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Figure 1. (a) Visualization of semantic segmentation for edited scenes. We relocate objects to places where they appear less frequently. Our
pre-trained model segments the relocated object accurately, while the pre-trained model from MSC [32] labels the objects incorrectly. (b)
Bar chart depicting the semantic segmentation performance on ScanNet [9] with varying ratios of rearranged objects. The X-axis indicates
the ratios of rearranged objects for each scene, and the Y-axis shows the mean Intersection over Union (mIoU) scores. The models are
pre-trained and fine-tuned on ScanNet with 10% labels. We compare OESSL (Ours) with MSC [32], DepthContrast [37], and training from
scratch (weights are randomly initialized).

Abstract
In the realm of point cloud scene understanding, partic-

ularly in indoor scenes, objects are arranged following hu-
man habits, resulting in objects of certain semantics being
closely positioned and displaying notable inter-object cor-
relations. This can create a tendency for neural networks
to exploit these strong dependencies, bypassing the individ-
ual object patterns. To address this challenge, we introduce
a novel self-supervised learning (SSL) strategy. Our ap-
proach leverages both object patterns and contextual cues
to produce robust features. It begins with the formulation of
an object-exchanging strategy, where pairs of objects with
comparable sizes are exchanged across different scenes, ef-
fectively disentangling the strong contextual dependencies.
Subsequently, we introduce a context-aware feature learn-
ing strategy, which encodes object patterns without rely-
ing on their specific context by aggregating object features
across various scenes. Our extensive experiments demon-
strate the superiority of our method over existing SSL tech-
niques, further showing its better robustness to environmen-

tal changes. Moreover, we showcase the applicability of
our approach by transferring pre-trained models to diverse
point cloud datasets. 1

1. Introduction
Understanding the semantic content of 3D point cloud

data, particularly indoor scenes, is crucial in diverse fields,
including applications such as indoor robotics [3, 5, 29, 35].
Recent advancements in deep learning [8, 31] have show-
cased remarkable results in this domain. While effective,
these methods rely heavily on annotated training data and
fail when faced with distribution shifts in the test data [38].
Consequently, the extraction of resilient object features
from unlabeled data has become critical to advance the field.

Existing self-supervised learning (SSL) methods [2, 19,
20, 25, 33] concentrate on feature aggregation by creating
positive pairs from the same object in different augmented

1Our code is available at https://github.com/YanhaoWu/OESSL.
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views of the scene. This maintains the relative relationships
between objects unchanged, thus failing to account for the
object dependencies. Notably, in indoor point cloud scenes,
object correlations are influenced by human habits, such as
the association of tables with chairs, or toilets with sinks,
resulting in strong inter-object entanglements. As demon-
strated in Figure 1(a), the pre-trained models like [32] strug-
gle to segment objects with unconventional correlations,
such as chairs on desks or dustbins located away from walls.
Although Mix3D [21] has been proposed to augment the
data by randomly combining two scenes, it does not reason
at the level of objects. Thus, the overlaps between objects
introduced by this method can disrupt the coherent patterns
formed by these objects. Without ground-truth labels, this
disruption leads to less meaningful features, limiting the
suitability of this approach in an SSL setting.

In this paper, our main focus is on developing an effec-
tive method for augmenting scene point clouds at the object
level to mitigate the impact of human-induced biases in the
context of self-supervised learning. Simultaneously, we aim
to extract features that are more robust to varied inter-object
correlations by better encoding both object patterns and
contextual information. To this end, we introduce (i) an Ob-
ject Exchange Strategy: This approach involves exchang-
ing the positions of objects of comparable size in different
scenes. By doing so, we effectively break the strong correla-
tions between objects while alleviating issues related to ob-
ject overlap. (ii) A Context-Aware Object Feature Learn-
ing Strategy: We first take the remaining objects, which
share similar context in two randomly augmented views, as
positive samples to encode the necessary contextual infor-
mation and object patterns. To counter strong inter-object
correlations, we minimize the feature distance between the
exchanged objects in distinct contextual settings. Note that
the contextual cues for a single object can vary significantly
across scenes. Therefore, minimizing the feature distance
between the exchanged objects enables the model to solely
focus on out-of-context object patterns. These two compo-
nents collectively provide a practical framework for learn-
ing robust features that encapsulate both object patterns and
contextual information.

Furthermore, the exchanged objects may violate conven-
tional human placement rules and appear incompatible with
their environmental context. To effectively recognize such
relocated objects, the model needs to comprehend both ob-
ject patterns and context information. We therefore intro-
duce an auxiliary task to enhance features related to both
object and context. This task involves predicting which
points belong to the objects that have been relocated. By
engaging in this task, the model gains a more comprehen-
sive understanding of both object patterns and contextual
information.

Our contributions can be summarized as follows:

• We introduce a novel point cloud Object Exchange Self-
Supervised Learning framework, named OESSL, for in-
door point clouds that learn object-level feature represen-
tations by encapsulating both object patterns and contex-
tual information.

• We propose a novel object-exchanging strategy that
breaks the strong correlations between objects without in-
curring object overlap.

• We introduce an auxiliary task aimed at regularizing each
object point feature to make it context-aware.
Our experiments on several datasets, including Scan-

Net [9], S3DIS [4], and Synthia4D [24], demonstrate the
effectiveness of our method, especially in terms of robust-
ness to the contextual noise, as shown in Fig. 1 (b).

2. Related Work
Training with context data augmentation. For im-

age data, some researchers propose to add new instances
to scenes to generate diverse training samples [11, 12, 14,
30, 36]. Conversely, [6, 10, 23, 26, 39] suggest removing
contextual cues as data augmentation can also improve the
model performance. However, the techniques designed for
images cannot be directly applied to point clouds due to
their distinct data nature.

In the 3D domain, 4dcontrast [7] augments scenes with
moving synthetic objects and encourages feature similarity
between corresponding objects. However, 4dcontrast needs
synthetic datasets to obtain shapes, and moving a single
object introduces limited contextual diversity. Nekrasov et
al. [21] propose a data augmentation named Mix3D which
involves directly combining two point clouds and train-
ing models using augmented scenes in a supervised man-
ner. The merged scene becomes chaotic with occlusions
and overlaps, hindering the extraction of object-level fea-
tures in the self-supervised learning (SSL) setting. Addi-
tionally, this exchange lacks meaningful object interactions
and disrupts contextual information. By contrast, our object
exchange strategy integrates objects from different scenes,
greatly increasing the diversity of contextual cues while al-
leviating object overlap.

Self-supervised learning for 3D point clouds. Self-
supervised learning for point clouds has developed rapidly
in recent years [1, 2, 16, 19, 25]. In indoor scenes, recent
research [22, 32, 34] explores the nature of 3D point cloud
data by aggregating features within the same point/object.
For example, Pointcontrast [34] and MSC [32] aggregate
spatial features by maximizing the similarity between corre-
sponding point features; DepthContrast [37] and STRL [17]
aggregate features in each region and pull features from
different views together. Although effective, the correla-
tion between indoor objects is strongly influenced by hu-
man bias, resulting in strong entanglements between ob-
jects. Therefore, aggregating features from indoor objects
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Figure 2. Overview of our OESSL. A. Given two randomly selected point clouds Pm and Pn, we first perform clustering and generate
minimum circumscribed boxes for every cluster. Clusters with similar circumscribed boxes are matched as cluster pairs. We exchange
points of matched clusters and apply augmentation on Pm and Pn to generate novel views P̂m, P̂n, alongside two augmented views
P̄m and P̄n without exchange. B. Every scene is passed through a feature extractor (Backbone) to obtain point-wise and cluster-wise
features. C. We minimize the cluster feature distance obtained from the exchanged clusters in the different scenes (i.e.,P̄m and P̂n,P̄n

and P̂m). D. We maximize the feature similarity between the remaining clusters in the augmented scenes (i.e.,P̄m and P̂m, P̄n and
P̂n). E. The point-wise features are passed through a multilayer perceptron (MLP) to classify which points belong to the relocated objects.
The cross-entropy loss is used for classification. τ1 and τ2 are data augmentations, such as random flipping and random clipping.

may lead to the model overfitting to inter-object correlations
and ignoring object patterns.

By contrast, our method disrupts the correlations be-
tween objects to mitigate the model’s dependence on con-
textual information. Additionally, we introduce a context-
aware object feature learning strategy that leverages both
object patterns and contextual information.

3. Method
The overall framework of our method is depicted in

Fig. 2 and contains two parts: Object exchange and context-
aware object feature learning. We discuss these components
in detail below.

3.1. Object exchange

Unsupervised clustering. Let us be given a se-
ries of point clouds P =

{
P 1, P 2, ..., PT

}
de-

picting T scenes, where P k = (Xk, Ck) ={
(xk

1 , c
k
1), (x

k
2 , c

k
2)..., (x

k
Nk

, ckNk
)
}

represents the k-th point
cloud with Nk 3D points xk

i ∈ R3 and corresponding RGB
colors cki ∈ R3. For each 3D point set Xk, we compute nor-
mals for each point following [9]. This process yields a set
of Nk point noramls Ok =

{
Ok

1 , O
k
2 , ..., O

k
Nk

}
, Ok

i ∈ R3.
Then, these points are taken as vertices to construct a graph
whose weight matrix is defined as:

D = 2− (Dnor + α ∗Dfeat) , (1)

where Dnor represents the matrix of pairwise cosine simi-
larity between the normals of two points, while Dfeat repre-
sents the matrix of pairwise cosine similarity based on point
features. The parameter α ∈ [0, 1] serves as a weight, bal-
ancing the influence of the two matrices. We initialize α at 0
and iteratively update it during the feature learning process
in Sec. 3.2.1. Note that when the positions of two points, i
and j, are not spatially adjacent, Dij is set to a large number.
Subsequently, we employ the GraphCut [13] algorithm, a
graph-based segmentation method, to cluster the points into
Mk clusters [9]. The center of each cluster is determined as
the average of all points belonging to that cluster.

Exchanging objects with comparable size. To ensure
meaningful object exchange without causing overlap with
nearby objects, we adopt a systematic approach. We first
apply [27] to all the clusters to generate Mk minimum cir-
cumscribed boxes, denoted as Bk = {Bk

1 , B
k
2 , ..., B

k
Mk

},
where Bk

i represents the length, width, and height of the i-
th box in scene k. The pairwise box similarity is defined
as the Euclidean distance between the vectors composed of
length, width, and height, such that smaller distances corre-
spond to higher similarity. To enhance the diversity of ex-
changed objects, we employ a hybrid sampling strategy. For
the βMk clusters in scene k, where β is the preset exchange

proportion of the clusters, we first select
β

2
Mk clusters us-

ing the farthest point sampling (FPS) algorithm, ensuring a
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representative spatial distribution. The remaining clusters
are then chosen via random sampling, introducing an ele-
ment of randomness in the selection process.

Next, we introduce a similarity degree matrix, V ∈
RβMk×Mh , where Vi,j indicates the pairwise box similar-
ity between cluster i in scene k and cluster j in scene h.
Following a greedy strategy, we match box pairs with the
highest similarity in V . Subsequently, the points belonging
to the corresponding matched clusters are exchanged be-
tween the two scenes. Leveraging V helps to avoid object
overlap, emphasizing the variability in contextual cues for
a single object across different scenes. Further insights into
the generation of robust features by exploiting such objects
are discussed in Sec. 3.2.2.

3.2. Context-aware Object Feature Learning

Having defined our object exchange strategy, we provide
more detail on how to extract the features and establish our
feature learning framework.

3.2.1 Feature extraction

Given an input point cloud Pn and a randomly selected
point cloud Pm from the dataset, we apply our object ex-
change strategy and data augmentation to create two novel
views P̂m and P̂n, alongside two augmented views P̄m and
P̄n without exchanging. To capture both point-wise and
cluster-wise information, we leverage MinkUnet [8] as our
backbone encoder, denoted as ϕ.

We initiate the feature extraction process by forward-
ing P̂m through the backbone encoder, obtaining point-
wise features f̂m

i = ϕ(P̂m) for each 3D point. Organiz-
ing these features according to clusters results in a set of
point-wise features, F̂m = {F̂m

1 , F̂m
2 , ..., F̂m

Mm
}, where

F̂m
i ∈ RNm,i×d, with Nm,i representing the number of

points in cluster i from point cloud P̂m, and d is the fea-
ture dimension of each f̂m

i . Additionally, we employ max-
pooling on point features based on the clusters obtained
using GraphCut, generating cluster-wise features Ĉm =
{ĉm1 , ĉm2 , · · · , ĉmMm

}, where ĉmi ∈ R1×d. The features in
the other scenes can be obtained in the same way, as shown
in Fig. 2.

3.2.2 Feature aggregation

Aiming at a balanced concurrent ratio among objects of
different semantics, we operationalize our approach through
two central strategies for aligning cluster features: Object
Patterns Learning and Contextual Cues Learning, both de-
tailed below. Furthermore, we introduce an auxiliary task
dedicated to enhancing the encoder’s awareness of whether
an object’s feature distribution is in an unconventional loca-
tion. This design aims to mitigate the challenges associated
with cluster-level feature alignment by having regulariza-
tion on point-level distribution.

Object patterns learning. To encourage the model to
learn object patterns, we minimize the feature distance be-
tween the clusters/points in the same cluster in different
scenes. Note that the contextual cues for a single object
can vary significantly between different scenes. Minimiz-
ing the feature distance between exchanged objects enables
the model to solely focus on object patterns.

Let Mex
m denote the number of exchanged clusters in P̂n

that are originally located in Pm. We define a loss function

Lm
op =

1

Mex
m

×
Mex

m∑
i=1

(

∥∥∥∥ ĉni
∥ĉni ∥2

− c̄mi
∥c̄mi ∥2

∥∥∥∥2
2

+
1

Nm,i
×

Nm,i∑
j=1

∥∥∥∥∥ f̂n
i,j

∥f̂n
i,j∥2

− c̄mi
∥c̄mi ∥2

∥∥∥∥∥
2

2

),

(2)

where c̄mi and ĉni are the cluster-level feature vectors of the
same exchanged clusters in P̄m and P̂n, and f̂n

i,j represents
the features of point j belonging cluster i in P̂n. The loss
function Ln

op for the point cloud Pn can be obtained in the
same way. We then employ the symmetrized loss

Lop = Lm
op + Ln

op. (3)

Contextual cues learning. To learn contextual cues, we
minimize the feature distance between the remaining clus-
ters, which share similar contexts in two randomly aug-
mented views. To constrain the feature of each point, we
also minimize the distance between the point and the corre-
sponding cluster features [33].

Let Mre
m denote the number of remaining clusters that

have not been exchanged in Pm. We write a loss

Lm
context =

1

Mre
m

×
Mre

m∑
i=1

(

∥∥∥∥ ĉmi
∥ĉmi ∥2

− c̄mi
∥c̄mi ∥2

∥∥∥∥2
2

+
1

Nm,i
×

Nm,i∑
j=1

∥∥∥∥∥ f̂m
i,j

∥f̂m
i,j∥2

− c̄mi
∥c̄mi ∥2

∥∥∥∥∥
2

2

),

(4)

where c̄mi , ĉmi are the cluster feature vectors of the same
remaining cluster in P̄m and P̂m, and f̂m

i,j represents the
feature of point j belonging cluster i in P̂m. The loss func-
tion Ln

context for the point cloud Pn can be obtained in the
same way. We then define the symmetrized loss

Lcontext = Lm
context + Ln

context. (5)

Auxiliary task. The auxiliary task aims to enable the
model to gain a more comprehensive understanding of both
object patterns and contextual information. For the point
cloud P̂m, we define a vector Ŷ m =

{
ŷm1 , ŷm2 , ..., ŷm

N̂m

}
,

where ŷmi ∈ [0, 1] represents whether point i belongs to
an exchanged cluster and N̂m represents the number of
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points in P̂m. We forward the point features F̂m to a mul-
tilayer perceptrons (MLP) to obtain point-wise prediction
Ẑm =

{
ẑm1 , ẑm2 , ..., ẑm

N̂m

}
, where ẑmi ∈ {0, 1}. For the

point cloud P̂n, we obtain Ŷ n and Ẑn in a same way. We
then define a loss Laux encoding the standard cross entropy
loss between Ŷ m and Ẑm, and Ŷ n and Ẑn.

Hence, our complete loss is written as

Ltotal = Lcontext + λLop + γLaux, (6)

where λ and γ are weights balancing the three loss terms.
We set λ to 1 and γ to 2 in our experiments.

4. Experiments
In this section, we first introduce our experimental set-

tings, including the datasets, object exchange details, and
implementation details. Then, we evaluate our pre-trained
models on downstream tasks and analyze our framework.

4.1. Experimental Settings

Datasets. ScanNet [9] consists of 3D reconstructions
of real rooms and comprises 1513 indoor scenes. We fol-
low the setting in [8] and use a training and validation
set, including 1201 and 312 scenes, respectively. The
training set is used for pre-training and fine-tuning. Our
framework utilizes scene-level point clouds for pre-training.
The Standford Large-Scale 3D Indoor Space (S3DIS) [4]
dataset contains 6 large-scale indoor areas [8]. We use
area5 as validation data and the remaining areas as train-
ing data. Synthia4D is a large dataset that contains 3D
scans of 6 sequences of driving scenes. Following [8], we
split the Synthia4D dataset into train/val/test sets including
19888/815/1886 scenes.

Object exchange details. To obtain better segmenta-
tions for object exchange and feature extraction, we update
the point features with our learned features to create the
affinity matrix. We set the initial relative weight α to 0 in
Eq. (1) and update the clusters twice during the training
process: first at one third and then at two thirds, by setting
α to 0.5. We set the similarity threshold in GraphCut [13]
to 1.5 and merge the clusters with fewer than 300 points.
In each scene, the clusters with any side length of the cor-
responding box exceeding 3 meters or less than 0.2 meters
are not used for exchange.

Implementation details. We use MinkUnet [8] as the
backbone feature extractor and build our framework on
the basis of BYOL [15]. DepthContrast [37], MSC [32],
STRL [17], and training from scratch are reproduced with
the same backbone as ours to have fair comparisons. We
pre-train the backbone on ScanNet for 200 epochs. The
learning rate is initially set to 0.036 with a cosine an-
nealing scheme with a minimum learning rate equal to
0.036× 10−4. We use SGD with a momentum of 0.9 and a

weight decay of 0.0004 following STSSL [33]. We use 8 ×
GTX3090 GPUs for pre-training and the batch size for each
GPU is 12, which leads to a total batch size of 96.

Evaluation metrics. We use the mean intersection over
union (mIoU) and the overall point classification accuracy
(Acc) to evaluate point cloud semantic segmentation, and
average precision (mAP, AP@50%, AP@25%) for instance
segmentation.

4.2. Scene Understanding

To evaluate the pre-training methods, we employ differ-
ent numbers of labels to fine-tune the models. In line with
previous methods [33, 37], we partition ScanNet, S3DIS,
and Synthia4D into distinct regimes, each corresponding
to different percentages of labeled data. Specifically, we
downsample the training data to levels of 10%, 20%, 50%,
and 100% for ScanNet and S3DIS, and 0.1%, 1%, 10%, and
100% for Synthia4D. To mitigate randomness, we down-
sample three different regimes for every percentage, fine-
tune the models separately using each regime, and report
the average performance. The number of training epochs
for every label regime can be found in the supplementary.

Indoor scene understanding. To evaluate the improve-
ment of our OESSL on indoor scene understanding, we fine-
tune the pre-trained model on ScanNet.

10% 20% 50% 100%
From Scratch 48.99 57.58 61.70 71.11

DepthContrast [37] 50.30 57.08 61.47 70.92
STRL [17] 46.94 58.94 61.85 71.03
MSC [32] 53.85 60.47 63.98 71.00

OESSL (ours) 54.37 61.27 64.56 71.28

Table 1. Pre-training on ScanNet and evaluating the fine-tuned
models in different label regimes on ScanNet for semantic seg-
mentation. We report the mIoU.

In Table 1, we show the semantic segmentation results
obtained by fine-tuning with different percentages of train-
ing data. Our method achieves better mIou for all la-
bel regimes than MSC. Specifically, our method outper-
forms training from scratch by 5.38% at a level of 10%
and MSC [32] by 0.8% at a level of 20%. In Table 2, we
report the instance segmentation results driven by Point-
Group [18]. When using 10% of the labels for fine-tuning,
our method improves performance by 4.7% in AP@50%
compared to the network without pre-training. This evi-
dences that our pre-training framework is also beneficial for
discriminating instances.

Indoor scene transferability. The contextual informa-
tion significantly differs across datasets, making it difficult
to transfer contextual features between different datasets,
especially between indoor and outdoor scenes. By contrast,
the object patterns, such as color and shape, are commonly
shared between objects. Our method generates more trans-
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mAP / AP@50 / AP@25 10% 20% 50%
From Scratch 12.63 / 25.90 / 43.33 23.63 / 41.42 / 60.73 30.91 / 51.25 / 68.38

MSC [32] 13.42 / 27.30 / 44.82 23.90 / 42.28 / 61.48 29.16 / 51.18 / 68.71
OESSL (ours) 15.30 / 30.60 / 49.94 24.67 / 43.28 / 60.86 31.73 / 52.06 / 69.80

Table 2. Pre-training on ScanNet and evaluating the fine-tuned models in different label regimes on ScanNet for instance segmenta-
tion [18]. We report the mAP, AP@50, AP@25.

10% 20% 50% 100%
From Scratch 40.48 45.94 53.25 66.16

DepthContrast[37] 46.57 47.67 53.85 63.42
STRL [17] 36.99 46.13 55.11 64.71
MSC [32] 44.85 50.12 57.16 65.40

OESSL (ours) 49.22 52.67 61.79 66.90

Table 3. Pre-training on ScanNet and evaluating the fine-tuned
models in different label regimes on S3DIS for semantic segmen-
tation. We report the mIoU.

ferable features by encoding object patterns without relying
on their specific context.

To demonstrate the transferability of the features learned
via our method, we pre-train models on ScanNet and fine-
tune them for semantic segmentation on S3DIS [4]. As
shown in Table 3, our pre-trained model performs better
than the other methods. Specifically, our method outper-
forms MSC [32] by 4.37% in mIoU with 10% of the labels.
These results strongly confirm the effectiveness of our ap-
proach at extracting object features that remain robust to
changes in the environment.

Outdoor scene transferability. We further fine-tune
the models pre-trained on ScanNet for semantic segmen-
tation using Synthia4D [24], a self-driving dataset with dif-
ferent contexts than indoor scenes. In Table 4 and Table 5,
we report the mIoU obtained by fine-tuning the models us-
ing Synthia4D. Our method outperforms the other meth-
ods consistently across all label regimes. Specifically, our
OESSL outperforms MSC [32] by 2.33% with 1% of the
labels in the test set. When utilizing only 0.1% of the train-
ing data, all pre-trained models exhibit a substantial im-
provement compared to training from scratch. Notably, our
method achieves the most significant improvement, result-
ing in an mIoU of 49.32% when evaluated on the validation
set. The improvements on S3DIS [4] and Synthia4D [24]
show that the features learned by our method generalize bet-
ter than those learned by other methods.

0.1% 1% 10% 100%
From Scratch 19.84 63.37 70.45 77.00

DepthContrast [37] 46.11 66.25 70.49 75.21
STRL [17] 39.64 65.59 69.45 77.33
MSC [32] 47.11 66.42 73.15 77.25

OESSL (ours) 49.44 68.75 73.42 77.48

Table 4. Pre-training on ScanNet and evaluating the fine-tuned
models on Synthia4D for semantic segmentation. The models are
evaluated on the test set. We report the mIoU.

0.1% 1% 10% 100%
From Scratch 20.17 67.87 74.35 80.50

DepthContrast [37] 46.23 71.66 74.00 78.56
STRL [17] 38.27 70.49 73.80 80.95
MSC [32] 46.42 71.58 75.53 81.05

OESSL (ours) 49.32 74.17 77.04 81.31

Table 5. Pre-training on ScanNet and evaluating the fine-tuned
models under different label regimes on Synthia4D for semantic
segmentation. The models are evaluated on the validation set.

4.3. Ablation study

In this section, we dissect our OESSL and analyze each
component. Unless explicitly stated otherwise, the model is
pre-trained and fine-tuned on ScanNet.

Breaking entanglements between objects. Due to in-
herent human biases, strong correlations exist among indoor
objects, indicating that certain classes of objects are highly
likely to co-occur. This co-occurrence introduces the risk of
the model overfitting to inter-object relations.

In Fig. 5, we illustrate the frequency of any two classes of
objects appearing together. In the original training dataset
(on the top of 5), certain classes exhibit a high frequency
of appearing together. For instance, the shower curtain
and door consistently appear simultaneously, and the co-
occurrence frequency between the counter and cabinet is
0.9. However, by exchanging objects between scenes, our
approach alleviates the high co-occurrence frequencies be-
tween objects, as shown in the bottom of Fig.5.

Performance under varied contexts. Our method
avoids overemphasizing contextual cues and is therefore
less affected by context changes compared to other SSL
techniques. To validate this, we evaluate the model’s per-
formance in scenes with varied contexts. Specifically, we
create a new dataset, ScanNet-C, by replacing a propor-
tion δ of the objects in ScanNet with randomly selected
objects from the entire dataset. We report the ratio of the
model’s performance on ScanNet-C to its performance on
ScanNet. A higher ratio indicates a lower impact from con-
textual changes. In the experiment, we vary δ and repeat
the experiment three times, reporting the average to reduce
randomness. As shown in Table 6, our pre-trained model
consistently achieves higher mIoU values for all δ values,
confirming that our method is indeed more robust to con-
textual changes than other methods.

In Fig. 3, we visualize the semantic segmentation for
scenes generated by relocating objects in a reasonable but
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Figure 3. Segmentation results in scenes with objects relocated in unusual locations to eliminate contextual cues. We compare MSC [32],
OESSL (Ours), and training from scratch (without pre-training). The model pre-trained with our method better distinguishes the relocated
objects, as shown in the highlighted area (colored circles).

Method \ δ 0.2 0.4 0.6 0.8
From Scratch 79.60 65.50 58.56 51.01

DepthContrast [37] 78.90 64.55 57.48 51.88
MSC [32] 79.70 67.05 59.63 52.92

OESSL (ours) 80.99 67.75 60.67 54.43
Table 6. Comparison of robustness to contextual changes. We
evaluate models on ScanNet-C with different proportions δ of re-
placed objects. We report the ratio(%) of the model’s performance
on ScanNet-C to its performance on ScanNet.

Figure 4. Comparison of mIoU on ScanNet, after fine-tuning the
models pre-trained with different β.

unusual location. Specifically, a dustbin is placed far from
the walls and a sofa is placed on the desk. For such objects
with unreliable contextual cues, MSC [32] and the model
without pre-training fail to segment the point clouds. By
contrast, our OESSL accurately segments the objects, ben-
efiting from object patterns learning. For additional visual-
izations and detailed information about ScanNet-C, please
refer to the supplementary material.

Effect of the exchanged object proportion. In this
study, we aim to clarify the impact of the exchange ratio
on the learning process. The hyperparameter β represents
the proportion of exchanged clusters in the object exchange
strategy. In our approach, when the number of available

clusters in the scene exceeds 20, we set β to 0.5; otherwise,
we set it to 1. We keep β fixed during pretraining to evaluate
its impact on the model. The experiments are repeated three
times to mitigate randomness. As depicted in Fig. 4, the
performance initially increases and then decreases as β in-
creases. We hypothesize that this is because a higher β has
the potential to increase the risk of object overlap, thereby
completely disrupting existing contextual information. As
shown in the bottom of Fig. 6, when β is set to 0.5, the
desk is replaced by a bed, breaking the correlation between
desk and sofa. However, a chair exchanges positions with
the pillow on the sofa, disrupting the object patterns when
β equals 0.7. The best-performing model corresponds to
setting β to 0.6, which balances the number of exchanged
objects and non-overlapping objects.

mIoU(%) Acc(%)
From Scratch 48.99 78.88

MSC [32] 53.85 80.49
Baseline+Mix3D 52.62 80.19

OESSL 54.37 81.15

Table 7. Ablation study on the loss function with 10% of the labels
on ScanNet. We report mIoU/Acc.

Comparison with Mix3D. Mix3D [21] is an augmen-
tation that directly combines two point clouds to generate
novel scenes and is effective for supervised semantic seg-
mentation training. Different from supervised training, self-
supervised pre-training aims to generate structured embed-
dings. Specifically, the objects of the same class should be
close in feature space and far from the objects from other
classes. The overlap between objects incurred by Mix3D
makes it difficult to distinguish the patterns between differ-
ent object classes, resulting in an irregular feature space.
Unlike Mix3D, our proposed object-exchanging strategy
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Object  exchange

Figure 5. Affinity maps for the semantic classes in ScanNet [9].
Top: affinity map for the training set. Bottom: affinity map for the
training set after object exchange.

Method Context OP Aux mIoU
Baseline ✓ 53.12

Baseline + LOP ✓ ✓ 53.90
OESSL ✓ ✓ ✓ 54.37

Table 8. Ablation study on the loss functions with 10% of the
labels on ScanNet. Context: Context cues learning, OP: Object
pattern feature learning, Aux: Auxiliary task.

mitigates object overlaps, as shown in the top of Fig. 6.
To further highlight the effectiveness of our proposed

object-exchanging strategy, we replace it with the Mix3D
method and minimize feature distance between correspond-
ing points/clusters in the newly generated scenes. This set-
ting, referred to as Baseline+Mix3D in Table 7, yields an
mIoU of 52.62%, lower than MSC and OESSL. It implies
that Mix3D is not suitable for self-supervised learning.

Loss functions. We ablate the three loss functions in
Eq. 6 to validate their effectiveness. Initially, we set β
to 0, ensuring that only the remaining clusters contribute,
and only the loss function of Eq.5 is applied. We refer to
this configuration as the baseline. Subsequently, by ad-
justing β, we activate the loss function in Eq.3, specifi-

𝜷 = 0.7𝜷 = 0.3 𝜷 = 0.5

Mix3DOriginal Object exchange

Figure 6. Top: Visual comparison of scenes generated by Mix3D
and our strategy. Bottom: Scenes generated by different β us-
ing the object exchange strategy. When β is set to 0.5, the desk
is replaced by a bed (highlighted in the red box), but a chair is
exchanged with the pillow (highlighted in the blue box) when β
increases to 0.7. For better visualization, we enhance the color
contrast between objects from different scenes.

cally designed for object pattern learning. This setting is
denoted as Baseline+LOP . The results in Table 8 show
that Baseline+LOP outperforms the baseline, achieving an
mIoU of 53.90%. Our OESSL extends this by incorporat-
ing an auxiliary task, resulting in a remarkable mIoU of
54.37%, demonstrating superior performance.

Different backbones. We conduct experiments using
SPVCNN [28] as the backbone. The results, presented in
Table 9, demonstrate the effectiveness of our method with
SPVCNN [28].

Method mIoU(%) Acc(%)
From Scratch 45.59 77.38
Baseline 47.38 78.68
OESSL (ours) 49.02 79.25

Table 9. Ablation study on backbones. The models are pre-trained
on ScanNet and tested with 10% labels.

5. Conclusion
In this paper, we have introduced a SSL framework for

point clouds, aiming to capture object features that are ro-
bust to noise and contextual variations. It starts by exchang-
ing objects with comparable sizes between different scenes,
breaking strong inter-object entanglements, and then learn-
ing both object patterns and contextual cues by leveraging
exchanged and remaining objects. Altogether, our approach
provides practical tools to learn robust context-aware repre-
sentation features for indoor scenes. Our experiments evi-
dence that our method outperforms the previous SSL meth-
ods for indoor point clouds.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information
Processing Systems, 33:21271–21284, 2020. 5

[16] Ji Hou, Benjamin Graham, Matthias Nießner, and Saining
Xie. Exploring data-efficient 3d scene understanding with
contrastive scene contexts. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 15587–15597, 2021. 2

[17] Siyuan Huang, Yichen Xie, Song-Chun Zhu, and Yixin Zhu.
Spatio-temporal self-supervised representation learning for
3d point clouds. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 6535–6545,
2021. 2, 5, 6

[18] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. Pointgroup: Dual-set point
grouping for 3d instance segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and Pattern
recognition, pages 4867–4876, 2020. 5, 6

[19] Longlong Jing, Yucheng Chen, Ling Zhang, Mingyi He, and
Yingli Tian. Self-supervised modal and view invariant fea-
ture learning. arXiv preprint arXiv:2005.14169, 2020. 1,
2

[20] Hao Li, Dingwen Zhang, Nian Liu, Lechao Cheng, Yalun
Dai, Chao Zhang, Xinggang Wang, and Junwei Han. Boost-
ing low-data instance segmentation by unsupervised pre-
training with saliency prompt. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15485–15494, 2023. 1

[21] Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe,
and Francis Engelmann. Mix3d: Out-of-context data aug-
mentation for 3d scenes. In 2021 International Conference
on 3D Vision (3DV), pages 116–125. IEEE, 2021. 2, 7

[22] Lucas Nunes, Rodrigo Marcuzzi, Xieyuanli Chen, Jens
Behley, and Cyrill Stachniss. Segcontrast: 3d point cloud
feature representation learning through self-supervised seg-
ment discrimination. IEEE Robotics Autom. Lett., 7(2):
2116–2123, 2022. 2

[23] Congpei Qiu, Tong Zhang, Yanhao Wu, Wei Ke, Mathieu
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