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Figure 1. We propose a generic framework for 3D hair modeling from monocular videos (a). It commences with a coarse raw geometry

produced by volumetric representations. Subsequently, we extract the exterior geometry of the hair from the raw geometry and combine it

with an inferred interior structure to obtain the complete 3D hair geometry (b). Finally, we recover the corresponding 3D hair model at the

strand level. Our method can reconstruct diverse hairstyles and achieve high-fidelity hair modeling results (c).

Abstract

Undoubtedly, high-fidelity 3D hair is crucial for achiev-

ing realism, artistic expression, and immersion in computer

graphics. While existing 3D hair modeling methods have

achieved impressive performance, the challenge of achiev-

ing high-quality hair reconstruction persists: they either re-

quire strict capture conditions, making practical applica-

tions difficult, or heavily rely on learned prior data, ob-

scuring fine-grained details in images. To address these

challenges, we propose MonoHair,a generic framework to

achieve high-fidelity hair reconstruction from a monocu-

lar video, without specific requirements for environments.

Our approach bifurcates the hair modeling process into two

main stages: precise exterior reconstruction and interior

structure inference. The exterior is meticulously crafted

using our Patch-based Multi-View Optimization (PMVO).

This method strategically collects and integrates hair in-

formation from multiple views, independent of prior data,

to produce a high-fidelity exterior 3D line map. This map

†Corresponding author: Youyi Zheng.

not only captures intricate details but also facilitates the

inference of the hair’s inner structure. For the interior,

we employ a data-driven, multi-view 3D hair reconstruc-

tion method. This method utilizes 2D structural renderings

derived from the reconstructed exterior, mirroring the syn-

thetic 2D inputs used during training. This alignment ef-

fectively bridges the domain gap between our training data

and real-world data, thereby enhancing the accuracy and

reliability of our interior structure inference. Lastly, we

generate a strand model and resolve the directional am-

biguity by our hair growth algorithm. Our experiments

demonstrate that our method exhibits robustness across di-

verse hairstyles and achieves state-of-the-art performance.

For more results, please refer to our project page https:

//keyuwu-cs.github.io/MonoHair/

1. Introduction

Hair is a key feature in digital humans, and a detailed

3D hair model will undoubtedly enhance their realism

[3, 7, 10, 12, 14]. However, hair modeling is an intricate

endeavor, fraught with challenges at every turn. The high

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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Figure 2. An overview of our 3D hair reconstruction pipeline.

complexity stems from the unique geometry of individual

strands twisting and turning in myriad ways.

In computer graphics, 3D hair is commonly modeled as

3D strands, facilitating rendering and simulation processes.

Although accurate strand-based hair modeling can be real-

ized using a light stage [19], it relies on dense synchronized

cameras. Besides, the reconstructed hair is incomplete since

only the hair’s exterior is captured neglecting its inner struc-

ture. To address these issues, several multi-view techniques

[11, 39] infer the inner structure based on an existing dataset

[9] while streamlining the experimental setup, for instance,

by using sparse calibrated cameras. However, this sparsity

in turn compromises the hair reconstruction quality. Re-

cently, [27] utilizes dense views extracted from a casually-

filmed video, achieving better quality and user-friendliness.

However, they rely heavily on the data prior and tend to

over-smooth the reconstruction results for certain specific

hairstyles. This issue is particularly noticeable in hairstyles

not well represented in the dataset, such as curly hair types.

Similar issues exist with the data-prior-based multi-view

methods. First, data priors, built by learning 3D hair gen-

erators with synthetic data, face diminished effectiveness

when applied to real data, mainly due to the significant do-

main gap between the synthetic training data and real-world

testing data. Second, the significant reliance on data pri-

ors tends to overshadow the rich information contained in

the original images. This neglect results in the prior over-

dominance, preventing these methods from modeling fine-

grained curly hair geometry, typically absent in the cur-

rent dataset[11, 27, 38, 39]. While such priors are essen-

tial for inferring plausible interior hair structures not readily

discernible from input data, we believe that the hairstyle’s

outer layer can be modeled directly and used to enhance and

refine the deduced interior structure.

As shown in Fig. 1, to address these concerns, we

propose a generic solution for reconstructing hair from a

monocular video. Our approach begins by initializing a

coarse geometry through learning a Neural Radiance Field

(NeRF), followed by sampling around the coarse geometry

to generate a dense raw point cloud capable of represent-

ing diverse and complex hairstyles. To refine this raw point

cloud, we introduce PMVO, which leverages the rich infor-

mation contained in the input video frames to reconstruct a

high-quality hair exterior. This approach significantly alle-

viates the issue of prior over-dominance by focusing on the

hair’s exterior details. Lastly, to infer the missing inner hair

structure, we adopt a data-driven, multi-view hair method,

which takes 2D hair information as input. However, instead

of applying Gabor filter on the images to get the input, we

directly utilize 2D structural renderings derived from the re-

constructed exterior, which mirrors the synthetic 2D inputs

used during training. This alignment effectively bridges the

domain gap between our training data and real-world test-

ing data, thereby enhancing the accuracy and reliability of

our interior structure inference.

In summary, the main contributions of our work include:

• We propose a lightweight and generic framework for 3D

hair reconstruction from a monocular video. This frame-

work can robustly reconstruct diverse hairstyles, includ-

ing curly hair, and outperforms state-of-the-art monocular

video based hair reconstruction method in reconstruction

quality. It also offers a speed improvement of more than

tenfold.

• We present a novel process for extracting high-quality ex-

terior hair structures from noisy coarse geometries. This

is achieved through our innovative patch-based multiview

optimization, incorporating two novel cost functions: ray

regularization and patch-wise angular loss.

• We introduce an undirectional strand map, generated by

rendering the high-quality hair exterior, to bridge the gap

between synthetic and real-world data. This enhances the

reliability of interior hair structure inference.

2. Related work

Implicit Representations in 3D Hair Modeling. Re-

cently, implicit representations such as NeRF [16, 18] and
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implicit surfaces [28, 36] have emerged and gained exten-

sive use in novel view synthesis [1, 2, 16, 33] and general

scene reconstruction [6, 20, 29]. Their primary advantages

are high-quality results without meticulous camera calibra-

tion, and their flexibility for modeling various structures,

including hair. For instance, studies like [5, 23, 30–32]

employ volumetric representations to implicitly capture hair

from multi-view images or monocular videos. However, the

hair models generated by these methods fall short of meet-

ing the standards for high-quality 3D strand-based hair re-

construction. Despite this limitation, such representations

are valuable for providing initial coarse geometry.

Optimization Based Hair Reconstruction. In the early

stages of hair reconstruction research, strand-based repre-

sentations were the primary focus, beginning with the pi-

oneering work by Paris et al. [21]. This approach set the

stage for numerous optimization-based hair reconstruction

methods. For instance, Luo et al. [13, 14] optimized a hair

mesh to incorporate fine-grained details using hair orien-

tations as constraints. Similarly, other studies [8, 15] em-

ployed Multi-View Stereo (MVS) techniques to generate

point clouds, optimizing shape primitives like strands and

ribbons to create complete hair models. Building upon these

methods, Nam et al. [19] introduced a line-based Patch-

Match MVS approach, capable of reconstructing high-

precision hair segments using a dense capture setup with

synchronized cameras. However, their method requires ex-

tensive multi-view calibrations and specific lighting condi-

tions, posing practical challenges for average users. More-

over, the reconstructed hair models lack interior structures,

thus significantly limiting their applicability.

Hair Reconstruction with Data Prior. Since the USC-

HairSalon dataset [9] was released, using data priors for 3D

hair reconstruction has gained widespread popularity. Stud-

ies like [4, 39] have developed data-driven methods that se-

lect and modify hairstyles from a database to match them

with the geometry seen in images. Further, research illus-

trated in [24, 34, 35, 38, 40, 41] has shown how single im-

ages can be input into neural networks trained with syn-

thetic data to create strand-based hair models. These deep

learning methods also work well with a few images from

different views, as shown in [11]. However, they struggle to

accurately reconstruct hairstyles not present in the database.

Additionally, their effectiveness is reduced when applied to

real data, primarily due to the significant domain gap be-

tween synthetic training data and real-world testing data.

Recently, [27] introduced a novel method that improves

hair strand reconstruction by integrating various techniques.

This method excels in mitigating issues associated with us-

ing synthetic data and produces impressive results. How-

ever, it heavily relies on data priors and is less effective in

reconstructing curly hair. Please refer to Sec. 4.1 for the

discussion.

3. Method

Fig. 2 shows the pipeline of MonoHair. Starting with a set

of images {I}, uniformly sampled from a captured monoc-

ular video, we employ NeRF [1, 17, 18] for scene recon-

struction. This yields a raw point cloud, Praw, which repre-

sents the hair region, albeit in a noisy manner. Given Praw,

we aim to reconstruct an accurate exterior layer Pout and

infer a plausible interior structure Pin. Based on these two

components, we then generate hair strands.

Our PMVO (denoted as Ψ) steps in to carve out a clear

hair exterior structure. By leveraging the information from

images {I}, it refines Praw and associates each point around

the hair’s boundary with a 3D hair-growing direction. This

process results in a 3D line map, Pout = Ψ(Praw, I), where

each 3D line can be represented by its 3D position p and 3D

direction d: Lp = {p,d} (Sec. 3.1). Notably, Pout provides

a structured representation of the hair’s outer region, en-

abling the generation of coherent and high-quality 2D hair

structure renderings.

Subsequently, we employ a hair generation network

DeepMVSHair [11] and improved it to adjust to our

pipeline, denoted as DeepMVSHair* (N ). This network

is pre-trained on a synthetic 3D hair database and takes

in the 2D undirectional strand maps derived from Pout to

deduce the hair’s intricate inner structure, represented as

Pin = N (R(Pout)) (Sec. 3.2), where R denotes the ren-

dering operation.

Finally, our strand generation module ζ extracts the hair

strands S from the reconstructed outer layer Pout and the in-

ferred inner structure Pin (Sec. 3.3). This can be formulated

as:

S = ζ(Pout,Pin). (1)

3.1. Patch­based Multi­View Optimization

As discussed in Sec. 1, a fine-grained exterior structure is

essential for hair reconstruction. However, obtaining such

a high-precision exterior hair structure is nontrivial. In-

spired by [19], integrating multi-view image information to

produce a 3D line map Pout is a possible solution. How-

ever, their method reconstructs the exterior from scratch

with dense calibrated images and is highly limited by ex-

pensive capture equipment and strict capture conditions. In

response to these limitations, Neural Haircut [27] employs

NeuS [28] to first initialize a coarse 3D hair geometry and

then refines it through differentiable rendering and a learned

data prior. However, this approach applies the data prior to

the overall hair shape, causing a loss of fine-grained hair

details. Additionally, the representation of hair geometry

using a signed distance field (SDF) further exacerbates the
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(d) Image(a) Raw point cloud (b) Line map (c) Refined line map

Figure 3. Visualization of the line map extracted from raw geom-

etry.

over-smoothness. Thus, our method reconstructs the exte-

rior geometry of hair without any hair data prior constraint,

preserving as many details from the image as possible.

Specifically, we first initialize the coarse hair structure

using the point cloud extracted from NeRF [1, 17, 18] in-

stead of NeuS [28]. For efficiency, we utilize the Instant-

NGP framework [18] and obtain an initial coarse geome-

try by applying a threshold of 2.5 to the learned density

values. Subsequently, we densely sample around the ob-

tained coarse geometry to obtain Praw. Our key observa-

tion is that although Praw is very noisy and even terrible, it

encompasses nearly all of the hair’s exterior geometry, as

illustrated in Fig. 3 (a). Thus, our proposed PMVO is de-

signed to first eliminate the noise (points not belonging to

the hair) while preserving the fine-grained geometry of the

hair and then calculate a 3D growing direction at each re-

maining point.

Input Data. The input of our PMVO consists of the

coarse point cloud Praw and an image set, uniformly sam-

pled from the captured monocular video. Subsequently, for

each image, we obtain three maps: a 2D orientation map O,

a confidence map C, and a depth map D. The 2D orientation

map O and the confidence map C are extracted using the Ga-

bor filter similar to the previous work [21]. O contains the

2D hair growth direction at each pixel while C measures the

confidence of the estimated direction. The depth map D is

obtained by directly rendering the depth of Praw with the es-

timated camera parameters from COLMAP [25]. D serves

as the cue for judging the visibility V p of point p ∈ Praw

by: V p = 1 − p
z
−D(Π(p))

τ
, where pz is the z coordinate

of p and Π is the projection function. τ represents a visible

threshold, which we set to 5mm in our experiment to dif-

ferentiate between the exterior (visible regions) and inner

regions (invisible regions) of the hair. These maps will be

used to calculate our cost function, as described below.

Cost Function. For each point p ∈ Praw, our PMVO at-

tempts to find a correct 3D line Lp by integrating informa-

tion from all views in which p is visible. Here, the cor-

rect 3D line should minimize our proposed cost function

Lopt, which describes the similarity between the projected

2D line lp of Lp and the 2D orientation in the corresponding

views as follows:

Lopt(p, L
p) =

∑N

i=1 wigi(Oi(Πi(p)), l
p

i )∑N

i=1 wi

, (2)

Ray γ

x

p

Patch sample around x
i

xi

Reference  view

Figure 4. Schematic diagram of patch-based multi-view optimiza-

tion.

where i denotes a specific view, lpi = Πi(L
p), N is

the number of views used, and wi = V p

i · Ci(Πi(p)) is

the weight of p in the ith view. gi(Oi(Π(p)), lpi ) is our

proposed patch-wise angular loss function. This function

measures the angle difference between the 2D orientation

Oi(Πi(p)) corresponding to point p and the projected 2D

line direction lpi in the ith frame. The key idea for extracting

the hair line map Pout from the raw point cloud Praw is that

each 3D line Lp belonging to the hair can be projected into

all visible views, and its 3D direction projections align with

the corresponding 2D orientations in those views—a char-

acteristic that noise does not possess. Thus, our objective is

to find the best-fitting Lp that minimizes the cost function

Lopt:

Lp = argmin
Lp

Lopt(p, L
p). (3)

Patch-wise Angular Loss. Our patch-wise angular loss

aims to measure the re-projection cosine difference between

the projected 2D line and the corresponding 2D orientation.

As shown in Fig. 4, for the 2D projection x = Π(p) of p

at each frame, we sample k number of 2D points centered

on x, k = r2, where r is a patch size (set as 5 pixels in

our experiments). Then, we can formulate our patch-wise

angular loss gi as:

gi(Oi(x), l
p

i ) =
∑

x̄∈Xi(x)

Ci(x̄) · (1−cos(Oi(x̄), l
p

i )), (4)

where Xi is a 2D point set sampled 2D centered on x in the

ith view. This loss function has two advantages. First, it

allows some calibration errors. Second, it can also smooth

the direction of locally adjacent 3D lines, the same as the

properties of hair.

Optimization. As shown in Fig. 4, to solve the cost

function Lopt robustly, we first select a reference frame with

the largest confidence in the frames where p is visible to ini-

tialize Lp with a 3D vector Lp = (O(Π(p)), 0). It’s easy

to find that the correct 3D line Lp should intersect with the

ray γ emitted from the other end of the 2D line lp at the

reference view. Then, in our process of optimizing Lp, we

constrain the direction of Lp by the following regulariza-
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Figure 5. Visualization of different 2D hair growth direction maps.

(a) Portrait image. (b) Orientation map reported in [11]. (c) Ren-

dered strand map. (d) Rendered undirectional strand map.

tion:

Lreg = dist(γ,Ray(p, Lp)), (5)

where Ray(p, Lp) represents the ray starting from point p

along the Lp direction, and dist(·) is the function for cal-

culating the closest distance between two rays.

Line Refinement. For each p ∈ Praw, we filter out the

inner points, which are not visible in all frames. Then we

keep the point p with Lopt(p, L
p) < 0.05 (about 15 de-

grees) as the final Pout, as shown in Fig. 3 (b). However, the

extracted hair’s exterior geometry suffers from some noise.

Therefore, we find 100 neighbors of p, denoted as {pnei},

and calculate the variance between p and {pnei}:

var(p) = cos(Lp,avg(Lp
nei)). (6)

Subsequently, we update the Lp with avg(LPnei) if

var(p) > 0.015 (about 10 degrees) to produce the final

exterior of hair Pout, as shown in Fig. 3 (c).

3.2. Infer Interior Geometry

For a complete acquisition of hair geometry, inferring the

hair’s inner structure is necessary. We employ a method

that incorporates data priors, similar to DeepMVSHair[11].

Their method takes multi-view calibrated images as input

and trains a HairMVSNet on a synthetic dataset to integrate

multi-view hair structure features to infer the hair geome-

try, represented as a pair of a 3D occupancy field and a 3D

orientation field. However, the direct application of this ap-

proach to our problem faces two challenges: 1) the need for

calibrated images and 2) a domain gap between synthetic

and real 2D data. The 2D orientation maps, extracted using

Gabor filters from images, are limited by capture quality

and thus introduce directional ambiguity, a common issue

in 3D hair modeling.

To overcome these limitations, we propose two improve-

ments : 1) Instead of extracting 2D orientation maps from

calibrated images, we render the extracted exterior layer of

hair, Pout, to 16 fixed synthetic views (DeepMVSHair* is

trained using these fixed 16 views), as shown in Fig. 5. Our

key observation is that independently extracting its own 2D

orientation map from each image is easily affected by im-

age quality, viewing angle, and occlusion. In contrast, inte-

grating geometric information from multi-view images into

3D and rendering it into 2D results in clearer geometry and

greater robustness. Furthermore, this process is the same

as the training data preparation. Additionally, this strat-

egy facilitates the rendering of additional views, enabling

us to produce images from numerous angles and positions

while ensuring the precision of camera parameter settings.

2) While [40] attempted to train a neural network to mitigate

the ambiguity only in the frontal view, it is insufficiently

robust for other views. Our observations suggest that re-

solving ambiguities in the 3D space is often simpler than

directly in the image space. Therefore, we tackle this issue

in a subsequent stage (Sec. 3.3) by defining a 2D undirec-

tional strand map U as:

U = (cos(2 · O), sin(2 · O)), (7)

where O ∈ [0, 180]. Here, O and O + 180 are encoded

into the same color space to better facilitate the training of

DeepMVSHair [11]. Concurrently, we render a depth map

D for each view using our high-quality exterior hair struc-

ture. Consequently, we can infer the inner structure using

the improved DeepMVSHair* as follows:

Pin = N (Pout,U ,D). (8)

Besides, to accommodate the aforementioned modifica-

tions, we also design a new loss function for their orienta-

tion prediction component. Specifically, the predicted 3D

direction d and its opposite direction −d are considered to

be the same direction. This can be formulated by:

Lori =
1

N

N∑

i

min(
||d̂− d||1

3
,
||d̂+ d||1

3
), (9)

where N is the number of views, d̂ is the ground truth. For

more details, please refer to [11].

3.3. Strand Generation

To generate a complete 3D strand model, we need to merge

Pout and Pin. Specifically, for each point p in Pin, we se-

lectively integrate the points that are invisible in all views,

combining them with Pout to form our final hair geometry

H. This strategy ensures that the data prior does not over-

shadow the details in the hair’s exterior geometry. Subse-

quently, we voxelize the space and convert H to a high-

resolution 3D orientation field and then use forward Euler

and backward Euler to generate segments {s} similar to pre-

vious works [11, 34]. The difference is that we recursively

connect short segments into long strands instead of connect-

ing to the scalp root directly since it is difficult to distinguish

which end of a segment is the root when the short segments

are close to the scalp. Besides, we connect long strands to

the scalp and detect the direction of unconnected strands

using connected strands to resolve direction ambiguity. Al-

gorithm 1 presents our growing step in detail.

24168



Image ImageNeural Haircut Ours OursNeural Haircut

Figure 6. Qualitative comparison with Neural Haircut [27], which has limited ability to reconstruct complex hairstyles, especially for curly

hair (the reconstruction results are all from their paper). On the contrary, our reconstruction results can maintain more details in the images.

Algorithm 1: Strand Generation

1 Input: Hair scalp Ω, hair segment set {s}
2 Output: Strands connected to scalp Sc

3 Step1: For each segment s, find the nearest

neighbor segment to root (srnei) and tip (stnei)
respectively.

4 Step2: Recursively connect (srnei) and (stnei) to

produce long strand set {sl}
5 while len({sl})̸= 0 do

6 Step3: For each sl, calculate the distance

dist(sl,Ω) of its end (either root or tip) closest

to the scalp. If dist(sl,Ω) < 15mm, include sl

to the set Sc and remove it in {sl}.

7 step4: For each sl, find the neighbor sc in Sc

with a distance dist(sl, sc) < 5mm, having

the most similar growth direction, then resolve

the ambiguity in growth direction based on it.

Where sc ∈ Sc.

8 Step5: For the remaining sl, find the neighbor

sc in Sc with a distance dist(sl, sc) < 2mm,

and connect it with the closest point on sc.

9 end

Thresholds: mm / degrees

Method 2/20 3/30 4/40 2/20 3/30 4/40 2/20 3/30 4/40
Precision Recall F-score

DeepMVSHair [11] 43.9 67.2 79.5 9.2 19.5 24.8 15.2 30.2 37.8

DeepMVSHair* 49.5 77.1 86.3 9.3 19.0 25.1 15.7 30.5 38.9

Neural Haircut [27] 52.9 78.1 88.4 9.8 17.8 26.3 16.4 28.7 40.3

Ours 60.8 83.3 92.1 10.4 19.3 25.9 17.8 31.3 40.4

Table 1. Quantitative comparison with [11, 27]. Our method

achieves the highest precision and F-score.

Method coarse geometry fine geometry strand generate total

Neural Haircut [27] 24-36h 48-72h / 72-108h

Ours 5min 3-4h 1-2h 4-6h

Table 2. Comparison with Neural Haircut [27] in terms of time

consumption. Our method is ten times faster.

4. Evalution

We train our improved DeepMVSHair* model on USC-

HairSalon [9], which includes 343 hairstyles aligned with

a template head. To augment the dataset, we applied ran-

dom translations, rotations, and scaling, resulting in a total

of 2,744 strand models. We evaluate our method through a

comprehensive evaluation, encompassing both quantitative

and qualitative comparisons, using synthetic data [37] and

public real-world H3DS dataset [22] as well as real-world

monocular video captures (Sec. 4.1). We also conduct an

ablation study to evaluate the importance of each compo-

nent of our method (Sec. 4.2). Implementation details and

more experiments please refer to supplementary materials.

4.1. Comparison

Baselines. We compare MonoHairwith strand-based hair

modeling methods [11, 27, 34, 40], as well as a popular 3D

reconstruction method [28] and a NeRF-based method [18].

Where Neural Haircut [27] reconstructs a strand model

from a monocular video, consistent with our input. Deep-

MVSHair [11] is a strand-based reconstruction method

based on sparse multi-view images. In our evaluation, we

compare our method with basic DeepMVSHair and our im-

proved implementation (DeepMVSHair*), using both syn-

thetic [37] and real-world data. NeuS [28] is a representa-

tive reconstruction method based on an SDF representation,

while Instant-NGP [18] is commonly used for novel view

synthesis. We compare our method with these methods and
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Image Instant-NGP NeuS NeuS-PMVO Ours

Figure 7. Qualitative comparison with Instant-NGP [18] and NeuS [28]. These volumetric approaches can only produce coarse hair

geometry. We also compare the results with another initialization method (NeuS-PMVO). Although they yield similar results, initializing

coarse geometry using NeuS tends to obscure fine-grained details.

Image OursDeepMVSHair*DeepMVSHair

Figure 8. Qualitative comparison with DeepMVSHair [11] on the

H3DS[22] dataset. Since the 2D orientation maps extracted from

the images may be inconsistent across different views, their results

cause some lost geometry. Our improved DeepMVSHair* effec-

tively addresses this issue, though there are still some details lost

due to data prior limitations. In contrast, our method escapes these

limitations and achieves a high-fidelity result with richer details.

NeuS-PMVO, where NeuS-PMVO is our method with the

SDF representation as coarse initialization geometry. Fi-

nally, we also provide comparisons with single-view based

methods NeuralHDHair[34] and HairStep [40] in the sup-

plementary materials.

Qualitative comparison with Neural Haircut [27] is

shown in Fig. 6. Their approach tends to yield straight

strands and lacks the ability to effectively represent curly

hair, primarily due to the imposition of overly strong con-

straints by the data prior. Besides, the hair geometry rep-

resentation using SDF also limits some curly strands into a

smooth surface (see below for more discussion). In contrast,

it is evident that our method exhibits greater robustness for

curly hair. We also conduct a quantitative comparison with

them [27] on the synthetic dataset [37]. The comparison re-

sults are shown in Tab. 1. Our method achieves the highest

precision and F-score. Moreover, we also compare the two

methods in terms of reconstruction efficiency as shown in

Tab.2. Neural Haircut takes 3-4 days for each subject on

a single NVIDIA RTX 3090, which significantly limits its

practical application, while ours only takes 4-6 hours.

We provide qualitative comparisons with Instant-NGP,

NeuS, and NeuS-PMVO. Instant-NGP and NeuS can only

produce a coarse hair geometry, our method can achieve

more robust and accurate results than them. It is impor-

tant to note that the results obtained by NeRF-based meth-

ods often exhibit lots of noise, and NeuS is more effective

in obtaining clean 3D geometry. However, as shown in the

last two columns of Fig. 7, the results of NeuS-PMVO are

smoother in some details, and thus we choose Instant-NGP

to initialize the coarse geometry.

Quantitative and qualitative comparisons with Deep-

MVSHair are given in Tab. 1 and Fig. 8, respectively.

While their method is capable of generating plausible ge-

ometry, its performance is significantly impacted by the

quality of the input 2D orientation map. On the other hand,

taking in undirectional strand maps derived from the 3D line

map, the proposed DeepMVSHair* can produce a better

result. However, since the learning method is limited by the

distribution of the data prior, the obtained results may differ
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Figure 9. Given a monocular video, our method can reconstruct a high-fidelity strand model, including intricate curly hair. For more results

please refer to the supplementary materials.

from the captured images in detail. In contrast, our method

synthesizes a high-quality exterior structure of the hair and

only applies data priors to the invisible inner geometry, re-

sulting in superior results.

As shown in Fig. 9, we also provide some challenging

cases of real-world video capture to evaluate our method.

Our method can robustly reconstruct diverse hairstyles, in-

cluding straight, wavy, and curly hair, and achieve high-

quality and realistic results. For more examples, please re-

fer to our supplementary materials.

4.2. Ablation Study

We evaluate the performance of each component of our

method via an ablation study on real data and synthetic data

[37]. As shown in Fig. 10, without PMVO, errors in cam-

era parameters lead to the removal of many hair points as

noise, resulting in the loss of some hair strands. On the

other hand, when DeepMVSHair* is not applied, the results

lack internal structures, appearing as a shell comprised of

isolated segments. For more ablation studies please refer to

our supplementary materials.

5. Conclusion and Discussion

In this paper, we have rethought the existing multi-view

based hair reconstruction pipeline, where most methods ap-

ply the learned data prior directly to the reconstruction of

the entire hairstyle, which is extremely limited by the di-

versity of training databases. To this end, we proposed

MonoHair, a generic framework that bifurcates hair mod-

eling into exterior and interior geometries. It extracts the

Image w/o PMVO Fullw/o DeepMVSHair*

Figure 10. Qualitative evaluation of each key component of our

method. PMVO helps produce a high-quality exterior hair geom-

etry. While DeepMVSHair* helps infer the internal geometry to

obtain a complete hair geometry.

exterior hair structure from multiview images without rely-

ing on data priors. Subsequently, the framework deduces

the inner hair structure by combining learned data priors

with the extracted high-quality exterior hair structure. Ex-

tensive experiments demonstrated that our method employ-

ing coarse geometry produced by [18] combined with the

proposed PMVO and inner inference module can can re-

construct a high-fidelity strand model and support various

hairstyles, including curly hair.

As shown in Fig. 9 and Fig. 11, the main limitation

of our method is that, while we can successfully recon-

struct the majority of hair geometry, due to severe inter-

sections and occlusions, some intricate hairstyles (such as

braids), the connection relationships may be incorrect. This

is primarily because despite we can reconstruct high-quality

hair exterior, the inner geometry remains dependent on the

data prior. In principle, expanding the dataset to include a

more diverse range of hairstyles or directly reconstructing

the interior structure using computed tomography similar to

CT2Hair [26] can alleviate this limitation.

Figure 11. The main limitation of our method is that the connec-

tion relationships may be incorrect in instances with severe inter-

sections and occlusions.
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