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Abstract

Recently, the emergence of naturalistic adversarial patch
(NAP), which possesses a deceptive appearance and var-
ious representations, underscores the necessity of de-
veloping robust detection strategies. However, existing
approaches fail to differentiate the deep-seated natures
in adversarial patches, i.e., aggressiveness and natural-
ness, leading to unsatisfactory precision and generaliza-
tion against NAPs. To tackle this issue, we propose NAP-
Guard to provide strong detection capability against NAPs
via the elaborated critical feature modulation framework.
For improving precision, we propose the aggressive fea-
ture aligned learning to enhance the model’s capability in
capturing accurate aggressive patterns. Considering the
challenge of inaccurate model learning caused by decep-
tive appearance, we align the aggressive features by the
proposed pattern alignment loss during training. Since the
model could learn more accurate aggressive patterns, it is
able to detect deceptive patches more precisely. To enhance
generalization, we design the natural feature suppressed in-
ference to universally mitigate the disturbance from differ-
ent NAPs. Since various representations arise in diverse
disturbing forms to hinder generalization, we suppress the
natural features in a unified approach via the feature shield
module. Therefore, the models could recognize NAPs within
less disturbance and activate the generalized detection abil-
ity. Extensive experiments show that our method surpasses
state-of-the-art methods by large margins in detecting NAPs
(improve 60.24% AP@0.5 on average).1

1. Introduction
Deep neural networks (DNNs) have been widely applied in
real-world scenarios [9, 29–31, 49]. Despite their remark-
able performance, DNNs are known for their vulnerability

1Our code is available at https://github.com/wsynuiag/
NAPGaurd.
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Figure 1. (a) displays the adversarial examples generated by Non-
NAP (i.e., AdvTexture [11]) and NAP (i.e., GNAP [10]). (b) shows
the insufficient generalization of current model-assisted method
for NAPs (i.e., Ad-YOLO [14]). (c) shows the limited precision of
image analysis method for NAPs (i.e., LGS [33]). (d) shows the
success of our NAPGuard on both Non-NAPs and NAPs.

to adversarial attacks [7, 18, 35], which hinders their reli-
ability. Adversarial patches, as a crucial form of physical
adversarial attacks, pose a serious threat to the security of
computer vision models and applications, including object
detection [38, 42, 43, 47], crowd counting [27], vision trans-
former [44], x-ray detection [24], etc.

In the past years, numerous efforts have been made to
detect physical adversarial patches [2, 14, 16, 26, 32, 33,
37, 46, 48]. Previous methods focus solely on detecting the
presence of adversarial patches [2, 32, 46], neglecting their
precise location, which reduces the task to a classification
problem. To address this issue, current detection methods
aim to locate the adversarial patches, which plays a crucial
role in accurately detecting the source of malicious content
within an image. Moreover, these methods can be served as
a pre-processing step in existing defense methods (e.g., im-
age denoising), thereby enhancing their potential for prac-
tical applications. Generally, current detection methods can
be divided into two categories: image analysis approaches
[16, 33, 37] and model-assisted approaches [14, 26, 48].
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The former detects through analyzing anomalies in the im-
age, such as gradients [33] and features [16], while the latter
involves training a deep learning model, such as an image
segmentation model [26, 48] or an object detection model
[14], to aid in the detection of adversarial patches.

Though showing certain results, existing detection meth-
ods still face notable limitations in practice: low precision
and insufficient generalization (Fig. 1) on naturalistic ad-
versarial patches (NAPs) [10, 20, 36] generated by cur-
rent methods. In comparison to non-naturalistic adversarial
patch (Non-NAP), NAP possesses two prominent character-
istics: (1) a deceptive appearance, which resembles natural
images and could potentially deceive models into learning
inaccurate patterns, resulting in low precision, and (2) var-
ious representations, which stem from the abundant object
categories in nature, leading to diverse disturbing forms that
pose challenges to generalization. However, these charac-
teristics remain insufficiently considered by current defense
methods [14, 26, 33, 48], resulting in their failure to effec-
tively detect NAPs.

To address this problem, this paper proposes NAPGuard
to provide strong detection capability against NAPs via the
elaborated critical feature modulation framework. To im-
prove precision, we propose the aggressive feature aligned
learning strategy to enhance the model’s capability in cap-
turing accurate aggressive patterns. Considering the chal-
lenge of inaccurate model learning posed by the deceptive
appearance, we align the aggressive features by the pro-
posed pattern alignment loss during training. Inspired by
previous findings [6, 34, 41] that aggressive features pri-
marily reside in the high-frequency components, we real-
ize this alignment from a high-frequency perspective. This
alignment helps the model recognize aggressive patterns
more accurately, thus enabling it to precisely detect decep-
tive patches. For enhancing generalization, we introduce
the natural feature suppressed inference strategy to univer-
sally mitigating the disturbance from different NAPs. In
view of the diverse disturbing forms caused by various rep-
resentations, we suppress the natural features in a unified
approach. In practice, inspired by the pop-out effect in bi-
ology, wherein attention rapidly detects features that signif-
icantly deviate from others in a visual display [39], we con-
sider to amplify the differences between natural and aggres-
sive features by designing the feature shield module. Under
a condition with less disturbance, the model could better
capture aggressive features and activate the generalized de-
tection ability. As shown in Fig. 1, our proposed framework
achieves better detection performance for NAPs.

Our main contributions can be summarized as follows:
• To the best of our knowledge, we are the first to explore

this issue from the perspective of aggressive and natural
features, which allows us to revisit the natures of NAPs.

• We propose the NAPGuard, an elaborated critical fea-

ture modulation framework to effectively detect NAPs by
aligning aggressive features and suppressing natural fea-
tures during training and inference, respectively.

• We construct the first generalized adversarial patch detec-
tion (GAP) dataset, which contains 25 distinct adversarial
patches and over 9000 images, to facilitate future investi-
gations in physical adversarial patch detection.

• Extensive experiments demonstrate that our method sur-
passes state-of-the-art methods by large margins in de-
tecting NAPs (60.24% AP@0.5 improvement).

2. Related Works
2.1. Physical Adversarial Patch Attack

Extensive studies have shown that DNNs are vulnerable to
adversarial patch attacks [1, 17, 22, 23, 28, 38]. These
localized patches could easily manipulate the predictions
made by the models. Early studies have introduced nu-
merous methods [1, 22, 23, 28] to generate localized ad-
versarial patches in the digital world. Beyond digital world,
adversarial patch techniques have also been applied to real-
world scenarios [11, 12, 17, 38, 47], posing a greater threat
to the reliable application of DNNs. Recently, researchers
have focused significantly on wearable physical adversar-
ial patches similar to an “invisibility cloak” [11, 45, 47]
by combining image warping methods, which effectively
evade model detection.

Besides wearability, another research hotspot of physical
adversarial patch attack is naturalness, which aims to evade
human eyes [4, 10, 20, 36]. In order to enhance the nat-
uralness of adversarial patches, researchers have leveraged
the power of generative networks, including generative ad-
versarial network (GAN) [4, 10, 36] and diffusion models
[20] to generate patches that closely resemble real-world
examples. Several related works have emerged [5, 13, 22],
which have significantly advanced the concealment capa-
bilities of adversarial patches. In summary, NAPs have pre-
sented a formidable challenge, necessitating the develop-
ment of more powerful defense strategies.

2.2. Physical Adversarial Patch Detection

Researchers have extensively explored adversarial attacks
and developed defense methods [8, 19, 25, 31]. As for ad-
versarial patches, previous detection methods mainly con-
centrated on detecting adversarial examples [2, 32, 46],
but lacked precise patch localization. To tackle this issue,
current methods focus on detecting these patches before
model input. These methods can be mainly divided into
two mainstreams: (1) image analysis approaches, which de-
tect through abnormal components of the image, including
gradients [33], features [16], entropy [37], etc. (2) model-
assisted approaches [14, 26, 48], which involve training a
deep learning model, such as an image segmentation model
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[26, 48] or an object detection model [14], to aid in the de-
tection of adversarial patches.

However, current detection methods fail to differenti-
ate between aggressiveness and naturalness in adversarial
patches, resulting in their failure when detecting NAPs. In
this paper, we focus on these deep-seated natures and design
a detection framework to effectively detect NAPs.

3. Methodology
In this section, we first provide the definition of the problem
and then elaborate on our proposed framework.

3.1. Problem Definition

Given a victim model Fθ and an input clean image I
with the ground truth label y, an adversarial example Iadv
can mislead the model to provide wrong predictions, i.e.,
Fθ(Iadv) ̸= y. As for adversarial patch attack, let P denote
an adversarial patch. The attacker applies the adversarial
patch P to the input image I through an applier A with
transformations t ∈ T (rotation, scaling, etc.). Then, the
adversarial example can be denoted as Iadv = A(I,P, t).

In this study, we acquire an adversarial patch detection
model (i.e., the “detector”) by redefining category 0 of an
object detection model as the “patch” category, discarding
other categories and training it with an adversarial example
dataset. Given a patch detector Mθ with loss function L and
a training set of adversarial examples X = {x1, x2, ..., xn}
with ground truth labels {y1, y2, ..., yn}, then the training
process can be defined as

min
θ

Exi∼X [L(Mθ(xi), yi)]. (1)

Given an image x∗ from real-world, then the inference
process can be defined by Mθ(x

∗) = y∗, where y∗ denotes
the patch locations. In this paper, we consider both training
and inference processes to provide a comprehensive detec-
tion framework against NAPs.

3.2. Framework Overview

In order to developing effective detection methods against
NAPs, we divide the feature space into two distinct cate-
gories: aggressive features, which contribute to adversar-
ial behaviors, and natural features, which correlate to nat-
uralness. Then, we propose the NAPGuard, an elaborated
critical feature modulation framework to effectively detect
NAPs. The overall framework can be found in Fig. 2.

For improving the precision, we propose the aggressive
feature aligned learning (AFAL) strategy. Given the in-
accurate model learning challenge posed by deceptive ap-
pearance, we align the aggressive features by the proposed
pattern alignment loss during training. Inspired by previ-
ous findings [6, 34, 41] that aggressive features of adversar-
ial examples primarily reside in the high-frequency com-
ponents, we realize this alignment from a high-frequency

perspective. By introducing this alignment, the detector can
better recognize aggressive patterns, thus improving its ca-
pability to precisely detect more deceptive NAPs.

For enhancing the generalization, we introduce the natu-
ral feature suppressed inference (NFSI) strategy. Consider-
ing the diverse disturbing forms caused by various represen-
tations, we adopt a unified approach to suppress the natural
features, universally mitigating the disturbance from differ-
ent NAPs. Inspired by the observation that attention rapidly
detects features that significantly deviate from others in a
visual display [39], we amplify the differences between nat-
ural and aggressive features by designing the feature shield
module. By applying this module during inference, we can
provide a condition that enables the model to capture ag-
gressive features with less disturbance, thus activating the
generalized detection ability for various NAPs.

3.3. Aggressive Feature Aligned Learning

Several previous studies have pointed out that aggressive
features of adversarial examples primarily reside in the
high-frequency components [6, 34, 41]. Since adversar-
ial patches are localized adversarial attacks, it is reason-
able to assume that the aggressive features of adversarial
patches exhibit similar characteristics. From this perspec-
tive, we observe that the high-frequency components of
NAPs are more similar to the surroundings compared to
Non-NAPs, which makes them more deceptive and leads to
inaccurate learning (see discussions in Sec. 5.3.2). Based
on this observation, we come up with an intuitive idea:
if the detector could recognize aggressive patterns within
environments aligned with naturalistic adversarial exam-
ples (NAEs), where adversarial patches share similar high-
frequency components with the surroundings, it may per-
form better in detecting deceptive NAPs. Therefore, to im-
prove precision, we consider to enhance the detector’s capa-
bility in capturing accurate aggressive patterns by aligning
the aggressive features during the training process.

In practice, given a set of adversarial examples x =
{x1, x2, ..., xn} from a training set X , a feature extraction
function F(·) (e.g., modules or backbone of neural net-
works), we utilize a Laplacian operator ∇2 to enhance the
high-frequency components within the image, thus increas-
ing the similarity between adversarial patches and the sur-
roundings (see discussions in Sec. 5.3.2). Then, we modify
the detector’s loss function to help the detector capture ac-
curate aggressive patterns during training. Since the mean
squared error (MSE) is widely used to quantify differences
of features (i.e., lower MSE indicates higher similarity be-
tween features), we introduce the pattern alignment loss, an
MSE loss between feature maps obtained from normal im-
ages and aligned images. Formally, our pattern alignment
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Figure 2. The framework of our NAPGuard. We first enhance the detector’s capability in capturing accurate aggressive patterns via
aggressive feature aligned learning strategy. Further, we universally mitigate the disturbance from different NAPs via natural feature
suppressed inference strategy. Benefiting from synergistic modulation, the proposed NAPGuard can effectively detect NAPs.

loss can be formulated as

Lp =
1

n

n∑
i=1

∥F(xi)−F(G(xi,∇2))∥2,

G(xi,∇2) = xi −∇2xi.

(2)

By minimizing Lp, we facilitate the detector to ac-
curately capture aggressive patterns from environments
aligned with NAEs, thus enabling it to precisely detect de-
ceptive patches. For further alignment, we input G(xi,∇2)
as an auxiliary branch into the detector and incorporate its
detection loss into the existing optimization process. In
summary, we can train a stronger detector by minimizing
the following loss function:

min(1− α)Ld + αLa + βLp,

La = Ld(G(xi,∇2)),
(3)

where Ld is the original detection loss of the detector, La

is the auxiliary detection loss, while α and β controls the
contribution of the terms La and Lp, respectively.

3.4. Natural Feature Suppressed Inference

As adversarial patch attack techniques continue to advance,
it is inevitable that more NAPs with various representations
will emerge in the future. These patches may introduce un-
known and diverse disturbing forms to the detector, posing
a challenge to its generalized detection ability. To enhance
generalization, we aim to mitigate these diverse disturbance
universally by suppressing the natural features in a unified
approach during the inference process.

Since aggressive features primarily reside in the high-
frequency components [6, 34, 41], we delve into the low-
frequency domain to suppress natural features. Inspired by
the pop-out effect in biology [39], we design a feature shield

module H(·) to universally mitigate the diverse disturbance
by suppressing natural features, thus amplifying the differ-
ences between natural and aggressive features. For an im-
age sampled in real-world scenarios, we first obtain the fil-
tered image with low-frequency components by applying
a low-pass filter. Then, we create a mask by selecting re-
gions that contain rich natural features for further process-
ing. Last, we smooth out the natural details in these regions,
thereby amplifying the difference between natural and ag-
gressive features.

Specifically, given an adversarial example I(x, y), where
(x, y) denotes the pixel position, we first obtain its fre-
quency domain representation F(u, v) by applying a two-
dimensional Fast Fourier Transform (FFT). To separate the
low-frequency components, we perform an element-wise
multiplication between F(u, v) and a circular low-pass filter
RL(u, v). Last, we perform an inverse FFT on the result,
yielding the filtered image Ilow(x, y). This process can be
formulated as

F(u, v) = T (I(x, y)),

Ilow(x, y) = T −1(F(u, v)⊙RL(u, v)),
(4)

where T denotes FFT and ⊙ is the element-wise multipli-
cation. In order to enable directional smoothing of natural
features, we improve the Gaussian blurring function by a
region selecting method. This allows for more targeted sup-
pression of natural features while preserving the saliency of
aggressive features in other regions. In detail, given a fil-
tered image Ilow(x, y) calculated by Eq. (4), we generate
a mask M(i, j) through selecting regions that contain rich
natural features by a thresholding operation:

τ = µlow + γσlow,

M(i, j) :=

{
1, if |Ilow(x, y)| > τ

0, otherwise
,

(5)
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Figure 3. The statistics of GAP dataset. Each part of the outermost
ring represents the number of adversarial examples generated by
the corresponding adversarial patch.

Figure 4. The generalization (AP@0.5) of the base detector (de-
fined in Sec. 5.1) on each type of adversarial patches, sorted in de-
scending order. We also display the distribution of different GLs,
divided according to the generalizable performance.

where µlow and σlow denote the mean and standard varia-
tion of Ilow, respectively, | · | represents the absolute value
operation, γ is an empirical weight to appropriately control
the threshold. Then, we suppress the natural features ac-
cording to the mask as

Is = H(I) = M⊙ C(I,Gσ) + (1 −M)⊙ I, (6)

where C denotes a two-dimensional convolution, Is is the
suppressed image, and Gσ is a Gaussian kernel constructed
using a standard deviation parameter σ to determine the
spread of the Gaussian distribution.

In summary, through utilizing the feature shield module
H(·) during inference, we suppress the natural features in a
unified approach, thus facilitating the detector to recognize
NAPs and improving the generalizable performance.

Overall, we first enhance the detector’s capability in cap-
turing aggressive patterns by jointly optimizing the loss
terms Ld, Lp and La during training. During inference,
we universally mitigate the disturbance of natural features
by utilizing the feature shield module H(·) to improve the
generalization.2

4. Generalized Adversarial Patch Dataset
To address the lack of datasets in physical adversarial patch
detection, we introduce the Generalized physical Adver-

2The overall algorithm can be found in Supplementary Materials.

sarial Patch detection (GAP) dataset, aiming to provide an
evaluation benchmark for future detection approaches.

4.1. Construction Principles

We construct our GAP dataset following the four principles:

• Data Legality. All images and adversarial patches used
in this dataset are sourced exclusively from open datasets
and published papers, complying with data legality regu-
lations. Specifically, the images are derived from the test-
ing set of INRIA-Person [3] and MS COCO [21] datasets.

• Extensive Diversity. GAP contains 25 types of distinct
adversarial patches from 8 methods including 15 NAPs
and 10 Non-NAPs, allowing for a comprehensive evalu-
ation of models’ generalizable performance across vari-
ous types of adversarial patches. In practice, we choose
9 patches from GNAP [10], 6 patches from T-SEA [12],
3 patches each from DM-NAP [20] and LAP [36], and 1
patch each from AdvPatch [38], AdvCloak [45], AdvT-
shirt [47] and AdvTexture [11].

• Professional Annotation. GAP contains professionally
annotated adversarial patches, ensuring accurate and reli-
able labeling, which can serve as a high-quality resource
for evaluating adversarial patch detection methods.

• Explicit Task. The construction of the dataset should
align with the specific problem to be solved so that rel-
evant experimental results can evaluate the effectiveness
for addressing this problem. To better evaluate the gener-
alized detection ability, especially for NAPs, we catego-
rize the testing set into three subsets according to the gen-
eralizable performance and name them in grades: Gen-
eralization Level 1 (GL1), Generalization Level 2 (GL2)
and Generalization Level 3 (GL3), where higher level rep-
resents poorer generalization. The generalizable perfor-
mance of each adversarial patch and the distribution of
each subset are shown in Fig. 4.

4.2. Data Properties

The GAP dataset contains 9266 images and 25 types of ad-
versarial patches in total. Every adversarial patch is located
with a bounding-box annotation. The statistics of adversar-
ial patches in training set and testing set are shown in Fig. 3.
All images are stored in PNG format with a fixed size of 416
× 416 pixels by padding or resizing, which align with the
settings described in the respective papers. The dataset is
partitioned into a training set (5617 images) and a testing
set (3649 images), following a ratio of 6:4. Note that GAP
dataset aims to evaluate models’ generalizable performance
comprehensively, so the testing set contains a diverse range
of adversarial patches, which is why the training-to-testing
ratio is 6:4 rather than the typical 4:1 ratio.
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Table 1. The experimental results (AP@0.5↑) of our proposed NAPGuard and compared baselines on both Non-NAPs and NAPs. The
bold values represent the highest value in each column, i.e., best performance. “Mixture” represents a mixture set of all these patch types.

Patch Type

Method Non-NAPs NAPs

T-SEA [12] AdvPatch [38] AdvCloak [45] AdvTshirt [47] AdvTexture [11] GNAP [10] DM-NAP [20] LAP [36] Mixture

LGS [33] 2.95 8.33 10.14 12.85 13.13 4.09 6.38 4.39 5.71

APE [16] 2.24 4.27 4.26 54.70 31.83 12.09 9.34 7.28 9.36

SAC [26] 0.00 5.05 0.00 18.97 41.54 0.00 0.00 0.00 20.31

PatchZero [48] 4.08 0.00 0.00 0.00 11.65 0.00 0.00 0.00 10.70

Ad-YOLO [14] 94.79 47.69 10.29 35.89 77.03 34.04 40.51 17.74 54.88

Base 99.42 87.83 59.94 42.07 69.51 68.00 54.48 36.23 76.84

Ours 98.37 96.95 92.24 69.53 94.20 88.27 98.66 86.07 92.24

Figure 5. Detection results of our proposed method and compared
baselines. (a): Original adversarial example, sampled from GAP.
(b) and (h): LGS and its mask. (c) and (i): SAC and its mask. (d)
and (j): PatchZero and its mask. (e) and (k): APE and its mask. (f)
Ad-YOLO. (g): Base detector. (l) Ours. Our NAPGuard precisely
detects NAPs. Best in view.

5. Experimental Results
In this section, we first outline our experimental settings,
then report the effectiveness of our proposed detection
framework in various settings.

5.1. Experimental Settings

5.1.1 Models and Datasets

We conduct experiments on our proposed GAP dataset. As
for the model, we obtain a patch detector through convert-
ing the common used object detection model YOLOv5 [15]
to a single-class model and training it on our GAP dataset.
Note that the “Base” model refers to the patch detector di-
rectly trained on our GAP dataset, which serves as a base-
line. As for evaluation metrics, we select the widely used
Average Precision (AP@0.5) from detection task, which re-
flects both the IoU and precision information.

5.1.2 Compared Baselines

We choose several state-of-the-art adversarial patch defense
methods as the compared baselines, including LGS [33],
Ad-YOLO [14], APE [16], SAC [26] and PatchZero [48].
For Ad-YOLO, which considers the task as an object de-
tection task similar to our approach, we use YOLOv5 as the
network architecture and train it on a GAP-adjusted dataset,
which adds the original labels to that of adversarial exam-
ples. Given that LGS [33] is an image analysis method,

Figure 6. Evaluation results of our method and compared baselines
(AP@0.5 ↑) on our GAP dataset. “Ours” achieves better perfor-
mance than all compared baselines.

we set the block size to 15, overlap to 5, threshold to 0.17,
smoothing factor to 2.3 and directly evaluate this method on
our GAP dataset. For APE [16], we keep its original setting
and evaluate it on our GAP dataset. Since SAC [26] and
PatchZero [48] require an image segmentation dataset with
pixel-level annotations, which is not aligned with our GAP
dataset, we train the models using their original settings.
For methods that generate masks, we convert the generated
masks into bounding boxes to calculate the AP@0.5.

5.1.3 Detailed Experimental Settings

During training, we empirically set α = 0.4 and β = 10.
An SGD optimizer is used with an initial learning rate of
0.01, a momentum value of 0.937 and a weight decay of
0.0005. The batch size is 16, and the detector is trained for
a maximum of 200 epochs. As for the inference stage, we
empirically set γ = 2 and the standard deviation σ = 3
of a 3 × 3 Gaussian kernel. Additionally, the radius of the
circular low-pass filter RL is set as one-fourth of the im-
age’s width. All codes are implemented in Python 3.7 using
PyTorch and all experiments are conducted on an NVIDIA
GeForce RTX 2080Ti GPU cluster. 3

5.2. Detection Performance on Adversarial Patches

In this section, we first evaluate the detection performance
of our proposed method. To provide a detailed evaluation,
we divide the testing set into 8 subsets according to the at-
tacking methods. The visualization of detection results be-
tween our NAPGuard and compared baselines can be found
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Figure 7. The distributions of frequency components among Non-
NAEs (AdvPatch [38]), NAEs (GNAP [10]) and clean examples.

in Fig. 5. As illustrated in Tab. 1, we can draw several con-
clusions as follows:

(1) For NAPs, it can be clearly observed that our method
significantly improves the performance compared with the
base detector. For example, our method yields remarkable
38.10% improvement on average for NAPs. Specifically,
we improve the generalizable performance on DM-NAP
and LAP by 44.18% and 49.84%, respectively.

(2) For Non-NAPs, our method also shows great im-
provement compared with the base detector (i.e., +32.30%
for AdvCloak and +27.46% for AdvTshirt), indicating the
effectiveness and strong generalization capability of our
method for Non-NAPs.

(3) Besides, we can witness that our method outper-
forms the compared baselines by large margins, achieving
an AP@0.5 improvement of 60.24% for NAPs on aver-
age. Further, we observe the limited precision of LGS and
APE as it generates numerous masks in non-patch regions
(as shown in Fig. 5), resulting in a low average AP@0.5
of only 4.95% for NAPs on average. SAC and PatchZero
exhibit some success in detecting Non-NAPs (i.e., 41.54%
and 11.65% for AdvTexture, respectively), but struggle to
generalize their performance to NAPs due to the deceptive
appearance. Regarding Ad-YOLO trained on our GAP-
adjusted dataset, though it successfully detects other cate-
gories (as shown in Fig. 5), its average AP@0.5 on NAPs
only achieves 30.76%, whereas the base detector achieves
52.09%. We attribute this disparity to the incorporation
of various categories during the learning process of Ad-
YOLO, which hinders its ability to accurately capture ag-
gressive patterns. In comparison, our method achieves the
highest AP@0.5 of 91.00% for NAPs on average. 3

In summary, our NAPGuard achieves remarkable perfor-
mance on both NAPs and Non-NAPs, i.e., with an average
AP@0.5 of 91.00% for NAPs, 90.26% for Non-NAPs, and
92.24% for the mixture dataset, surpassing the compared
baselines by large margins.

5.3. Discussion and Analysis

In this section, we evaluate our method on the GAP dataset,
discuss our two strategies and propose an alternative feature
shield module utilizing the high-frequency components.

Figure 8. The model attention analysis. After using our AFAL
strategy, the detector can recognize aggressive patterns better.

5.3.1 GAP Dataset Evaluation

To evaluate the generalization of our method, we con-
duct experiments on different GLs of GAP dataset. From
Fig. 6, there is a significant decline in the performance of
the detection methods, as the GL increasing, demonstrat-
ing the effectiveness of GAP dataset to benchmark general-
ization. Experiment results show that our method achieves
a higher generalizable performance than the base detector
(i.e., +21.21% on GL2, +61.28% on GL3), which signifi-
cantly outperforms other compared methods.

5.3.2 Training Strategy Analysis

First, we demonstrate that the aggressive features of adver-
sarial patches primarily reside in high-frequency compo-
nents. Fig. 7 shows the greater disparity in the distribution
of high-frequency components compared to low-frequency
components, supporting our viewpoint. Further, we observe
that compared with non-naturalistic adversarial examples
(Non-NAEs), NAEs exhibit similar high-frequency compo-
nents to clean images, indicating that NAPs resemble to the
surroundings more closely.

To verify the alignment, we provide visual evidence from
the high-frequency domain. As shown in Fig. 9, we success-
fully enhance the similarity of high-frequency components
between adversarial patches and the surroundings, which
aligns with that of NAEs.

Further, we conduct experiments to analyze the model
attention between the base detector and a detector trained
using our AFAL strategy. By comparing the visual attention
patterns of the two models using CAM [50], we can assess
the impact of our AFAL strategy on model’s capability to
focus on patch regions. Fig. 8 visually demonstrates the
focused attention of our enhanced detector on adversarial
patches. In other words, our AFAL strategy successfully
enhances the detector’s capability to recognize aggressive
patterns in deceptive patches.

5.3.3 Inference Strategy Analysis

In this part, we utilize t-SNE [40] to demonstrate the effec-
tiveness of our NFSI strategy. Specifically, We visualize the
features extracted by the base detector from an NAE (e.g.,
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Table 2. The experimental results (AP@0.5↑) of using alternative
H∗ (“NFSI-A”) on our GAP dataset.

Method GL1 GL2 GL3 Mixture

Base 94.75 62.87 27.14 76.84
+NFSI-A 94.52 65.42 27.64 77.20

+AFAL & NFSI-A 96.43 84.13 90.56 92.76

(a) (b)
Figure 9. Visualization results of high-frequency components be-
fore and after AFAL.

GNAP [10]) before and after applying our NFSI strategy.
To analyze the impact on natural features, we compare both
of them with the features extracted from its corresponding
clean image. As shown in Fig. 10, the features deviate fur-
ther from those of the clean image after applying NFSI, in-
dicating that our NFSI strategy effectively suppresses natu-
ral features within the image.

5.3.4 Alternative Feature Shield Module

In our NFSI strategy, we investigate the potential of utiliz-
ing high-frequency components for region selection from
the perspective of aggressive features. To achieve this, we
substitute the low-pass filter RL(u, v) with a high-pass one
RH(u, v). Given the more dispersed distribution of high-
frequency components, we adjust the threshold γ to a larger
value (e.g., 3) for precise region selection. To ensure the
preservation of aggressive features, we replace the mask M
with (1 − M). We denote this alternative module as H∗.
This reformulation allows us to modify Eq. (6) as follows:

Is = H∗(I) = (1 −M)⊙ C(I,Gσ) +M⊙ I. (7)

We conduct experiment on our GAP dataset to evaluate
the effectiveness of H∗. Results in Tab. 2 demonstrate its
capability to enhance generalization (i.e., +2.55% on GL2).
Additionally, when combined with our AFAL strategy, we
observe a further enhancement (i.e., +62.92% on GL3),
confirming that H∗ serves as a viable alternative module.

5.4. Ablation Studies

In this section, we provide ablation studies to further inves-
tigate the contributions of different strategies. As shown in
Tab. 3, the AP@0.5 shows a significant rise (i.e., +38.01%
for NAPs), indicating that our AFAL strategy can signifi-
cantly improve the precision. Additionally, our NFSI strat-
egy yields a modest improvement in AP@0.5 (i.e., +0.56%
for Non-NAPs and +1.14% for NAPs), demonstrating the
enhanced generalization. These experimental results show

Figure 10. Visualizing the NAE’s features extracted by the base
detector before and after applying NFSI, alongside the features
extracted from a clean image.

Table 3. The ablation study results (AP@0.5↑) on our training and
inference strategies. “+AFAL” and “+NFSI” represent using the
training and inference strategy alone.

Method Base +AFAL +NFSI Ours

Patch

Non-NAPs

T-SEA [12] 99.42 98.32 99.45 98.37
AdvPatch [38] 87.83 96.89 89.46 96.95
AdvCloak [45] 59.94 91.22 60.17 92.24
AdvTshirt [47] 42.07 65.95 44.23 69.53

AdvTexture [11] 69.51 93.71 68.30 94.20

Type
NAPs

GNAP [10] 68.00 88.00 68.19 88.27
DM-NAP [20] 54.48 98.59 57.93 98.66

LAP [36] 36.23 86.13 36.02 86.07

Mixture Mixture 76.84 91.89 77.19 92.24

that our two strategies contribute to the AP@0.5 individ-
ually, while combining them shows further improvement,
highlighting the synergistic effect of these strategies. Be-
sides, we also conduct ablation studies on different loss
terms and the choices of hyper-parameters. 3

6. Conclusion

In this paper, we propose the NAPGuard, a novel frame-
work to effectively detect NAPs by directionally modulat-
ing both aggressive and natural features during training and
inference, respectively. Further, we propose the first GAP
dataset to prompt future research on benchmarking adver-
sarial patch detection. Extensive experiments demonstrate
that our method achieves state-of-the-art performance on
NAPs, outperforming other present methods by large mar-
gins (e.g., 60.24% AP@0.5 on average).

Though achieving remarkable performance, there are
still some limitations of this framework. In the future, we
plan to apply this framework to various models and ex-
pand our GAP dataset, facilitating to build a comprehen-
sive benchmark in this domain. Moreover, we are inter-
ested in exploring the detection capabilities of our frame-
work in real-world scenarios to assess the robustness of
our approach. Further, we would like to deploy our NAP-
Guard framework as a pre-processing step in existing de-
fense methods, e.g., image denoising.

Acknowledgement. This work is supported by grants
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