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Abstract

Various transfer attack methods have been proposed to
evaluate the robustness of deep neural networks (DNNs).
Although manifesting remarkable performance in generat-
ing untargeted adversarial perturbations, existing propos-
als still fail to achieve high targeted transferability. In this
work, we discover that the adversarial perturbations’ over-
fitting towards source models of mediocre generalization
capability can hurt their targeted transferability. To address
this issue, we focus on enhancing the source model’s gener-
alization capability to improve its ability to conduct trans-
ferable targeted adversarial attacks. In pursuit of this goal,
we propose a novel model self-enhancement method that in-
corporates two major components: Sharpness-Aware Self-
Distillation (SASD) and Weight Scaling (WS). Specifically,
SASD distills a fine-tuned auxiliary model, which mirrors
the source model’s structure, into the source model while
flattening the source model’s loss landscape. WS obtains an
approximate ensemble of numerous pruned models to per-
form model augmentation, which can be conveniently syn-
ergized with SASD to elevate the source model’s generaliza-
tion capability and thus improve the resultant targeted per-
turbations’ transferability. Extensive experiments corrobo-
rate the effectiveness of the proposed method. Notably, un-
der the black-box setting, our approach can outperform the
state-of-the-art baselines by a significant margin of 12.2%
on average in terms of the obtained targeted transferability.
Code is available at https://github.com/g4alllf/SASD.

1. Introduction
Despite their wide range of applications in real-world sce-
narios, deep neural networks (DNNs) have shown vulnera-
bility in the face of imperceptible adversarial perturbations
[41, 43, 49, 50]. In recent years, numerous transfer attack
methods have been proposed to evaluate the robustness of
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Figure 1. The motivation of the proposed method that enhances
the source model’s generalization capability to enable more trans-
ferable targeted adversarial attacks.

DNNs [1, 42, 44, 48]. Although existing approaches have
demonstrated excellent performances on untargeted transfer
attacks, it is still challenging to accomplish targeted transfer
attacks, which require the attacker to generate perturbations
that can mislead the black-box victims to return a target la-
bel [22, 30].

Adversarial perturbations are prone to overfit the source
model and manifest limited targeted transferability when
the source model’s generalization capability is mediocre.
Specifically, neural networks can capture features essen-
tial for decision-making, with some features being general
while the others being model-specific [16]. Intuitively, ad-
versarial examples that primarily manipulate model-specific
features are unlikely to transfer well among different mod-
els. Working towards a more generalized source model can
alleviate the reliance on model-specific features, thus en-
hancing the transferability of the synthesized adversarial ex-
amples [35].

Therefore, we propose to enhance the source model’s
generalization capability to enable more transferable tar-
geted adversarial attacks. We conceptually illustrate the
motivation of our method in Figure 1. Since different mod-
els rely on different features to make decisions, and their
loss landscapes are often sharp, the transferable targeted ad-
versarial examples are likely to reside away from the lo-
cal optima of different models. It is thus challenging to
transfer the adversarial examples generated by the vanilla
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Figure 2. The overall procedure of SASD-WS.

source model to a different target model. A viable solution
is to enhance the source model’s generalization capability
to capture the general features learned by different models.
This can be achieved by learning a flatter loss landscape that
covers the transferable targeted adversarial examples in the
low-loss region.

To this end, we propose a novel model self-enhancement
method: SASD-WS, which incorporates Sharpness-Aware
Self-Distillation (SASD) and Weight Scaling (WS) to pro-
mote the source model’s generalization capability. Then,
we can employ the enhanced source model to produce tar-
geted perturbations with better transferability. The overall
procedure of our method is summarized in Figure 2. We ex-
plain the two major components of the proposed SASD-WS
as follows:

SASD. In the warm-up step of SASD, we employ the
technique of Sharpness-Aware Minimization (SAM) [6] to
fine-tune an auxiliary model, which mirrors the source
model’s structure. Specifically, during the fine-tuning of
the auxiliary model, we simultaneously minimize its loss
of sharpness and the cross-entropy loss between its predic-
tions and ground-truth labels. Given the fine-tuned auxil-
iary model, we then enhance our source model by distilling
the auxiliary model into the source model while minimiz-
ing the source model’s loss of sharpness. As a result, SASD
can effectively endow the source model with a flatter loss
landscape and improve the resultant targeted perturbations’
transferability.

WS. To further boost the generalization capability of the
obtained SASD model, we propose WS for efficient model
augmentation. Specifically, we apply random pruning to the
obtained SASD model to produce numerous pruned models.
The resultant ensemble of randomly pruned SASD models
can possess better generalization capability than the orig-
inal SASD model. However, generating adversarial exam-
ples with an ensemble model can be computationally expen-
sive. Motivated by the approximation scheme in [17], we
efficiently approximate the ensemble of randomly pruned
SASD models by scaling the weights of the SASD model.
Therefore, WS can be efficiently synergized with SASD to
further boost the targeted transferability of the synthesized
adversarial examples.

To sum up, the main contributions of this work are:
• We propose a novel model self-enhancement method in-

corporating two major components: Sharpness-Aware
Self-Distillation (SASD) and Weight Scaling (WS).
Specifically, SASD distills a fine-tuned auxiliary model
into the source model while flattening its loss landscape.
WS then performs model augmentation with an efficient
approximation. Their resonance promotes the source
model’s generalization capability and thus enables more
transferable targeted adversarial attacks.

• We conduct extensive experiments to validate the superi-
ority of the proposed method. Notably, compared with the
state-of-the-art benchmarks, our approach can improve
the targeted attack success rate by a significant margin
of 12.2% on average under the black-box setting.

• We confirm that our attacks can transfer well to real-world
applications, exceeding the state-of-the-art baselines by
8.4% on average. We also visualize the effectiveness
of the proposed method from the perspective of the en-
hanced model’s loss landscape, and validate the efficacy
of our approach against defense methods.

2. Related Work

2.1. Transferable Adversarial Attack

With the development of transfer attack techniques, there
are currently three types of approaches to improve the per-
turbation’s transferability:

Enhancing the source model. As normally trained
neural networks perform poorly in targeted attacks, sev-
eral model enhancement methods have been proposed to
improve the source model’s capability to conduct targeted
transfer attacks. These methods include replacing a sin-
gle source model with an ensemble of models obtained by
random dropout [23] and additional training epochs [9].
Springer et al. [35] instead utilizes adversarial fine-tuning
to enhance the source model’s ability to synthesize trans-
ferable adversarial examples. Our method also attempts to
improve adversarial transferability by enhancing the source
model. Nevertheless, unlike existing model enhancement-
based attacks, we propose to flatten the source model’s loss
landscape to improve its generalization capability, enabling
more transferable targeted attacks.

Augmenting the input data. To boost adversarial trans-
ferability, some transfer attacks resort to input augmenta-
tion, such as image translation [3], random resizing and
padding [46], and mixup [40]. Unlike prior efforts, a recent
input augmentation-based attack technique, Spectrum Sim-
ulation Attack (SSA), proposes to apply a spectrum trans-
formation to the input [27].

Rectifying the optimization procedure. Instead of
greedily perturbing the clean images along the gradient of
the cross-entropy loss [20], several attempts propose to im-
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prove the optimization procedure to craft more transfer-
able adversarial examples. Straightforward solutions in-
clude employing momentum [2] and Nesterov accelerated
gradient [25]. Huang et al. [15] instead consider adding the
intermediate feature loss into the attack objective to regular-
ize the search of adversarial examples. The state-of-the-art
attack of this kind, Reverse Adversarial Perturbation (RAP)
[31], seeks adversarial examples located at a region with
uniformly low loss values.

Our attack can be conveniently combined with other
transfer attacks based on input augmentation and optimiza-
tion procedure rectification to further enhance the transfer-
ability of adversarial attacks.

2.2. Improving DNNs’ Generalization Ability

Foret et al. [6] propose Sharpness-Aware Minimization
(SAM), which simultaneously minimizes loss values and
loss sharpness to improve the model’s generalization abil-
ity. Hinton et al. [13] introduce knowledge distillation to
transfer the knowledge of a teacher model to the student
model [45]. Intriguingly, Stanton et al. [36] discover that
knowledge distillation can enhance the student model’s gen-
eralization ability. Building upon Sharpness-Aware Min-
imization and knowledge distillation methodologies, we
propose Sharpness-Aware Self-Distillation (SASD) to inte-
grate Sharpness-Aware Minimization with knowledge dis-
tillation, which can further improve the source model’s
generalization capability. Since a more generalized source
model can better capture the general features learned by dif-
ferent models, the produced adversarial examples are more
likely to possess better targeted transferability [35].

3. Methodology
3.1. Problem Formulation

We first formulate the targeted transfer attack. Given a la-
beled image dataset D and a target classifier ftarget, for an
image-label pair (x, y) ∈ D, a targeted transfer attack aims
to generate an adversarial example xadv = x+ δ to mislead
the target classifier ftarget to predict a specific target label
ytarget ̸= y. Since the target classifier is black-box, a tar-
geted transfer attack instead derives the adversarial example
xadv with a white-box source model f . It is usually accom-
plished by optimizing xadv to minimize the source model’s
cross-entropy loss LCE on the target label [8, 51]:

min LCE(f(x+ δ), ytarget),

s.t. ||δ||∞ ≤ ϵ.
(1)

To ensure that the perturbation δ is imperceptible, attackers
should also set a small perturbation budget ϵ. After gener-
ating the adversarial example xadv with the source model, a
targeted transfer attack directly uses xadv to attack the tar-
get classifier, with the goal of ftarget(xadv) = ytarget. To

Algorithm 1 Sharpness-Aware Self-Distillation

Input: Fine-tuned auxiliary model
1: Initialization: n← 0
2: for every batch in the data loader do
3: n← n+ 1
4: Calculate Ldistillation by Equation (3)
5: ϵ← argmax

∥ϵ∥2≤ρ

ϵT∇ωs
Ldistillation(ωs)

6: g = ∇ωs
L(ωs)|ωs+ϵ

7: ωs ← ωs − lr · g
8: if n ≥ nmax then
9: break

10: end if
11: end for
Output: SASD model

improve the attack success rate (i.e., the transferability) of
the generated targeted perturbations, we propose enhancing
the source model’s generalization ability, detailed in the fol-
lowing sections.

3.2. Sharpness-Aware Self-Distillation

Fine-tuning the auxiliary model. We start with a pre-
trained source model and fine-tune it on its original train-
ing dataset to obtain the auxiliary model. The fine-tuning
procedure follows Sharpness-Aware Minimization (SAM),
which simultaneously minimizes loss values and loss sharp-
ness [6]. Specifically, in each iteration, we first perform
back-propagation based on the cross-entropy loss [7] be-
tween the output of the auxiliary model and the ground-
truth label. We then modify the auxiliary model’s weight
ω by adding a perturbation ϵm that can maximize the cross-
entropy loss:

ϵm = argmax
ϵm

LCE(f(ω + ϵm, x), y), (2)

where f(ω, x) is the output of a neural network f given
the model weight ω and the input x. We perform back-
propagation again based on the perturbed weight to mini-
mize the auxiliary model’s loss of sharpness.

Distilling the auxiliary model. After obtaining a fine-
tuned auxiliary model, we distill it into the source model
to enhance its generalization ability. Specifically, we first
make the source model’s probability output close to the aux-
iliary model’s. Let q1 = ϕ1(laux) denote the probability
output of the auxiliary model, where ϕ1 is a differentiable
transformation, and laux is the auxiliary model’s logit out-
put. In our SASD, we set ϕ1(laux) = Softmax(laux/τ),
where τ is the distillation temperature. The larger the
temperature is, the softer the probability distribution will
be. Similarly, let q2 = ϕ2(lsource) denote the proba-
bility output of the source model, where ϕ2(lsource) =
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Softmax(lsource/τ). To minimize the prediction difference
between the auxiliary and source models, we employ the
Kullback-Leibler divergence DKL [18] between q1 and q2
as the distillation loss:

Ldistillation(ωs) = E(x,y)∈D [DKL(q1(x, y), q2(x, y))] .
(3)

We then simultaneously minimize the distillation loss
and its sharpness:

min
ωs

E(x,y)∈D [L(ωs)] , (4)

where

L(ωs) = max
∥ϵ∥2≤ρ

Ldistillation(ωs + ϵ)

≈ max
∥ϵ∥2≤ρ

[
Ldistillation(ωs) + ϵT∇ωsLdistillation(ωs)

]
.

(5)

Let lr be the learning rate, and nmax be the maximum
iteration number. Algorithm 1 summarizes the SASD pro-
cess.

3.3. Weight Scaling

To further boost the generalization capability of the ob-
tained SASD model, we apply the network pruning method
[47] to generate an ensemble of pruned SASD models.
Specifically, we randomly prune the convolutional layers of
the obtained SASD model with a probability of 1−p. Then,
the weight of a pruned SASD model is:

ωpruned = ω ⊙ (1− ξ(ω, 1− p)), (6)

where 1 denotes the all-ones matrix with the same size as
the weight of the SASD model. ξ(ω, 1 − p) indicates the
randomly selected weights in the convolutional layers to be
pruned. By applying the Hadamard product ⊙ that repre-
sents element-wise multiplication to the weight, we can ob-
tain the pruned model with some weights in the convolu-
tional layers setting to zero.

Inspired by the approximation scheme in [17], we further
approximate an ensemble of pruned models with a weight-
scaled model. Specifically, let f = 1

n

∑n
i=1 f(ωi) be the

ensemble of models with the same structure but different
weights. Let ω = 1

n

∑n
i=1 ωi be the average weight of the

component networks in the ensemble, and ηi = ωi−ω. For
i ∈ {i|1 ≤ i ≤ n, i ∈ N}, we have:

1

n

n∑
i=1

ηi = 0, (7)

f(ωi, x) = f(ω + ηi, x)

= f(ω, x) + ηTi ∇ωf(ω, x) +O(∥ηi∥22).
(8)

Therefore, we can derive that:

f =
1

n

n∑
i=1

f(ωi, x)

=
1

n

n∑
i=1

[
f(ω, x) + ηTi ∇ωf(ω, x) +O(∥ηi∥22)

]
= f(ω, x) +

1

n

n∑
i=1

ηTj ∇ωf(ω, x) +O(∥η∥22)

= f(ω, x) +O(∥η∥22) ≈ f(ω, x).

(9)

It implies that a single model with the average weight of
multiple models can replace the ensemble of these models
as long as their weight differences are small enough.

Therefore, if the pruning probability 1 − p is small, the
ensemble of infinite pruned SASD models can be approxi-
mated by a single SASD model that is weight-scaled by the
scaling ratio p (i.e., the SASD-WS model):

f =
1

n

n∑
i=1

f(ωpruned SASD
i , x)

≈ f(ω, x) = f(p · ωSASD, x) = fSASD−WS,

(10)

where ωSASD is the weight of the SASD model before prun-
ing.

3.4. Attacking Algorithm

After obtaining the SASD-WS model, we generate targeted
adversarial examples with the TI-DI-MI method [2, 3, 46].
Specifically, given the input data x, the source model f , and
the target class ytarget, the perturbation δi+1 can be itera-
tively updated by:

δi+1 = Clip
ϵp
δi
{δi + α · sign (gi+1)} , (11)

gi+1 = gi +W · ∇δ
L (DI(x+ δi), ytarget; f)

∥L (DI(xi + δi), ytarget; f) ∥1
. (12)

α is the step size for attacks. W is the Gaussian kernel
for image translation. L is the attack objective function.
DI denotes the input transformation of random resizing and
padding. The generated adversarial perturbation is l∞-norm
bounded by the maximum perturbation budget ϵp.

4. Experiments
4.1. Experimental Setup

We focus on attacking the image classifiers trained on the
ImageNet (ILSVRC 2012) dataset [33]. We perform SASD
with the standard training and validation splits of the Ima-
geNet dataset. We apply our method to eight models pre-
trained on ImageNet: Inception-v3 [37], Inception-v4 [38],
Inception-ResNet-v2 [38], ResNet-50 [11], ResNet-101
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Table 1. Targeted transfer attack success rates (%) with a single source model. All methods are combined with the input augmentation
technique TI-DI-MI to generate adversarial perturbations. “Pre-trained” means directly using the normally trained model as the source
model without modification. “*” indicates white-box cases. We run each method five times and show the mean and standard deviation of
the results.

Method Source Model: Inc-v3 Source Model: Res50
→ Inc-v3 → Res50 → Dense121 → VGG16 → Inc-v3 → Res50 → Dense121 → VGG16

Pre-trained 99.0 ± 0.0* 2.1 ± 0.1 3.6 ± 0.1 1.9 ± 0.3 7.8 ± 0.3 98.7 ± 0.1* 64.3 ± 0.9 53.8 ± 0.7
RAP 93.6 ± 0.0* 3.5 ± 0.0 5.4 ± 0.0 3.9 ± 0.0 14.4 ± 0.0 98.5 ± 0.0* 56.2 ± 0.0 52.6 ± 0.0

GhostNet 97.9 ± 0.2* 8.1 ± 0.3 12.8 ± 0.1 6.6 ± 0.4 13.2 ± 0.4 98.0 ± 0.2* 75.0 ± 0.3 68.4 ± 0.6
LGV 55.0 ± 0.2* 40.5 ± 0.3 48.3 ± 0.3 49.5 ± 0.2 54.5 ± 0.8 93.2 ± 0.2* 90.0 ± 0.1 84.0 ± 0.2

SASD-WS 94.6 ± 0.2* 44.4 ± 0.2 57.6 ± 1.1 53.8 ± 0.8 70.3 ± 0.8 97.2 ± 0.4* 93.0 ± 0.2 88.7 ± 0.4

Method Source Model: Dense121 Source Model: VGG16
→ Inc-v3 → Res50 → Dense121 → VGG16 → Inc-v3 → Res50 → Dense121 → VGG16

Pre-trained 6.0 ± 0.4 39.3 ± 0.6 98.8 ± 0.2* 33.6 ± 0.5 0.9 ± 0.2 9.8 ± 0.5 12.2 ± 0.5 95.4 ± 0.3*
RAP 12.0 ± 0.0 41.2 ± 0.0 97.8 ± 0.0* 37.4 ± 0.0 2.1 ± 0.0 9.9 ± 0.0 9.8 ± 0.0 85.8 ± 0.0*

GhostNet 10.4 ± 0.6 49.6 ± 0.8 98.6 ± 0.1* 44.0 ± 0.6 1.1 ± 0.2 13.0 ± 0.1 14.9 ± 0.7 94.9 ± 0.2*
LGV 51.3 ± 0.3 80.8 ± 0.2 92.9 ± 0.2* 75.8 ± 0.2 — — — —

SASD-WS 61.6 ± 0.6 87.5 ± 0.2 97.7 ± 0.1* 82.7 ± 0.6 16.3 ± 0.7 41.9 ± 0.5 51.7 ± 0.2 94.5 ± 0.3*

[11], ResNet-152 [11], DenseNet-121 [14], and VGGNet-
16 [34]. All these pre-trained models’ weights are publicly
accessible1. For SASD, we set the distillation temperature
τ = 1 and the learning rate lr = 0.05 for all source mod-
els. We set WS’s scaling ratio p to 0.93 for each SASD-WS
model.

We compare the targeted transfer attack performance
of our SASD-WS method with the state-of-the-art model
enhancement-based attacks: GhostNet [23] and LGV [9].
Although RAP [31] works by rectifying the optimization
procedure and does not modify the source model, its moti-
vation is similar to our method. Therefore, we also com-
pare our approach with RAP. We implement the baseline
methods following the default settings in their original pa-
pers. For LGV, we additionally train the source model on
the ImageNet training set for ten epochs [33]. We then ob-
tain four LGV models in each epoch, leading to 40 LGV
models for each source model. We cannot apply LGV to
VGGNet-16 since the default settings of LGV are not com-
patible with VGGNet-16. Notably, since LGV and Ghost-
Net transform a single source model into multiple models
to generate adversarial examples, we follow their papers
to ensemble these models with the longitudinal ensemble
method [23]. In contrast, we only transform a single source
model into a single SASD-WS model when generating ad-
versarial examples.

Following the practice in the literature [2, 23], we set
the step size α = 2/255 and the maximum perturbation
budget ϵp = 16/255. We set the maximum iteration num-
ber tmax = 100 in the adversarial perturbation generation

1https://github.com/Cadene/pretrained-models.
pytorch,https://pytorch.org/vision/stable/models.
html

process. We conduct targeted transfer attacks on NIPS17
targeted adversarial attack competition dataset2 [21]. All
experiments are implemented with PyTorch 2.0.1 and con-
ducted with an NVIDIA GeForce RTX 4090 GPU of 24 GB
memory.

4.2. Attacking Performance

Targeted transfer attacks with a single source model.
We first evaluate the performance of our method when only
a single source model is available. We use the logit loss
LLogit = −l(t)(x+ δ) proposed in [51] as the attack objec-
tive functionL, where l(t)(·) is the output logit of the source
model concerning the target label. Table 1 reports the attack
success rate of each method.

As shown in Table 1, our method consistently outper-
forms the state-of-the-art baselines by a significant margin
of 12.2% on average under the black-box settings. Besides
improving the targeted attack success rate under the black-
box settings, SASD-WS can also maintain high white-box
attack performance.

Targeted transfer attacks with an ensemble of source
models. We then test the performance of our method when
multiple source models are available, including Inception-
v3, Inception-v4, Inc-Res-v2, ResNet-50, ResNet-101, and
ResNet-152. For the target models, due to the widespread
application of adversarial training techniques [19, 28, 39],
we first consider adversarially trained models. We also con-
sider the scenarios where the target and source models are
from different structure families. Specifically, we evalu-
ate the effectiveness of the targeted perturbation on Vision

2https://github.com/cleverhans-lab/cleverhans/
blob/master/cleverhans_v3.1.0/examples/nips17_
adversarial_competition/dataset/dev_dataset.csv
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Table 2. Targeted transfer attack success rates (%) with an ensemble of six source models: Inception-v3, Inception-v4, Inc-Res-v2, ResNet-
50, ResNet-101, and ResNet-152. All methods are combined with the input augmentation technique TI-DI-MI to generate adversarial
perturbations. “Pre-trained” means directly using the normally trained model as the source model without modification. We run each
method five times and show the mean and standard deviation of the results.

Method Inc-v3advens3 Inc-v3advens4 IncRes-v2advens ViT-B/16 ViT-L/16 CLIP (RN50) CLIP (ViT-B/32) CLIP (ViT-L/14)

Pre-trained 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 3.1 ± 0.3 1.5 ± 0.2 16.3 ± 0.7 2.0 ± 0.1 3.2 ± 0.4
RAP 1.7 ± 0.0 1.5 ± 0.0 0.1 ± 0.0 6.0 ± 0.0 3.0 ± 0.0 17.7 ± 0.0 5.1 ± 0.0 4.8 ± 0.0

GhostNet 0.7 ± 0.1 1.1 ± 0.2 0.2 ± 0.0 9.1 ± 0.5 5.7 ± 0.1 33.0 ± 0.5 5.3 ± 0.2 10.7 ± 0.1
LGV 8.1 ± 0.2 6.7 ± 0.2 1.7 ± 0.1 19.6 ± 0.0 13.0 ± 0.2 59.4 ± 0.3 22.4 ± 0.2 28.4 ± 0.3

SASD-WS 16.6 ± 0.2 13.5 ± 0.3 5.3 ± 0.1 34.1 ± 0.2 25.1 ± 0.2 58.7 ± 0.5 24.2 ± 0.2 34.7 ± 0.2

Table 3. Targeted transfer attack success rates (%) of the adver-
sarial examples generated by the normally trained ResNet-50 and
that enhanced by our SASD and WS, respectively. We run each
test five times and show the mean and standard deviation of the
results.

Method → Inc-v3 → Dense121 → VGG16

Pre-trained 7.7 ± 0.3 63.7 ± 0.1 56.2 ± 0.5
WS 35.0 ± 0.5 84.7 ± 0.2 77.8 ± 0.4

SASD 46.5 ± 0.5 91.2 ± 0.2 86.7 ± 0.1
SASD-WS 70.3 ± 0.8 93.0 ± 0.2 88.7 ± 0.4

Transformers (ViTs) [4] and CLIP models [32]. ViTs apply
the transformer models to visual data and leverage the self-
attention mechanism to process data patches. CLIP models
utilize both the image and text encoders to encode and cal-
culate the similarity of the image-text pairs. They can pro-
duce the similarity score for each label. In our experiments,
we use Inc-v3advens3 [39], Inc-v3advens4 [39], and IncRes-v2advens

[39] as the target adversarially trained models. We consider
ViT-B/16 and ViT-L/16 as the target ViTs. We target CLIP
models with ResNet50, ViT-B/32, and ViT-L/14 as the im-
age encoders, respectively. We use the cross-entropy loss as
our attack objective function L.

We report the results in Table 2. It shows that SASD-
WS can generate more transferable targeted perturbations
than the other baseline methods, with a significant improve-
ment of 6.6% on average. While most baselines can gen-
erate perturbations that can manifest a certain degree of tar-
geted transferability, RAP performs poorly under the en-
semble source model setting compared with the other base-
line methods, with an average attack success rate of only
8.2%. We believe that the poor targeted attack performance
of RAP under the ensemble source model setting is due
to the ensemble model’s lack of a uniformly low-loss re-
gion. Therefore, it highlights the need to enhance the source
model to enable more transferable targeted adversarial at-
tacks. Besides, our method’s high targeted attack success
rates against different target models, including adversar-
ially trained models, reveal the potential security risk of
DNNs and call for more effort to improve DNNs’ robust-

Table 4. Targeted transfer attack success rates (%) when using
different SASD variants: (1) SASD without fine-tuning the auxil-
iary model (SASD w/o FT Aux), (2) SASD without distilling the
auxiliary model (SASD w/o D), (3) SASD via the commonly used
knowledge distillation method (SASD w/ KD), and (4) our pro-
posed SASD. We run each test five times and show the mean and
standard deviation of the results.

Method → Inc-v3 → Dense121 → VGG16

SASD w/o FT Aux 32.2 ± 0.3 87.1 ± 0.0 81.3 ± 0.1
SASD w/o D 29.6 ± 0.5 87.7 ± 0.2 79.5 ± 0.3
SASD w/ KD 38.5 ± 0.4 90.7 ± 0.1 84.9 ± 0.2

Our SASD 46.5 ± 0.5 91.2 ± 0.2 86.7 ± 0.1

ness against adversarial perturbations.

4.3. Ablation Study

Validating the contribution of SASD and WS. We val-
idate the contribution of two major components in our
method: SASD and WS. Specifically, following the setting
of Table 1, we compare the targeted attack success rates of
the adversarial examples generated by the normally trained
ResNet-50 and that enhanced by our SASD and WS, re-
spectively. The results are shown in Table 3. We can see
that both SASD and WS can improve the pre-trained source
models’ capability to launch targeted transfer attacks. Be-
sides, combining SASD and WS can further enhance the
source model to generate more transferable targeted adver-
sarial perturbations.

Validating the design of SASD. We validate the design
of SASD by examining SASD’s two steps: fine-tuning the
auxiliary model and distilling the auxiliary model. Specif-
ically, for examining the first step of SASD, we conduct
SASD without fine-tuning the auxiliary model. In other
words, we conduct the second step of SASD directly with
a pre-trained source model. For examining the second step
of SASD, we conduct SASD without distilling the auxil-
iary model. In other words, we directly use the fine-tuned
auxiliary model to generate adversarial examples. Besides,
we also consider distilling the auxiliary model via the com-
monly used knowledge distillation method [13]. Specif-
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Table 5. Targeted transfer attack success rates (%) against different
defense methods. All methods are combined with the TI-DI-MI
technique to generate adversarial perturbations. We run each test
five times and show the mean and standard deviation of the results.

Method JPEG HGD NRP NoisyMix AugMix

Pre-trained 99.7 ± 0.0 1.4 ± 0.1 3.7 ± 0.0 0.4 ± 0.0 0.7 ± 0.0
RAP 88.7 ± 0.0 0.5 ± 0.0 14.3 ± 0.0 1.0 ± 0.0 0.5 ± 0.0

GhostNet 99.9 ± 0.0 1.4 ± 0.0 12.4 ± 0.6 2.4 ± 0.0 0.8 ± 0.0
LGV 99.4 ± 0.1 7.6 ± 0.2 2.0 ± 0.3 6.5 ± 0.1 1.4 ± 0.0

SASD-WS 99.8 ± 0.0 23.5 ± 0.1 17.9 ± 0.5 8.0 ± 0.1 2.0 ± 0.0

Figure 3. Successful targeted adversarial examples on Google
Cloud Vision. The target class is tigers.

ically, the commonly used knowledge distillation method
combines the cross-entropy loss with respect to the true la-
bel and the Kullback-Leibler divergence with respect to the
prediction of the teacher model as the distillation loss. Fol-
lowing the setting of Table 1, we examine the performance
of targeted adversarial perturbations generated by the above
SASD variants. The results are shown in Table 4. When
employing the normal knowledge distillation method, we
distill the auxiliary model for ten epochs to maximize the
attack performance. Our SASD instead only needs less than
one epoch distillation. Nevertheless, our SASD method can
still surpass the normal knowledge distillation method. Be-
sides, the SASD model’s performance improves when em-
ploying a fine-tuned auxiliary model, and distilling the aux-
iliary model performs better than directly using the fine-
tuned auxiliary model. Therefore, the experimental results
validate the design of our SASD.

4.4. Further Analysis

Transfer attacks against defense methods. In this
part, we evaluate SASD-WS’s targeted attack performance
against several adversarial defense methods and common
corruption defense methods, including JPEG [10], HGD
[24], NRP [29], NoisyMix [5], and AugMix [12]. We
use the same experimental settings as those in the ensem-
ble targeted and untargeted attack experiments with an en-
semble of source models (Inception-v3 [37], Inception-v4
[38], Inception-ResNet-v2 [38], ResNet-50 [11], ResNet-
101 [11], ResNet-152 [11]).

Table 5 presents the results of the targeted transfer at-
tack. We can see that SASD-WS can effectively generate
effective perturbations against these defense methods in tar-

Table 6. Comparison of the average l2-norm across 100 images for
(1) the logit output difference of the ensemble of pruned models
and the corresponding WS model, and (2) the standard deviation
among the logit outputs of pruned models in the ensemble. Results
for the ensemble of 20/50/100 pruned models are reported.

20 50 100

Output Difference 30.71 29.54 29.57
Standard Deviation 26.87 26.66 26.36

geted attack settings. Even though for defense methods like
NoisyMix and AugMix, most of the tested adversarial at-
tack methods failed to achieve successful targeted attack,
SASD-WS can still generate targeted perturbations with su-
perior transferability compared with other baseline methods
and achieves a nearly 100% attack success rate in attacking
JPEG. These results show from another perspective that our
approach can generate adversarial perturbations with higher
transferability.

Attacking real-world applications. We launch targeted
transfer attacks against Google Cloud Vision to verify the
practical applicability of the proposed method. Similar to
previous experiments, we use an ensemble of six source
models as the source model. We randomly sample 500 im-
ages from the NIPS17 targeted adversarial attack compe-
tition dataset as the test set to generate adversarial pertur-
bations. Following the experimental settings in [26], when
the labels with similar semantic meanings to the target la-
bel appear in the predicted labels of Google Cloud Vision,
we regard the attack as successful. Although Google Cloud
Vision will return the labels with probabilities more than
50.0%, we only consider the top-5 labels as the predicted
labels.

Experimental results show that our method can achieve
a targeted transfer attack success rate of 40.2%. In con-
trast, the baseline methods, LGV, GhostNet, RAP, and Pre-
trained, can only attain a targeted transfer attack success
rate of 31.8%,17.0%, 4.6%, and 3.6%, respectively. Fig-
ure 3 presents some of the adversarial examples generated
by our method.

Validating WS. We further validate the effectiveness
of our Weight Scaling (WS) method in simulating an en-
semble of source models. Intuitively, if the output of the
pruned models’ ensemble is close to that of the correspond-
ing WS model, the difference between their outputs should
be within the standard deviation among the pruned mod-
els’ outputs in the ensemble. Therefore, we calculate the
l2-norm value of the difference between the logit outputs
of the pruned models’ ensemble and the corresponding WS
model. We also compute the l2-norm value of the standard
deviation among the pruned models’ logit outputs in the en-
semble. The results are shown in Table 6. According to the
three-sigma rule, we can see that the output difference be-

24621



60 120 180 240 300
Iterations

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
)

Target Model: Inception-v3

WS model
Ensemble model
Base model

60 120 180 240 300
Iterations

20

40

60

80

100
Target Model: DenseNet-121

WS model
Ensemble model
Base model

60 120 180 240 300
Iterations

20

40

60

80

100
Target Model: VGGNet-16

WS model
Ensemble model
Base model

Figure 4. Targeted transfer attack success rates (%) of the base model (SASD ResNet-50), the longitudinal ensemble of pruned base
models, and the WS version of the base model (SASD-WS ResNet-50).
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(a) Pre-trained ResNet-50

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

0.85

1.60
2.35

3.10

3.85

4.6
0

5.35

6.10

6.85

7.60

8.35

9.10

9.
85

(b) Fine-tuned ResNet-50
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(c) SASD ResNet-50
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(d) SASD-WS ResNet-50

Figure 5. The change of the loss landscapes with the application of our method. The fine-tuned ResNet-50 is the auxiliary model adopted
in our SASD method.

tween the pruned models’ ensemble and the corresponding
WS model falls into the three-sigma range of the internal
variability of the pruned models in the ensemble. There-
fore, the output of the WS model is not an outlier among
the pruned models’ outputs, which implies that the output
of the WS model is close to the ensemble model.

Moreover, we compare the targeted attack performance
of a single weight-scaled SASD model and the ensemble of
pruned SASD models. Specifically, we generate adversar-
ial perturbations by employing a longitudinal ensemble of
pruned SASD models with a pruning rate of 1 − p = 0.07.
Therefore, we set our WS method’s scaling ratio p = 0.93.
Figure 4 shows the targeted transfer attack success rates of
three types of source models with SASD ResNet-50 as the
base model. According to the attack performance, we can
see that our WS method can reasonably approximate the en-
semble of pruned models.

Visualizing the effectiveness of SASD-WS. Our SASD-
WS attempts to promote the source model’s generalization
capability to enable more transferable targeted adversarial
attacks. To visualize the effectiveness of our SASD-WS on
improving the source model’s generalization capability, we
depict the change of the loss landscapes by applying our
method in Figure 5. We can see that with the application of
our approach, the loss landscape of the resultant enhanced
model becomes flatter, which can help to capture general
features learned by different models [6, 16, 35]. Therefore,

the enhanced model is more likely to cover the transferable
targeted adversarial examples in its low-loss region, facili-
tating more transferable targeted adversarial attacks.

5. Conclusion

This work presents a novel model self-enhancement
method, incorporating Sharpness-Aware Self-Distillation
(SASD) and Weight Scaling (WS) to enhance the source
model’s capability to generate more transferable targeted
perturbations. Extensive experiments show that our method
can significantly outperform the state-of-the-art approaches.
Notably, under the black-box setting, we can surpass the
state-of-the-art baselines by a significant margin of 12.2%
on average. We also validate the design of our method by
several ablation studies and the practical applicability of the
proposed method by attacking a popular real-world appli-
cation. We believe that our approach can serve as a strong
benchmark when evaluating the robustness of DNNs and an
effective patch when conducting adversarial training.
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