse convolution [37] 0.354 0.268 0.311
Spatial deformable aggregation [25] 0.363 0.257 0.310
Depth kernel regression [19] 0.369 0.262 0.316
Ours (GCA) 0.347 0.227 0.287

Table 3. Comparison with different aggregation methods. Our
method significantly outperforms previous cost volume aggrega-
tion methods.

and outdoor scenes.
Evaluation on ETH3D dataset. The ETH3D dataset
contains many challenging scenes, including scenes with
textureless areas and large viewpoint variations. We com-
pare our methods with previous methods and results are
shown in Tab. 4. Our method achieves the best performance
on both the validation set and the test split. In particular, it
outperforms previous SOTA by a significant margin on the
test split, demonstrating its generalization ability over exist-
ing methods.

4.4. Ablation Study

Comparison with different aggregation methods. To
verify the effectiveness of utilizing adjacent geometry, we

compare different cost aggregation and depth aggregation
methods, and the results are shown in Tab. 3. Regarding
the cost aggregation methods, Sparse convolution [37] ag-
gregates the cost at the same depth without fully consider-
ing the depth geometry, resulting in certain improvements
in performance compared with the baseline. PatchMatch-
Net [25] utilizes deformable convolutions to gather spatial
matching costs and aggregate them using a lightweight 3D
CNN. We replace the aggregation network with a 3D U-Net
to ensure a fair comparison with the same parameter scale.
PatchmatchNet heavily relies on network capabilities and
does not guarantee geometric plausibility from the selected
costs. As a result, it brings limited performance improve-
ments (row #3).

Additionally, for the depth aggregation method, we re-
fine the depth map on the baseline method by incorporating
depth kernel regression proposed by GeoNet [19]. Using
normal similarity to compute depth aggregation weights is
prone to the influence of normal noise and cannot effec-
tively utilize the abundant geometric information in the cost
volume. This leads to a decline in the accuracy of the fi-
nal point cloud (row #4). We utilize normal priors to guide
cost aggregation, alleviating the challenge of geometric in-
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Methods
Training Test

Acc.↑ Comp. ↑ F-score↑ Acc.↑ Comp. ↑ F-score↑

COLMAP [21] 91.85 55.13 67.66 91.97 62.98 73.01
ACMM [32] 90.67 70.42 78.86 90.65 74.34 80.78

IterMVS [26] 73.62 61.87 66.36 76.91 72.65 74.29
GBi-Net [17] 73.17 69.21 70.78 80.02 75.65 78.40
MVSTER [27] 76.92 68.08 72.06 77.09 82.47 79.01
PVSNet [34] 83.00 71.76 76.57 81.55 83.97 82.62
EPP-MVSNet [16] 82.76 67.58 74.00 85.47 81.79 83.40
Vis-MVSNet [44] 83.32 65.53 72.77 86.86 80.92 83.46
EPNet [23] 79.36 79.28 79.08 80.37 87.84 83.72
GoMVS 81.22 77.65 79.16 85.50 86.85 85.91

Table 4. Quantitative results on ETH3D dataset. We show comparisons of reconstructed point clouds using percentage metric (%) at a
threshold of 2cm. Our approach achieves the best performance with notable margins.

consistency and achieving the best performance among all
aggregation methods.

Comparison with different depth receptive fields. Intu-
itively, 3D convolutions with larger receptive fields in the
depth dimension can alleviate the cost inconsistency in the
local range, by resorting to wider areas. Therefore, we
compare our approach with variants directly expanding the
depth receptive field. We keep the 3×3 spatial window size
at each 3D convolution layer and experiment with kernel
sizes of 3, 5, and 7 in the depth dimension on the baseline
method. The quantitative results are shown in Tab. 5, we
find that increasing the receptive field in the depth dimen-
sion leads to some certain improvement. However, due to
the lack of geometric awareness, its performance is satu-
rated when the dimension expands to a certain kernel size.
In contrast, we use surface normal to geometrically guide
the cost aggregation process. With a kernel size of only 3,
our method achieves the best performance, outperforming
other alternatives by clear margins.

Evaluation of different normal cues. Since the surface
normal is important for guiding geometrically consistent
aggregation, we further evaluate the effectiveness of dif-
ferent normal cues in Tab. 6. We first train and evalu-
ate our method using the GT normal, which sets an upper
bound for our method. As shown in the last row, it signif-
icantly improves the performance of point clouds, validat-
ing our method’s effectiveness when using high-quality nor-
mal inputs. We further train and evaluate our method using
depth-computed normals [19] or cost-computed normals
[9], the results are suboptimal as they essentially rely on the
quality of input depth, which can degrade in challenging
areas. Though lacking multi-view consistency, monocular
normals do not collapse in challenging geometric estima-
tion regions of the cost volume. This reveals a nice property
for monocular estimations. In addition to the DTU dataset,
we also observe notable improvement using monocular sur-
face normals on other benchmarks.

Aggregation kernel (d× h× w) Acc. ↓ Comp. ↓ Overall ↓

Standard Conv3D(3× 3× 3) 0.365 0.265 0.315
Standard Conv3D (5× 3× 3) 0.352 0.260 0.306
Standard Conv3D (7× 3× 3) 0.352 0.258 0.305
Proposed GCA (3× 3× 3) 0.347 0.227 0.287

Table 5. Evaluation of aggregation receptive fields. Directly
expanding receptive fields along the depth dimension yields lim-
ited improvement and is easily saturated. In contrast, our method
achieves the best performance with a kernel size of 3.

Method Acc. ↓ Comp. ↓ Overall ↓
Ours + Depth-to-normal [19] 0.352 0.242 0.297
Ours + Cost-to-normal [9] 0.358 0.241 0.300
Ours + Mono-normal [5] 0.347 0.227 0.287

Ours + GT normal 0.275 0.221 0.248

Table 6. Evaluation of different normal cues. Our method
with GT normal demonstrates remarkable performance (0.248).
Among all estimated normals, the off-the-shelf monocular normal
has the best performance.

5. Conclusion
In this paper, we propose GoMVS, which aggregates lo-
cally consistent geometries to better utilize adjacent geom-
etry. By leveraging local smoothness in conjunction with
surface normal, we propose geometrically consistent ag-
gregation. it computes the correspondence from the adja-
cent depth hypotheses space to the reference depth space
and propagates cost accordingly. Furthermore, we investi-
gate different choices for generating normal priors and find
that monocular cues effectively complement the MVS net-
work. Our method achieves state-of-the-art performance on
the DTU, Tanks and Temples, and ETH3D datasets.
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