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Abstract

Image deblurring aims to remove undesired blurs from
an image captured in a dynamic scene. Much research
has been dedicated to improving deblurring performance
through model architectural designs. However, there is
little work on data augmentation for image deblurring.
Since continuous motion causes blurred artifacts during im-
age exposure, we aspire to develop a groundbreaking blur
augmentation method to generate diverse blurred images
by simulating motion trajectories in a continuous space.
This paper proposes Implicit Diffusion-based reBLurring
AUgmentation (ID-Blau), utilizing a sharp image paired
with a controllable blur condition map to produce a cor-
responding blurred image. We parameterize the blur pat-
terns of a blurred image with their orientations and magni-
tudes as a pixel-wise blur condition map to simulate mo-
tion trajectories and implicitly represent them in a con-
tinuous space. By sampling diverse blur conditions, ID-
Blau can generate various blurred images unseen in the
training set. Experimental results demonstrate that ID-
Blau can produce realistic blurred images for training
and thus significantly improve performance for state-of-the-
art deblurring models. The source code is available at
https://github.com/plusgood-steven/ID-Blau.

1. Introduction
Camera shake or object movements cause unpleasant mo-
tion blurs when we capture images. Such blurs are usually
non-uniform, leading to locally and globally undesirable ar-
tifacts. Image deblurring aims to restore the sharpness of a
blurred image, a highly ill-posed problem that has remained
challenging over the past decades.

Image deblurring has reached remarkable progress with
the rise of deep learning. Numerous methods based on con-
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Figure 1. Examples of continuous reblurring by ID-Blau, where
blur condition maps represent pixel-wise blur information, con-
sisting of blur orientations and magnitudes, in a continuous space.
ID-Blau can take a sharp image and a blur condition map to syn-
thesize a blurred image, even unseen in the training set. Condition
A is a blur condition map computed from the GoPro training set,
which can be used to reblur a sharp image to generate a blurred
image as provided in the training set. We can create Condition B
and C based on A to synthesize new reblurred images, where Con-
dition B is Condition A with rotated orientations, and Condition C
is Condition A added with a camera motion blur.

volutional neural networks (CNNs) have rendered success
in deblurring. These methods mostly adopted recurrent-
based architectures, such as multi-scales [8, 18, 28], multi-
patches [39, 41], and multi-temporal [20]. In addition to
CNN-based methods, several studies have shown significant
improvement using Transformers [3, 13, 31, 33, 40]. Trans-
formers [32] utilize self-attention mechanisms to extract
longer-range features than CNNs but require more mem-
ory. To overcome the high memory usage in the vanilla
self-attention mechanism, some efficient attention mecha-
nisms have been proposed, such as the channel-wise [40]
and strip-wise attention [31] mechanisms.
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Although previous methods have improved deblurring
performance through architectural designs, an effective
data augmentation strategy for image deblurring has been
less studied. A common strategy [42] is to synthesize
blurred images through Generative Adversarial Networks
(GANs) [10]. However, GANs usually generate uncontrol-
lable results [14, 25, 37], constraining the potential of blur
augmentation strategies. As a result, we resort to devel-
oping a stable and controllable blur augmentation method
based on the inductive bias of motion blurs. Since con-
tinuous motions cause blur patterns during exposure, we
attempt to implicitly characterize blurs, such as blur ori-
entations and magnitudes, in a continuous space where we
can sample blur trajectories to generate various blurred im-
ages. This enables us to generate various blurred images
with specified blur conditions, devising a stable and con-
trollable augmentation strategy for image deblurring.

In this paper, we propose Implicit Diffusion-based
reBLurring AUgmentation (ID-Blau) that can produce di-
verse blur and sharp training pairs for training to improve
image deblurring performance. ID-Blau generates a realis-
tic blurred image from a sharp image and a blur condition
map to control the blur patterns through pixel-wise blur con-
dition maps. Several examples are shown in Figure 1. To
create blur condition maps, we implicitly represent blur in-
formation, including blur orientations and magnitudes, in a
continuous space, where we can sample various blur con-
ditions to simulate real blur trajectories during exposure.
Compared to the GoPro training set [18], which accumu-
lates consecutive sharp frames to generate explicit blurred
images, our strategy can generate various blurred images
with sampled blur conditions in the continuous blur condi-
toin field. In addition, motivated by the remarkable genera-
tion ability of diffusion models [12], ID-Blau adopts diffu-
sion models to take implicit blur condition maps to generate
realistic and controllable blurred images. Our experimental
results demonstrate that ID-Blau, the proposed implicitly
conditional diffusion model, can generate diverse blur and
sharp training pairs for training, even for those unseen in the
training set. As a result, it significantly improves the perfor-
mance of existing deblurring models and performs favor-
ably against state-of-the-art augmentation methods in this
regard. Our contributions are summarized as follows:

• We propose ID-Blau, a stable and controllable blur aug-
mentation strategy for enhancing dynamic scene image
deblurring.

• We model a continuous blur condition field to implicitly
represent blur orientations and magnitudes, where we can
sample various pixel-wise blur condition maps to gener-
ate diverse reblurred images not provided in the training
set.

• The proposed ID-Blau integrates pixel-wise blur condi-
tion maps into a diffusion model to generate high-quality
reblurred images.

• Experimental results show that ID-Blau significantly im-
proves existing deblurring models and performs favorably
against state-of-the-art deblurring methods.

2. Related Work

2.1. Image Deblurring

The development of CNNs has advanced image deblur-
ring remarkably. Several studies improved deblurring
performance through recurrent networks, such as scale-
recurrent [18, 28] and patch-recurrent [39, 41] networks.
Specifically, Nah et al. [18] designed a scale-recurrent
method to deal with image blur in a coarse-to-fine man-
ner. Zhang et al. [41] developed a patch-recurrent method
to leverage local information in a hierarchical deblurring
network. Other than recurrent designs, Cho et al. [6] pro-
posed an efficient deblurring model that rethinks the coarse-
to-fine strategy in a single-forward model to reduce la-
tency. Recently, motivated by the success of Vision Trans-
former (ViT) [7], several works [13, 31, 40] resorted to
Transformer-based architectures to deblur an image. For
example, Zamir et al. [40] utilized channel-wise attention to
alleviate the tremendous memory load in the vanilla trans-
former for self-attention. Tsai et al. [31] proposed strip at-
tention that exploits strip features to better extract blur fea-
tures with various orientations and magnitudes. Kong et
al. [13] proposed a frequency-based attention mechanism
that utilizes element-wise multiplication in the frequency
domain to replace the dot product in the spatial domain.

2.2. Deblurring through Reblurring

Besides focusing on architectural designs, some works [5,
15, 19, 42] enhanced deblurring performance through re-
blurring models. Chi et al. [5] and Liu et al. [15] uti-
lized a reblurring network in meta-learning to achieve test-
time adaptation. Nah et al. [19] proposed a reblurring net-
work to amplify the blurs in a deblurred image while keep-
ing sharp parts unchanged. It can be used to reinforce a
deblurring network to generate a sharp result more accu-
rately. Another potential strategy to improve deblurring
models is to augment training pairs through reblurring mod-
els. Zhang et al. [42] exploited real-world blurry images to
synthesize blurred images through GANs. However, GANs
usually generate uncontrollable results, and GANs’ unsta-
ble optimization process often increases the difficulty of
training [2, 11, 17]. Besides, GANs’ poor mode conver-
gence [30, 35] makes them less effective in synthesizing di-
verse blurred images. In contrast, we propose to represent
blur conditions in a continuous space implicitly and adopt
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a diffusion method to generate diverse, realistic, and high-
quality blurry images by considering arbitrarily enumerated
blur conditions.

2.3. Diffusion Models

Diffusion models [12, 23, 26] have demonstrated their out-
standing ability for image synthesis. Unlike GANs, diffu-
sion models have a stable training strategy by synthesiz-
ing images through forward diffusion and backward denois-
ing processes. The former gradually adds Gaussian noise
to a clear image in multiple steps and generates noisy im-
ages in a sequence. The latter iteratively denoises the de-
graded images to restore the original image. Other than
image synthesis, several studies have successfully applied
diffusion models to low-level vision tasks, such as super-
resolution [9, 24, 38], inpainting [1, 16, 36], and deblur-
ring [4, 21, 34]. Specifically, Saharia et al. [24] conditioned
the diffusion models on low-resolution images to recon-
struct their high-resolution versions with visually pleasant
quality. Whang et al. [34] conditioned the diffusion mod-
els on deterministic deblurring results to improve percep-
tual quality. Instead of constructing a restoration network
based on diffusion models, we propose an implicitly con-
ditional diffusion reblurring model to generate high-quality
training data for improving deblurring performance for ex-
isting models. We can generate various blur conditions in
a continuous space implicitly to control the proposed re-
blurring model to synthesize blurred images consistent with
these conditions. By sampling the blur condition space, a
set of diverse and high-quality blurred images can be gener-
ated to enrich the training set and enhance the performance
of existing deblurring models.

3. Proposed Method
This section presents the proposed ID-Blau, which turns a
sharp image into a blurred version based on a pixel-wise
blur condition map. We characterize blurs with their orien-
tations and magnitudes in a continuous space, where we can
sample blur conditions for reblurring a sharp image. With
the modeling, we can simulate blur trajectories yielded by
continuous motion during exposure. It allows us to implic-
itly manipulate blur conditions to generate diverse blurred
images unseen during training for data augmentation. In
the data augmentation scenario, we can use ID-Blau to pro-
duce additional training data before optimizing deblurring
models, so we do not need to run ID-Blau when optimizing
deblurring models. The following details the computation
of blur conditions and the training and sampling processes
of ID-Blau for blurred image generation.

3.1. Blur Conditions

During exposure, continuous motion from a camera or
scene objects may cause blur artifacts to captured images.

Figure 2. Illustration of distributions of blur magnitudes (left) and
orientations (right) of the GoPro training set.

Thus, global and/or local blur trajectories can be found in
such blurred images. To synthesize blurred images from
their sharp counterparts, Nah et al. [18] proposed the GoPro
dataset, approximating the continuous exposure through a
blur accumulation function as

B = g(
1

T

∫ T

t=1

V (t)dt) ≃ g(
1

N

N∑
n=1

V [n]), (1)

where B, V (t), T , N , and g denote the generated blurred
frame, sharp frame at time t collected by a high-speed
camera, exposure time, number of sampled sharp frames,
and camera response function, respectively. The accumu-
lation function aggregates a sharp image sequence V =
{V [1] , ..., V [N ]} to generate one blurred image B. The
center sharp frame V [N+1

2 ] is assigned to the ground-truth
image S for B, and N is typically an odd number.

Continuous motions of different objects may cause var-
ious blur patterns since they can move independently. We
propose to characterize the blurs in an image into a blur
condition map specifying a blur orientation and magnitude
to each pixel. The blur condition map depicts a specific blur
scenario for the blurred image by vectorizing blur for each
pixel in a continuous field. By changing the blur condition
map, we can simulate various blur scenarios and augment
diverse blurred images to complement existing image de-
blurring datasets. To obtain the corresponding blur condi-
tion from a blurred image, we choose to average bidirec-
tional optical flows from the sharp sequence V and then ag-
gregate them by summation as

F =

N−1∑
n=1

fθ(V [n] , V [n+ 1])− fθ(V [n+ 1] , V [n])

2
,

(2)
where fθ denotes the pre-trained optical flow estimation
network [29], F = [u; v] ∈ RH×W×2 denotes the over-
all motion trajectories during exposure, where H and W
are the image height and width, respectively. The tensor F
records the horizontal and vertical motion trajectories in u
and v ∈ RH×W .

Next, we normalize F to obtain unit motion vectors and
append one dimension of the magnitudes to make it a 3D
tensor C = [x; y; z] ∈ RH×W×3, where xi,j =

ui,j√
u2
i,j+v2

i,j
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Figure 3. Reblurring process with ID-Blau. As the pie chart shows the blur condition field with orientations and magnitudes delineated
in different colors, we visualize the process of generating blurred images with a set of blur condition maps. A sharp image paired with a
blur condition map and a noise map is concatenated and fed into ID-Blau to produce a blurred image, where an MLP is used to encode
the iteration index t as Time Embedding. Using ID-Blau can augment an image deblurring training set offline for optimizing a deblurring
model and improving its performance.

and yi,j =
vi,j√

u2
i,j+v2

i,j

respectively represent the horizon-

tal and vertical blur orientations for a pixel (i, j), and

zi,j =

√
u2
i,j+v2

i,j

M denotes its corresponding blur magni-
tudes. Here, M is set to the largest blur magnitude in a set
of considered blur conditions to make z ∈ [0, 1].

Let C be the blur condition map for a blurred image
B in a normalized continuous space, corresponding to its
ground-truth image S. With the above modeling, we can
construct a set of K blurred and sharp image pairs with their
computed blur condition maps {Bn, Sn, Cn}Kn=1 to train a
reblurring model. It uses a sharp image Sn and a blur con-
dition map Cn to produce the corresponding blurred image
Bn, correlating the sharp image Sn and its blurred version
Bn with our computed blur condition map Cn.

For example, we show the distribution of the blur mag-
nitude and orientation of GoPro in Figure 2, indicating that
the magnitude histogram peaks towards the left side, mean-
ing most images are not heavily blurred. In contrast, the
orientation has slight peaks around 0, 180, and 360 de-
grees, implying more blurs tend to be horizontal, but cases
in other orientations can also be found. Training our reblur-
ring model on such diverse data can correlate a blurred im-
age with its computed blur information implicitly in a con-
tinuous blur condition field and empower the model to gen-
erate blurred images unseen in the original data by sampling
different blur magnitudes and orientations. In the follow-
ing, we describe optimizing the proposed diffusion-based
reblurring model in ID-Blau.

3.2. ID-Blau

ID-Blau is developed based on a conditional diffusion
model that takes a blur condition map C and a sharp im-
age S as input to generate a blurred image B, as shown in
Figure 3. Therefore, we can create various blur conditions

to augment data with realistic reblurred images unseen in
the training set. To expedite the inference, we adopt the de-
noising diffusion implicit model (DDIM) [26], utilizing the
same training procedure as DDPM [12] but accelerating the
inference via a non-Markovian inference process.

Training Stage. Following DDPM [12], we perform a
forward diffusion process and a backward denoising pro-
cess to optimize ID-Blau. In the forward diffusion pro-
cess, we gradually add Gaussian noise to a blurred image
B over T iterations for generating a sequence of noisy im-
ages {B1, ..., BT }, where T is set to 2, 000. The sampling
probability q(B1:T |B0) is defined as

q(B1:T |B0) =

T∏
t=1

q(Bt|Bt−1);

q(Bt|Bt−1) = N (Bt;
√
αtBt−1, (1− αt)I),

(3)

where B0 = B and {αt ∈ (0, 1)} is a set of hyperparame-
ters that controls the noise variance over a sequence of steps.
Instead of iteratively adding Gaussian noise to B, the for-
ward diffusion process can be reparameterized as

Bt =
√
αtB0 + (1−

√
αt)ϵ, (4)

where αt =
∏t

i=1 αi and ϵ ∼ N (0, I).
In the backward denoising process, the blurred image B

is iteratively restored from the noisy image BT through a
denoising model ϵθ. When recreating a blurred image B
from a noisy image, we condition the denoising model on its
sharp counterpart S and the blur condition map C computed
based on B. Thus, the denoising model learns to correlate a
blurred image B and its sharp image S conditioned on the
blur condition map C. The reverse conditional probability
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Figure 4. Illustration of reblurred images with ID-Blau. It takes a sharp image S and a blur condition map C = [x; y; z] as inputs to
generate the corresponding blurred image. We show several generated blurred images by altering C, such as unit horizontal or vertical blur
orientations, C1 = [1; 0; z] and C2 = [0; 1; z], horizontally inverse C as C3 = [−x; y; z], and C4 = [−x; y; 2z] with twice the magnitude
for C3.

is written as

pθ(Bt−1|Bt, S, C) = N (Bt−1;µθ(Bt, S, C, t), σ
2
t I);

µθ(Bt, S, C, t) =
1

√
αt

(Bt −
1− αt√
1− αt

ϵθ(Bt, S, C, t)),

(5)

where the Gaussian density function is parameterized with
the mean of µθ(Bt, S, C, t) and variance of σ2

t = (1− αt).
To train the denoising model, we use the following objective
function:

L =∥ ϵ− ϵθ(
√
αtB0 +

√
(1− αt)ϵ, S, C, t) ∥1, (6)

where
√
αtB0 +

√
(1− αt)ϵ is the noisy image Bt at the

t-th step. Figure 3 shows the architecture of the denoising
model ϵθ.
Inference Stage. After optimizing the denoising model,
ID-Blau can generate a blurred image B from a pure
noisy image conforming to a Gaussian distribution BT ∼
N (0, I), a sharp image S, and a blur condition map C
through the sampling procedure in DDIM. It can take any
given blur condition map implicitly created to produce di-
verse blurred images unseen in the training set. The denois-
ing process is given by:

Bt−1 =
√
αt−1(

Bt −
√
1− αtϵθ(Bt, S, C, t)√

αt
)

+
√

1− αt−1 − σ2
t · ϵθ(Bt, S, C, t) + σtz,

(7)

where σt = 0, making the process deterministic. Through
DDIM, we set the number of iterations during sampling
to 20 without excessively sacrificing the image generation
quality.

Figure 4 shows examples of generating different blurred
images from a sharp image S by ID-Blau. That is, given
a blur condition map C = [x; y; z] and a sharp image S,

ID-Blau can produce a blurred image B = ID-Blau(S,C).
Additionally, we create four blur condition maps based on
C for further demonstration, including unit horizontal or
vertical blur orientations, C1 = [1; 0; z] and C2 = [0; 1; z],
horizontally inverse C as C3 = [−x; y; z], and C4 =
[−x; y; 2z] with twice the magnitude for C3.

Besides, we have more examples to demonstrate the gen-
eralizability of ID-Blau by utilizing sharp images not in the
training set to yield different blurred images in the supple-
mentary material. These visuals attest that ID-Blau can ef-
fectively generate controllable and realistic blurred images.
Thus, it can augment training data to improve image deblur-
ring performance.

4. Experiments

4.1. Implementation Details

ID-Blau. We adopt the GoPro training set [18], which
contains 2, 103 blurred and sharp images for training ID-
Blau. The training also requires the blur condition maps
computed based on the blurred images. We use a batch size
of 32 and randomly crop images with the size of 128× 128
for training 5, 000 epochs. We adopt the Adam optimizer
and maintain a fixed learning rate of 1e−4. After optimiz-
ing ID-Blau, we utilize sharp images in the GoPro train-
ing set and create extra blur condition maps to produce ad-
ditional 10, 000 1280 × 720 blurred images by randomly
modifying blur orientations and magnitudes based on the
originally computed blur condition maps. The newly gen-
erated 10, 000 blurred and sharp pairs can largely enrich the
GoPro training set to enhance the performance of a deblur-
ring model. ID-Blau has 9.5 million parameters, and it takes
3.4 seconds to generate a 1280 × 720 blurred image on an
Nvidia 3090 graphics card.

The authors from the universities in Taiwan completed the experi-
ments on the datasets.
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Table 1. Evaluation results on the GoPro, HIDE, and RealBlur datasets, where “Baseline” and “+ID-Blau” denote the deblurring perfor-
mances without and with ID-Blau, respectively.

GoPro HIDE RealBlur-J RealBlur-R Average Gain
Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MIMO-UNet+ Baseline 32.44 0.957 30.00 0.930 31.92 0.919 39.10 0.969
+ID-Blau32.93 (+0.49) 0.961 30.68 (+0.68) 0.938 31.96 (+0.04) 0.921 39.38 (+0.28) 0.971 +0.37 +0.004

Restormer Baseline 32.92 0.961 31.22 0.942 32.88 0.933 40.15 0.974
+ID-Blau33.51 (+0.59) 0.965 31.66 (+0.44) 0.947 33.11 (+0.23) 0.937 40.31 (+0.16) 0.974 +0.36 +0.003

Stripformer Baseline 33.08 0.962 31.03 0.940 32.48 0.929 39.84 0.974
+ID-Blau33.66 (+0.58) 0.966 31.50 (+0.47) 0.944 33.77 (+1.29) 0.940 41.06 (+1.22) 0.977 +0.89 +0.006

FFTformer Baseline 34.21 0.969 31.62 0.946 32.62 0.933 40.11 0.973
+ID-Blau34.36 (+0.15) 0.970 31.94 (+0.32) 0.949 32.88 (+0.26) 0.934 40.45 (+0.34) 0.975 +0.27 +0.002

Average Gain +0.45 +0.003+0.48 +0.005+0.46 +0.005+0.50 +0.002 - -

Deblurring models. We adopt four prominent deblur-
ring models, including MIMO-UNet+ [6], Restormer [40],
Stripformer [31], and the state-of-the-art FFTformer [13] to
demonstrate the effectiveness of ID-Blau. Following pre-
vious works, we evaluate deblurring performance on the
GoPro, HIDE [27], and RealBlur [22] datasets. The Go-
Pro dataset comprises 2, 103 training pairs and 1, 111 test-
ing pairs. The HIDE dataset contains 2, 025 image pairs
only for testing. The RealBlur dataset contains 3, 758 train-
ing pairs and 980 testing pairs. We pre-train each deblur-
ring model on the generated 10, 000 training pairs for 500
epochs. After that, we fine-tune each deblurring model on
the GoPro training set following its default training setting
and then evaluate it on the GoPro testing set and the HIDE
dataset. Besides, we fine-tune each deblurring model on
the RealBlur training set to demonstrate the effectiveness of
ID-Blau on real-world blurred images. Since all compared
methods utilized the GoPro and RealBlur training sets for
evaluating the RealBlur testing set, ID-Blau ensures a fair
comparison without relying on extra training data.

4.2. Experimental Results

Quantitative Results. We compare the deblurring perfor-
mance of four baselines and their ID-Blau-powered ver-
sions in Table 1, where “Baseline” and “+ID-Blau” de-
note the deblurring performance without and with ID-
Blau, respectively. Table 1 shows that ID-Blau signifi-
cantly improves four prominent deblurring models, includ-
ing MIMO-UNet+ [6], Restormer [40], Stripformer [31],
and the state-of-the-art FFTformer [13], on the GoPro,
HIDE, and RealBlur datasets. ID-Blau enhances those mod-
els’ performance in PSNR by 0.45dB, 0.48dB, 0.46dB,
and 0.50dB averagely on GoPro, HIDE, RealBlur-J, and
RealBlur-R, respectively. In particular, with ID-Blau,
the state-of-the-art performance has been advanced to
34.36dB (+0.15dB) on GoPro, 31.94dB (+0.32dB) on
HIDE, 33.77dB (+0.89dB) on RealBlur-J, and 41.06dB
(+0.72dB) on RealBlur-R, where the enhanced FFTformer
achieves new SOTA results on GoPro and HIDE, and

the enhanced Stripformer performs the best on ReaBlur-J
and RealBlur-R. These comprehensive quantitative results
demonstrate that ID-Blau significantly improves the per-
formances of the four deblurring models on four widely-
used datasets, showcasing ID-Blau’s effectiveness and ro-
bustness as a data augmentation scheme for deblurring.

Qualitative Results. Figure 5 compares the visual qual-
ities of the results with the four deblurring baselines (de-
noted by “Baseline”) and their ID-Blau-powered versions
(denoted by “+ID-Blau”) on GoPro and HIDE. The results
show that ID-Blau significantly enhances deblurring visual
qualities compared to the Baselines. Besides, we demon-
strate visuals of deblurring models on RealBlur-J in Fig-
ure 6. We also demonstrate deblurring results on real-world
blurry images [42] in the supplementary material.

4.3. Ablation Studies

We analyze the impact of ID-Blau on deblurring perfor-
mance using GoPro. For efficiency, we train MIMO-
UNet [6], a compact version of MIMO-UNet+, for 1, 000
epochs for analysis. If not specifically mentioned, “Base-
line” denotes MIMO-UNet trained on the GoPro training
set without using any additional augmented data samples.

Effect of Augmenting Blur Orientations. Table 2 shows
the effect of augmenting blur orientations with different an-
gles on deblurring performance. To this end, with the origi-
nal blur magnitudes, we rotate the blur orientations [x; y] by
four fixed angles (30◦, 60◦, 90◦, and 120◦) plus a randomly
selected angle for each produced blurred image (denoted
“Random”). The results indicate that blur augmentation
with all specific/random angles achieves performance im-
provements similar to those of Baseline. This suggests no
need to employ specific angles in blur condition maps for
augmentation. For implementation convenience, we ran-
domly alter blur orientations [x; y] to [−x; y], [x;−y], or
[−x;−y] to augment blurred images with different orien-
tations, achieving a similar performance improvement as
well.
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Figure 6. Qualitative results on the RealBlur-J testing set.

Table 2. Impact of modifying blur orientations on deblurring per-
formance in PSNR (dB).

Baseline 30◦ 60◦ 90◦ 120◦ Random
PSNR 31.22 31.99 32.00 31.97 31.95 31.96

Effect of Adjusting Blur Magnitudes. Figure 7 illus-
trates the effect of modifying blur magnitudes on the de-
blurring performance. We first investigate the distribution
of blur magnitudes within GoPro, in which most blurred
images have blur magnitudes around with the peak at 0.07.
Subsequently, we augment blurred images with different
blur magnitudes by shifting the peak of magnitude distribu-
tion to different values, including 0.07, 0.15, 0.2, 0.3, and
0.4. The results demonstrate that shifting the distribution’s
peak to a larger value causes decreased performance, indi-
cating that generating blurred images that deviate from the
original distribution of the dataset leads to a performance
drop. Therefore, we modify blur magnitudes but keep the
peak of blur magnitudes at around 0.07.

Effect of the Number of Augmented Samples. The left
plot of Figure 8 shows the impact of the number of aug-
mented training pairs by ID-Blau on the deblurring perfor-
mance. The performance gain of ID-Blau over that of the
baseline, trained on GoPro without augmentation, increases

from 0.53dB to 0.87dB with the number of augmented data
samples (from 2, 500 to 20, 000), demonstrating ID-Blau’s
ability to improve the deblurring performance without the
need of collecting additional training data samples. Aug-
menting 10, 000 additional samples (476% of the original
data size) achieves a reasonable tradeoff between the per-
formance gain and training complexity. Since ID-Blau does
not require extra training samples but consumes additional
training complexity, we also investigate whether the per-
formance improvements come from the additional training
complexity. As shown in the right plot of Figure 8, ID-
Blau stably outperforms the baseline with the same training
complexities (i.e., the numbers of training iterations), where
both the pre-training and fine-tuning process of ID-Blau are
considered. Both the above experiments verify the perfor-
mance gain with ID-Blau-based augmentation.

Effect of the Continuous Reblurring by ID-Blau. Fig-
ure 9 shows two blurred images from GoPro and their re-
blurred versions by ID-Blau. Since GoPro’s blurred images
are generated by blur accumulation as in (1), they contain
unnaturally overlapping artifacts. In contrast, ID-Blau can
generate similar blurred images by simulating continuous
motion trajectories, yielding more realistic blurred images
without such discontinuous overlapping artifacts. There-
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Figure 7. Left: Distribution of blur magnitudes within the GoPro
training set. Right: Illustration of the effect of altering the distri-
bution’s mode at different values on the deblurring performance.

Figure 8. Deblurring performance (PSNR) versus the number of
augmented samples by ID-Blau (left) and versus the number of
training iterations (right).

Figure 9. Left: Blurry image in GoPro dataset. Right: Blurry
image generated by ID-Blau. ID-Blau can generate blurry images
without overlapped artifacts compared to the GoPro dataset.

fore, ID-Blau can generate more realistic blurred images to
improve the deblurring models’ performances.
Performance Gain with a Diffusion Process. In ID-
Blau, we adopt the diffusion process in [12] to generate
blurred versions of sharp images with specified blur condi-
tions. However, without the diffusion process, we can still
utilize the same reblurring model to learn the mapping from
a sharp image plus a computed blur condition map to the
corresponding blurred image with the typical L1 loss func-
tion. To analyze the impact of ID-Blau with or without the
diffusion process on deblurring performance, in Table 3,
we compare Baseline (the same as in Figure 8), “w/ ID-
Blau†,” (ID-Blau without diffusion), and “w/ ID-Blau” (our
model). The results show that “w/ ID-Blau†” and “w/ ID-
Blau” improve the Baseline by 0.57dB and 0.80dB, respec-
tively, and the diffusion model achieves 0.23dB additional
performance gain.
Comparison between ID-Blau- and BGAN-based Aug-
mentation. Besides, we compare the performance gains
of ID-Blau and that of BGAN [42], a representative re-

Table 3. Effectiveness of using a diffusion model in ID-Blau on
MIMO-UNet’s performance in PSNR (dB), where “ID-Blau†” de-
notes the proposed ID-Blau without its diffusion process.

Model Baseline w/ ID-Blau† w/ ID-Blau
PSNR 31.22 31.79 32.02

Table 4. Comparison between ID-Blau and BGAN regarding the
DBGAN’s performance in PSNR (dB), where ID-Blau† denotes
the proposed ID-Blau without its diffusion process.

Model Baseline w/ BGAN w/ ID-Blau† w/ ID-Blau
PSNR 30.43 30.92 31.57 31.67

blurring GAN for augmenting blurred images to improve
the DBGAN deblurring model. To fairly compare ID-Blau
with BGAN, we utilize ID-Blau to improve DBGAN’s de-
blurring performance. In Table 4, “Baseline” denotes DB-
GAN’s performance trained on GoPro, and “w/ BGAN” de-
notes DBGAN’s performance with BGAN-augmented data.
“w/ ID-Blau†” and “w/ ID-Blau” denote DBGAN’s per-
formance using ID-Blau-augmented data without and with
the diffusion process, respectively. Note that GAN-based
methods tend to generate unpredictable and uncontrollable
blurred images, whereas ID-Blau can generate controllable
results based on specified blur conditions. As a result, “w/
ID-Blau†” and “w/ ID-Blau” improve the PSNR perfor-
mance of DBGAN by 1.14dB and 1.24dB. Thanks to the
proposed continuous blur condition map with ID-Blau, the
simplified “w/ ID-Blau†” without the diffusion process can
still offer an additional gain of 0.47dB over that with “w/
BGAN.” This verifies the effectiveness of ID-Blau com-
pared to the GAN-based reblurring model BGAN.

5. Conclusion
We proposed a diffusion-based reblurring model that can
take a sharp image and a controllable pixel-wise blur condi-
tion map to synthesize a blurred image. To train the reblur-
ring model, we parameterized the blur patterns of a blurred
image with their orientations and magnitudes and implicitly
represented them in a continuous blur condition field. With
the model, we presented ID-Blau, an effective data augmen-
tation scheme for image deblurring, where we sample vari-
ous blur conditions from the field to produce diverse, realis-
tic blurred images and enrich the training set. Experimental
results have shown that ID-Blau can significantly improve
the performance of state-of-the-art deblurring models.
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