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Helicopter  /  A helicopter over the sea

Horse run  /  A horse runs on the Mars

Firework /  Fireworks over the mountains

Turn to smile  /  Head photo of a cute girl, comic style, turns to smile

Birds fly /  Many birds fly over a plaza

Figure 1. Our text-to-video results. The motion prompts / video prompts are listed under each set of frames. Our LAMP works effectively
on diverse motion cases. The generated videos show notable temporal consistency and are close to the video prompts. Moreover, two
advantages of LAMP can be reflected in the presented results. (1) The proposed motion-content decoupled pipeline allows us to use the
powerful capabilities of SD-XL for the generation of highly detailed content. (2) The excellent semantic generalization properties of the
diffusion model are preserved (e.g. imposing smile’s motion on unseen comic style) because of our innovative tuning approach.

Abstract

In this paper, we present a few-shot text-to-video frame-
work, LAMP, which enables a text-to-image diffusion
model to Learn A specific Motion Pattern with 8 ∼16
videos on a single GPU. Unlike existing methods, which re-
quire a large number of training resources or learn motions
that are precisely aligned with template videos, it achieves
a trade-off between the degree of generation freedom and
the resource costs for model training. Specifically, we de-
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sign a motion-content decoupled pipeline that uses an off-
the-shelf text-to-image model for content generation so that
our tuned video diffusion model mainly focuses on motion
learning. The well-developed text-to-image techniques can
provide visually pleasing and diverse content as generation
conditions, which highly improves video quality and gen-
eration freedom. To capture the features of temporal di-
mension, we expand the pre-trained 2D convolution lay-
ers of the T2I model to our novel temporal-spatial mo-
tion learning layers and modify the attention blocks to the
temporal level. Additionally, we develop an effective in-
ference trick, shared-noise sampling, which can improve
the stability of videos without computational costs. Our
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method can also be flexibly applied to other tasks, e.g. real-
world image animation and video editing. Extensive ex-
periments demonstrate that LAMP can effectively learn the
motion pattern on limited data and generate high-quality
videos. The code and models are available at https://rq-
wu.github.io/projects/LAMP.

1. Introduction
In recent years, generative models, particularly diffusion-
based models [13, 39, 40], have shown remarkable achieve-
ments in generating images from textual prompts, i.e. text-
to-image generation (T2I) [6, 10, 17, 21, 27, 29, 32, 33, 35].
Based on technical groundwork in the T2I field, Diffu-
sion models bring prosperity to the text-to-video (T2V)
domain. Several recent works [2, 11, 14, 37, 42, 50]
try to achieve open-domain T2V generation by training
a diffusion-based T2V model with millions of text-video
pairs as Figure 2(b). These approaches facilitate a deeper
understanding of the relationship between the video and
the textual prompt. However, the massive demand for la-
beled data and the heavy training burden are unaffordable
for most researchers, constraining the development of this
research line. Another template-based setting [5, 7, 26, 30,
36, 44, 46] involves utilizing a video template and manip-
ulating content using diffusion models while keeping the
original motion like Figure 2(a). Although these meth-
ods are cost-effective, especially with the proposal of one-
shot [44] and even zero-shot [7, 30, 46] algorithms, the use
of given video template significantly limits the generation
freedom. Besides, some recent works [15, 19, 22, 43] mod-
ifies the T2I diffusion models to generate consistent videos
without training. Nevertheless, it is challenging to transfer
the text-image domain knowledge to the text-video domain
in a zero-shot manner, resulting in the limitation of these
methods to generate similar-looking frames with random
motions.

It is essential to achieve a trade-off between training bur-
den and generation freedom while making models under-
stand the motions. Since the pretrained T2I diffusion model
has good semantic comprehension guided by the prompts,
it is reasonable that very little data is needed to make it un-
derstand the correspondence between prompts and motions
and generate diverse videos.

In this paper, we attempt to explore a novel few-shot set-
ting for the T2V task. The new setting aims at tuning a T2I
diffusion model to Learn A common Motion Pattern from a
small video set, which is shown in Figure 2. When tuning a
T2I model to a T2V model in a few-shot manner, two issues
need to be addressed. (1) Due to the limited data amount,
there is a risk of over-fitting the content within the video set.
If the generated videos are similar to the video set, it under-
mines one of our core goals, namely generation freedom.
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(a) Template-based methods (low generation freedom)

(b) Open-domain methods (high training burden)

(c) Our few-shot method (trade-off)

Figure 2. Comparison between template-based setting, open-
domain setting, and our few-shot setting. We use a small video
set instead of a single video template and a large-scale dataset to
learn the common motion pattern in the set. Our few-shot method
can achieve a trade-off between generation freedom(vs. template-
based methods) and training burden (vs. open-domain methods).

(2) The base operators of T2I diffusion models only work
on spatial dimensions, which limits their ability to capture
temporal information within videos.

In the paper, we propose a baseline method for few-
shot T2V generation, named LAMP to address the above
two issues. Our solution to the first issue is the proposed
motion-content decoupled pipeline. It decouples the T2V
task into two sub-tasks, generating the first frame by a pre-
trained T2I model and predicting subsequent frames us-
ing a video diffusion model. The proposed pipeline seam-
lessly integrates the first frame as a condition without in-
volving any additional modification of the video diffusion
model(e.g. changing the data structure of inputs or adding
new cross-attention layers). Specifically, during training,
we retain the first frame of the input video, adding noise
and imposing the loss only on the subsequent frames. Since
the first frame provides the majority of the video’s con-
tent, our model can focus on the relationship between the
subsequent frames and the first frame, i.e. the motion pat-
tern rather than the contents. During the inference, the first
frame is generated by a pre-trained T2I model, such as SD-
XL [29]. We observe that a high quality of the first frame
can boost the video generation performance through the
proposed pipeline. With the reference provided by the first
frame, our model, which is based on Stable Diffusion v1.4
(SD v1.4) [33], can preserve the high-quality content gen-
erated by SD-XL throughout the video. Facing the second
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issue, we design temporal-spatial motion learning layers
to capture the features of temporal and spatial dimensions
simultaneously. Since predicting subsequent frames based
on the first frame is required in the proposed pipeline, we
modified the base operator based on the video prediction
tasks [18, 25], which will be introduced in Sec. 3.4. As in
previous works [22, 44], we modify the attention layers to
build effective communication between frames. Moreover,
we adopt a shared-noise sampling strategy during infer-
ence, which constructs the original noise for each frame
from a shared noise. This strategy significantly improves
the quality and stability of the generated videos with negli-
gible computational costs.

We evaluate our LAMP on several motion cases. With a
simple tuning using 8 ∼16 videos on a single GPU, the pro-
posed LAMP can generate videos with the common motion
pattern of the video set and generalize well to unseen styles
and objects. (See Figure 1). Our key contributions can be
summarized as follows:

• We present a new setting of the few-shot tuning for the
T2V generation task, aiming to strike a balance between
generation freedom and training costs.

• We propose LAMP, a baseline method for few-shot T2V.
Equipped with the proposed motion-content decoupled
pipeline and temporal layers, it can effectively learns the
motion pattern in the given video set with a simple tuning.

• Extensive experiments show that our LAMP generates
remarkable performance in terms of prompt alignment,
frame consistency and content diversity.

2. Related Work

2.1. Text-to-Image Diffusion Models

Recently, diffusion models [13, 24, 39, 40] beat GANs [4,
8, 47], VAEs [23, 38, 41], and flow-based [3, 9] approaches
and have been in the limelight for text-to-image genera-
tion because of their stable training and outstanding perfor-
mance. For example, GLIDE [27] uses textual prompts as
conditions and adopts classifier-free guidance [12] to im-
prove image quality. DALLE-2 [32] introduces the pre-
trained CLIP [31] model, which is widely used in multi-
modal domain [49], to align the features of images and
text. Imagen [35] injects the features from a large lan-
guage model to diffusion models for better prompts under-
standing and proposes a cascaded pipeline to generate high-
resolution images from coarse to fine. To ease the compu-
tational burden of the iterative denoising process, Rombach
et al. propose LDM [33] that uses an autoencoder [4, 23] to
reduce the redundancy of images. LDM compresses an im-
age into low-dimension latent space by a pre-trained autoen-
coder first, then learns to denoise noisy latent data. With the
success achieved by LDM, many variants [28, 48] are pro-
posed to improve the performance further. More recently,

the SD-XL [29] is presented, which can generate extremely
photo-realistic images with high-definition details. In our
work, SD-XL is utilized to generate the first frame, and SD-
v1.4 is modified for subsequent frame prediction.

2.2. Text-to-Video Diffusion models

The thriving of diffusion-based models in the text-to-image
field demonstrates its potential in text-to-video generation.
The mainstream works can be divided into two categories:
open-domain T2V generation and template-based methods.

Open-domain T2V generation. During the early stage,
ImagenVideo [14] and Make-A-Video [37] learn T2V on
the pixel level. However, the video length and resolution
are significantly limited due to the high computation in the
pixel space. MagicVideo [50] is then proposed, which trains
a new autoencoder on video data. As the appearance of
LDMs [33] to the T2I field, MagicVideo boosts the com-
putational effectiveness for T2V generation. Blattmann et
al. [2] present an LDMs-based T2V diffusion model, which
adds extra 3D convolutional layers on frozen pre-trained
layers. VideoComposer [42] adds diverse conditions, e.g.
sketch and motion vectors, to the T2V model by a novel
encoder. AnimateDiff [11] trains a set of motion layers ca-
pable of being applied to customized T2I models [16, 34],
enabling them to produce videos in a consistent style. The
above methods achieve remarkable performance for T2V
generation. However, the necessity of training these models
on large-scale data like WebVid-10M [1] and HD-VILA-
100M [45] poses a significant barrier for most researchers.
In addition, some zero-shot methods [15, 19, 22] have been
proposed, yet they often suffer from suboptimal frame con-
sistency.

Template-based methods. Template-based T2V genera-
tion aims to facilitate video-to-video translation with the
guidance of user prompts, which is also known as video
editing. Dreamix [26] and GEN-1 [5] are two pioneer works
in template-based methods, while their training costs are
comparable to open-domain T2V methods. Then, Tune-
A-Video [44] proposes a new one-shot setting that uses a
T2I model to overfit the origin video, which can be imple-
mented on consumer-grade GPUs. FateZero [30] proposes a
training-free method by injecting the cross-attention map of
the source video and modifying attention layers. Rerender-
A-Video [46] and TokenFlow [7] further improve the con-
sistency of videos with the integration of priors and condi-
tional guidance. Different from the objectives of template-
based methods, our few-shot T2V setting aims to achieve a
higher degree of freedom in video generation rather than
precisely aligning with the motion pattern of a template
video.
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(a) Overall framework (b) Temporal-spatial motion
learning layer

Figure 3. (a) illustrates the framework of LAMP. LAMP learns a motion pattern from a small video set, enabling the generation of videos
imbued with the learned motion patterns. This approach strikes a balance between training resources and generation freedom in video
generation. We transfer text-to-video generation to the first-frame generation and subsequent-frame prediction, i.e., decoupling a video’s
contents and motions. During training, we add noise and compute loss functions for all frames except the first frame. Moreover, only the
parameters of newly added layers and the query linear layers of self-attention blocks are tuned. During inference, we use a T2I model
to generate the first frame. The tuned model only works on denoising the latent features of subsequent frames with the guidance of user
prompts. (b) shows the details of the temporal-spatial motion learning layer. The Video-prediction-based 1D convolutional layer utilizes
the features of the former two frames instead of adjacent frames.

3. Method
In this section, Sec. 3.1 and Sec. 3.2 first introduce the pre-
liminary knowledge and the new few-shot setting. Next,
Sec. 3.3 details our proposed motion-content decoupled
pipeline. Sec. 3.4 is followed to describe how we modify a
T2I diffusion model to T2V generation. Finally, Sec. 3.5 in-
troduces our shared-noise sampling strategy and some tech-
niques that can improve performance during inference time.

3.1. Preliminaries

In this section, we introduce the preliminary knowledge of
the diffusion-based model. Given data x0 ∈ X , a Markov
chain can be defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where t = 1, ..., T , T is the total number of steps. βt is
a coefficient that controls the noise strength in step t. The
iterative noise adding can be simplified as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (2)

where ᾱt =
∏t

i=1(1− βt). Diffusion models learn the dis-
tribution of dataset X by minimizing the training objective,
which can be written as:

argmin
θ

Ex0,ϵ∼N (0,I),t,c[||ϵ− ϵθ(xt, t, c)||22], (3)

ϵθ(·) denotes the noise prediction function of diffusion
models, c is the conditions like textual prompts. After train-
ing, diffusion models can generate data from noise by re-
versing the noise-adding process.

However, the computational burden becomes substantial
when diffusion models are used to generate high-resolution
images. To address this challenge, Latent diffusion mod-
els (LDMs) for T2I generation have been proposed, adopt-
ing an auto-encoder to achieve all operators in the latent
space. They generate low-redundancy latent space features
for effective computationrr and reconstruct images by the
decoder. LDMs are also used in our method to generate
high-resolution videos.

3.2. Our Few-shot-based T2V Generation Setting

Existing T2V approaches require large-scale data for train-
ing or rely on a template video to obtain low-degree-of-
freedom generative capabilities. In order to make video
generation inexpensive and flexible, we propose a novel set-
ting: few-shot T2V generation. Supposing that there is a
video set V = {Vi|i ∈ [1, n]} contains n videos and a
prompt Pm to describe the common motion as training data.
The proposed new setting is to tune a T2I model on the
given video set and the motion prompt. The tuned model
can generate a new video V ′ with a similar motion pattern
to V from a prompt P that is related to the motion. We hope
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to learn the common motion pattern from a small video set
while ignoring the contents. Meanwhile, the training cost
is affordable because of the small data size. Based on the
proposed setting, we modify pre-trained T2I models and
present a baseline framework for few-shot T2V generation.

3.3. Motion-Content Decoupled Pipeline

Due to the limited data in the few-shot tunning process,
there is a risk of overfitting the content of the small dataset,
potentially compromising the degree of generation freedom.
To direct our model’s focus toward motion, we propose
the motion-content decoupled pipeline to decouple motions
and contents. The proposed pipeline is illustrated in Fig-
ure 3 (a). Based on our observation, the first frame con-
tains the majority of the contents of a short video. It is
natural to use the first frame as a condition, enabling the
model to pay more attention to motions. Therefore, the
T2V generation task is translated to first-frame T2I gen-
eration and subsequent-frame prediction. There are previ-
ous works [5, 42] that have also used the first frame as a
condition. They concat it to the input noise or add a spe-
cific encoder to inject the features into networks. However,
applying these methods in the few-shot setting is challeng-
ing, as the limited data makes it nearly impossible to fa-
cilitate model training through substantial modifications to
T2I models. In contrast, the proposed motion-content de-
coupled pipeline can achieve comparable effects with slight
parameter changes, as detailed in Sec. 3.4.

Specifically, let V = {f i|i = 1, ..., l} be a video con-
tains l frames and encode them into latent space: Z0 =
{zi|i = 1, ..., l}. When training the model, we preserve
the original signal of z1 and add noise to {z2, ..., zl}. The
loss function is consistent with Eq. (3) and only imposed
on 2-nd to l-th frames. After training, the model gains the
capability to generate a video with the motion pattern of the
video set according to the first frame. During inference, the
powerful SD-XL [29] is employed to provide the first frame
f̂1, which is decoded to ẑ1 Then, a sequence, [ẑ1, ϵ2, ...ϵl],
where ϵ is a random noise, is fed to the model for the whole
video generation. At each step, we preserve the latent of the
first frame and denoise the subsequent frames.

The proposed pipeline effectively avoids learning the
contents of the video set so that it can train a model
on limited data. Another advantage lies in the quality
of content generated by SD-XL, providing a good refer-
ence for video generation. This approach enables us to
leverage the advantages of well-established T2I techniques.
The motion-content decoupled pipeline significantly bene-
fits both prompt alignment performance and generation di-
versity. Moreover, this pipeline is also appealing in its flex-
ibility in applications e.g. real-world image animation and
video editing, as detailed in Sec. 5.

However, the original T2I models treat frames as inde-

pendent samples. Thus, the features of the first frame cannot
be used to establish temporal relationships between frames
and generate videos. The following section introduces how
we enable the model to work at the temporal level.

3.4. Adapt T2I Models to Video

Temporal-spatial motion learning layers. To empower
the T2I model to extract temporal features, we inflate
the pre-trained 2D convolutional layers into the proposed
temporal-spatial motion learning layers. As illustrated in
Figure 3(b), the proposed layer consists of two branches.
Suppose the latent features of the input video are repre-
sented as a 5D tensor with a shape of b× c× f × h×w. In
the temporal branch, the tensor is reshaped into bhw×c×f
and fed to a 1D convolutional layer. However, since the
1D convolution kernel can only work on a spatial coordi-
nate at a time, it fails to take the essential spatial features
into account. Consequently, a 2D convolution with an out-
put channel of 1 along with a Sigmoid function is added
as compensation for spatial features. The input features are
reshaped into bf × c× h× w in the spatial branch.

Considering that our motion-content decoupled pipeline
needs a video diffusion model to predict subsequent frames
based on the given first frame in the second step, which
is similar to video prediction [18, 25], we design our
1D convolutional layers in a video prediction manner.
When the kernel slides through the features of frames
{f i−1, f i, f i+1}, our video-prediction-based 1D convo-
lution produces the features of f i+1 instead of f i as in the
original version. Thus, we can utilize the former two frames
but not two adjacent frames to predict the subsequent frame,
i.e. effectively achieving video prediction in the base opera-
tors. Moreover, in order to avoid our newly added layers
polluting the generation capability of the pre-trained T2I
model, all parameters are zero-initialized, as done in Con-
trolNet [48].
Attention layers. We also modify the attention layers to
ensure consistency. For self-attention layers, all key and
value features are obtained from the first frame, which can
be written as:

Attention(Qi,K1, V 1) = Softmax(
Qi(K1)T√

d
)V 1, (4)

the superscript i ∈ {1, ..., l} indicates the features are
from the i-th frame. Combined with the proposed pipeline,
the reformulated self-attention layers facilitate subsequent
frames to refer back to the conditions established by the first
frame. Besides, it has been demonstrated that such a modifi-
cation can effectively preserve the main object even without
tuning [22]. Moreover, following the modification in [44],
we have incorporated temporal attention layers, which are
self-attention layers working on the temporal dimension.
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Figure 4. Qualitative comparison between the proposed LAMP and three baselines. Zoom in for the best view.

3.5. Shared-Noise Sampling During Inference

During inference, we propose a simple yet effective shared-
noise sampling strategy to further improve the quality of
the generated videos quality. Specifically, we first sam-
ple a shared noise ϵs ∼ N (0, I). Then, a noise sequence
[ϵ2, ..., ϵl] with the same distribution as the base noise is
sampled. In our sampling strategy, the original noise ϵi for
the i-th frame generation is updated as:

ϵi = αϵs + (1− α)ϵi, (5)

where α is a coefficient to control the sharing degree. We
empirically set α = 0.2 in our experiments. This approach
ensures a consistent noise level across each frame, ulti-
mately manifesting as consistency in the generated videos.
Intuitively, this approach is in accordance with the prior
knowledge that every frame of a video has certain similar-
ities. Mathematically, the reduced noise variance can con-
tract the dynamic range of the latent space, contributing to a
more stable generation process. Besides, the AdaIN [20]
technique on latent space and histogram matching at the
pixel level are used for post-processing. The efficacy of our
free-lunch inference strategies is demonstrated in Sec. 4.3.

4. Experiments
4.1. Implementations

In our experiments, we generate videos with resolutions of
320 × 512 and 16 frames. We use SD-XL [29] for the less
computationally intensive first frame generation and the rel-
atively more lightweight SD-v1.4 [33] for the more com-
putationally demanding prediction of subsequent frames,
thereby balancing the inference cost of the two stages. For
training, we use a set of self-collected videos ranging from
8 ∼ 16, randomly sampling a 16-frame clip during each it-
eration All frames are resized to a resolution of 320× 512.
Only the parameters of new-added layers and the query lin-
ear layer in self-attention blocks are tuned, and the learning

Table 1. Quantitative comparisons with the evaluated text-to-
video methods. ∗ : fine-tuned on our data. †: using SDv1.4/1.5
for first-frame generation or as backbone.

Method Alignment ↑ Consistency ↑ Diversity ↓

Tune-A-Video [44] 27.22 94.87 84.72
T2V-Zero [22] 26.94 91.47 73.01

AnimateDiff [11] 28.88 97.81 73.47
AnimateDiff∗ 28.85 98.56 78.81
LAMP (Ours) 31.35 98.31 71.65

AnimateDiff † 28.54 96.03 75.11
AnimateDiff ∗† 27.65 97.82 81.91
LAMP (Ours) † 29.99 97.15 73.65

rate is set to 3.0 × 10−5. All experiments are implemented
on a single A100 GPU and only need ∼ 15 GB vRAM for
training and ∼ 6 GB vRAM for inference.

4.2. Comparisons

We train our LAMP for 8 motions, including helicopter
(rigid motion), waterfall (fluid motion), rain & firework
(particle motion), horse running (animal motion), birds fly-
ing (multi-body motion), turn to smile (human emotion)
and play the guitar (human motion). We design 6 prompts
for each motion to build an evaluation set containing 48
videos. Three publicly available methods, which are large-
scale pre-trained AnimateDiff [11], one-shot-based video
editing method Tune-A-Video [44], and zero-shot-based
Text2Video-Zero [22], are selected as our comparison base-
lines. We consider representative work under a variety
of mainstream settings, thus effectively reflecting the ad-
vantages of our few-shot learning setting. Notably, for
each motion pattern, we randomly select a video from the
corresponding video set as the template to train Tune-A-
Video [44]. The comparisons are constructed in the view of
objective and subjective.
Quantitative results. We evaluate our LAMP against base-
lines in terms of textual alignment, frame consistency, and
generation diversity. The objective metrics and user study
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(a) LAMP (full model)

(b) replace SD-XL to SD-v1.4

(c) w/o motion-content decoupled pipeline

(d) w/o shared-noise sampling

(e) w/o temporal-spatial motion learning layer

(f) w/o video-prediction-based 1D Conv

Figure 5. Ablation results. The given prompt is ‘A red horse runs
in the sky’.

are used for a comprehensive evaluation.
Objective metrics. To measure the textual alignment of

a video, we average each frame’s CLIP score [31]. Fol-
lowing [44], we also represent the frame consistency by the
mean cosine similarity of CLIP image embedding across all
frame pairs. Since generation freedom is one of our core
goals, we also include generation diversity in quantitative
evaluation. We use the average CLIP image embedding of
all frames to represent a video. For each motion pattern sub-
jection, we subsequently compute and average the cosine
distance across all video pairs. A lower score denotes lower
similarity, i.e., better diversity. AnimateDiff and our LAMP
both can use a better generative model as a backbone for
performance improvement. Thus, we use SD-v1.4 during
the first-frame generation stage of LAMP and replace the
AnimateDiff’s backbone from RealisticVision to the base
model, SDv1.5. Moreover, we also fine-tune AnimateDiff
on our own data to further demonstrate the effectiveness of
the proposed motion-content decoupled pipeline. Table 1
presents the quantitative results of LAMP and baselines.
Across all three evaluation criteria, our method achieves
the most favorable performance against the other baselines.
Fine-tuned AnimateDiff achieves the best visual consis-
tency, but the performance of generation diversity is very
poor due to the over-fitting.

User study. We further conduct a user study to evalu-
ate our approach and three baselines subjectively. We ran-

domly select 24 cases from our evaluation set. In each case,
we ask the participant “Which video do you think has bet-
ter visual quality and better matches the scene and motion
of the prompt ‘...’?” The user study garnered a total of 70
responses from a diverse group of participants, including
both experts in the field and individuals with no specific
background knowledge. Statistically, 46.84% of respon-
dents favor our method, with AnimateDiff [11] achieving
19.11% and Tune-A-Video [44] achieving 22.15%. How-
ever, it is worth noting that Tune-A-Video polarizes choices
in different situations. When there are similarities between
the layout of the given video template and the scene de-
scribed by the prompt, combined with its own good frame
consistency, it can be approved by most volunteers. Con-
versely, the textual alignment of its generated video is poor,
e.g. ”Fireworks, grass land” shown in Figure 4. Besides,
11.90% of the participants select Text2Video-Zero [22] as
their preference. As a result, our LAMP obtains the highest
approval rate among the participants. Our questionnaire can
be accessed via the link, you can recognize which is our re-
sult by the visual examples in the supplementary materials.
Qualitative results. We present several visual examples
of our method and three baselines in Figure 4. Animate-
Diff [11] learns motion layers on large-scale data and in-
serts them into personalized T2I models to generate videos
with specific styles and better visual quality. However, this
approach cannot be combined with the better-performing
but heterogeneous T2I model, resulting in a limitation in
textual alignment capabilities even though the consistency
and diversity are satisfying. This limitation is apparent in
cases ‘A horse runs in the universe’ and ‘Fireworks, grass
land’. Tune-A-Video (TAV) can only generate videos with
the same motion, with the prompts sometimes unable to ef-
fectively control the generated videos due to overfitting on
the given video. While T2V-Zero produces visually pleas-
ing frames, it falls short in generating videos with meaning-
ful motion patterns. In contrast, our LAMP achieves good
consistency and generates videos with proper motion pat-
terns, benefiting from the proposed motion learning layers.
Besides, using the advantage of our motion-content decou-
pled pipeline, the proposed method achieves visual quality
on par with state-of-the-art T2I models, even with the mod-
ifications based on SD-v1.4. Figure 1 and supplementary
materials provide more visual results. Our method under-
stands the learning motions well and can generalize to di-
verse, even unseen, scenes and styles.

4.3. Ablation Study

We conduct ablation experiments to demonstrate the effec-
tiveness of each proposed component. The visual results
are shown in Figure 5. As we can see in Figure 5(b), us-
ing SD-v1.4 to generate the first frame will decrease the
performance compared to the full model. Upon compar-
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A man runs on the road

A blond hair girl runs at night

Input Video

A girl in white is dancing

A man is dancing
Figure 6. Visual results of our video editing application. Zoom in for the best view.

Beihong Xu‘s horse painting

Niagara waterfall

Figure 7. Visual results of LAMP animates the real-world images.

ing Figure 5(c) with the video generated by the full model,
the model without the motion-content decoupled pipeline
produces low-quality results. Notably, the presence of un-
related objects, such as fences and dirt, in the video indi-
cates an overfitting of the content of the video set. In ad-
dition, the model w/o shared-noise sampling can generate
relatively consistent frames but lacks smoothness in the re-
sult. When the temporal-spatial motion learning layers are
removed, the model cannot effectively capture the complex
motion pattern, leading to failed results. Finally, when we
turn video-prediction-based 1D convolution into the origi-
nal version of 1D convolution, the main object of the video
becomes inconsistent. These results verify the significant
contributions of each key module to the final full model.

5. More Applications
In this section, we provide more applications of LAMP,
which are real image animation and video editing.

5.1. Real Image Animation

Through the training of the proposed motion-content decou-
pled pipeline, our LAMP contains a network that predicts
the subsequent frames based on the given first frame. This
enables the animation of real-world images generated by
T2I models. Thus, our method naturally gains the capability
to animate real-world images based on the learned motion
patterns if these images are placed in the first frame. Fig-
ure 7 shows several representative cases. This application
further demonstrates our generalization performance, even

when dealing with complex real-world scenes.

5.2. Video Editing

In cases where the given training set contains only a sin-
gle video clip, our method can only learn a specific mo-
tion rather than a motion pattern. In this special case, our
method effectively turns into a video editing algorithm. The
training process remains similar to that in the few-shot set-
ting. During inference, we adopt the ControlNet [48] based
on SD-XL [29] and condition it on canny edges to edit the
first frame. DDIM inversion [44] is also used to provide a
base motion. Similarly to video generation, our approach
can also take full advantage of image-editing technologies
when applied to video editing. As visual examples shown in
Figure 6, our LAMP generates photo-realistic videos while
maintaining good frame consistency.

6. Conclusion
This paper proposes a novel setting, few-shot tuning for
T2V generation, which learns a common motion pattern
from a small video set to achieve a trade-off between
training burden and generation freedom. The proposed
LAMP serves as a baseline for this new setting. In our
method, we transfer the T2V task into T2I generation for the
first frame and predict the subsequent frames. This avoids
overfitting the content of the dataset during few-shot tun-
ing while leveraging the advantages of text-to-image tech-
niques. Moreover, our novel design in network architec-
ture and inference strategy further boosts the performance
of T2V generation. Extensive experiments demonstrate the
effectiveness and generalization capability of our method.
We believe that the few-shot tuning setting offers superior
trade-offs and will aid the broader T2V field in exploring
the lower bounds on the data required for video diffusion
training.
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