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Abstract

Large multi-modal models (LMMs) exhibit remarkable
performance across numerous tasks. However, general-
ist LMMs often suffer from performance degradation when
tuned over a large collection of tasks. Recent research
suggests that Mixture of Experts (MoE) architectures are
useful for instruction tuning, but for LMMs of parameter
size around O(50-100B), the prohibitive cost of replicating
and storing the expert models severely limits the number
of experts we can use. We propose Omni-SMoLA, an ar-
chitecture that uses the Soft MoE approach to (softly) mix
many multimodal low rank experts, and avoids introducing
a significant number of new parameters compared to con-
ventional MoE models. The core intuition here is that the
large model provides a foundational backbone, while differ-
ent lightweight experts residually learn specialized knowl-
edge, either per-modality or multimodally. Extensive ex-
periments demonstrate that the SMoLA approach helps im-
prove the generalist performance across a broad range of
generative vision-and-language tasks, achieving new SoTA
generalist performance that often matches or outperforms
single specialized LMM baselines, as well as new SoTA spe-
cialist performance.

1. Introduction

Large multimodal models (LMMs) [7–9, 14, 33, 53]
demonstrate remarkable performance on a variety of tasks
including visual question answering, image captioning, vi-
sual document understanding, etc. To date, the best perfor-
mance on most of these tasks is achieved by so-called spe-
cialist LMMs, but their large scale makes it impractical to
deploy a multitude of such specialists at once. As a result,
so-called generalist LMMs emerge as an obvious choice,
where such a model is trained and deployed to handle a wide
range of tasks using the same set of model parameters.

Building a single generalist model to solve multiple tasks
remains challenging. A straightforward approach is to fine-

tune the model parameters with supervised data represent-
ing multiple tasks. However, recent research suggests that
it causes non-negligible performance degradation compared
to the performance of a single-task specialist [7]. It is
likely that, even though these tasks share the same config-
uration of modalities (e.g., image + text as input, text as
output), what the model needs to solve for is significantly
diverse – for instance, some tasks require recognizing the
fine-grained identity of visual content, some may rely on
world-knowledge outside of the visual scene, while others
require reading and understanding texts from images.

Recent work [48] show that Mixture-of-Experts (MoE)
models stand to benefit more from instruction tuning com-
pared to dense models, and serve as good candidate archi-
tectures for building generalist large language models. Intu-
itively, this should work well because different expert mod-
ules can specialize and handle different tasks. However,
there is an obvious issue with applying the MoE design
on Transformer blocks for large-scale models: the differ-
ent transformer blocks result in replicating the model pa-
rameters using high-rank experts. This creates a situation
in which the scale of each expert model block compared to
their dense-model counterparts is much more limited.

In this work, we address the aforementioned limita-
tions by introducing Omni-SMoLA, an architecture that ef-
ficiently mixes many multi-modal low rank experts. Us-
ing this architecture, we demonstrate strong capabilities for
adapting pretrained models to tackle specialized tasks. The
core intuition is that a large pretrained (or instruction-tuned)
model provides a foundational backbone of capabilities (we
denote this model by θ∗), while different lightweight ex-
perts learn additional specializations (which can be knowl-
edge, style, or capabilities). In particular, for the modalities
considered in this paper (text & vision), the Omni-SMoLA
architecture consists of three sets of experts, focusing on
text tokens, visual tokens and multimodal tokens, respec-
tively, in order to satisfy different needs from various tasks.

In general, the SMoLA design has several important
properties. First, due to its low rank expert design [43] (un-
like conventional MoE transformer models [15, 18, 30, 48]),
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the backbone contains the majority of the parameters. As a
result, the total parameter count is not proportional to the
product of expert counts and the parameter counts in each
expert. This allows the model to more easily scale to a
higher number of experts, which helps achieve better gen-
eralist performance. Second, this design is potentially com-
patible with any large model architecture, either dense or
MoE. And, last but not least, it has the flexibility to adopt
different model architectures between the pretraining stage
and multi-task learning (or instruction tuning) stage.

We evaluate the Omni-SMoLA approach on a variety
of settings, starting from PaLI-3 [8] (a 5B LMM) and
PaLI-X [7] (a 55B LMM), models that have current state-
of-the-art (SOTA) performance across a wide range of
vision-language benchmarks. The settings include vari-
ous image captioning tasks and visual question answering
tasks, and we experiment with possible combinations in
terms of model specialization. We find that: (1) Omni-
SMoLA achieves better average performance compared to
full-model fine-tuning baselines for both PaLI-3 and PaLI-
X; our experiments show that it achieves new SoTA results
on multiple vision-language benchmarks, both under gen-
eralist settings and under specialist settings; (2) the perfor-
mance improves with the introduction of the Omni experts,
and also increases with the number of experts; (3) in spite of
the added modules and a large number of experts per mod-
ule, the inference speed is only slightly slower compared to
the base models, indicating the efficiency of this design.

2. Related Work
2.1. Large Multi-modal Models

Inspired by the success of Large Language Model [5, 11,
13], there is a growing interest in building large multi-
modal models (LMMs) [8, 9, 14, 33] that are designed
to understand both vision and language signals simultane-
ously [14, 32]. For instance, Flamingo [1] used frozen lan-
guage components that scaled up to 70B parameters along-
side a relatively small vision encoder; PaLI-X [7] explored
jointly scaling up both the vision encoder and the language
backbone to a total of 55B parameters. There’s work that
looked into scaling down the model sizes: e.g., PaLI-3 [8]
achieved competitive results on a broad range of bench-
marks with a 5B model; BLIP-2 [33] achieved good zero-
shot performance on VQAv2 with a 1B model. At the same
time, further scaling up is being explored: e.g., PaLM-
E [14] integrated a 540B LLM with a 22B ViT.

2.2. Parameter-Efficient Fine-Tuning

Fueled by the success of scaling up language models [7, 10,
44, 52], there has also been increased interest in parameter-
efficient fine-tuning [3, 22, 24, 42, 45, 51, 52], which
aims to develop efficient solutions to adapt large models

to particular downstream tasks. Instead of full model fine-
tuning which updates the entire set of model parameters,
parameter-efficient fine-tuning updates or adds a relatively
small number of parameters and leaves the rest of model pa-
rameters fixed [52]. FISH Mask [51] applies a fixed sparse
mask on model parameters and only updates mask-selected
parameters. Adapters [3, 22, 42, 45] inserts new train-
able dense layers into Transformer and leave the original
model parameters frozen. Prefix-tuning [34] and prompt-
tuning [31] freeze parameters of the model and learn con-
tinuous prompts. LoRA [24] injects trainable low-rank de-
composition matrices into every layer of Transformer and
freezes the pretrained language model parameters. In par-
ticular, LoRA shows outstanding capability to achieve com-
petitive or even better performance than fine-tuning with
only 0.1% trainable parameters [24, 57]

2.3. Mixture-of-Experts for Multitask Learning

Mixture-of-Experts (MoE) architectures are centered
around enhancing conditional computation capabilities and
scale parameters in neural architectures such as Transform-
ers. The MoE transformer models [17, 29, 46, 61] typi-
cally employ N feed-forward networks, referred to as “ex-
perts”. Each of these experts has its unique set of trainable
weights, enabling them to craft distinct representations for
each input token based on contextual information. Multi-
task learning (MTL), a popular ML topic for many years,
aims at finding solutions to simultaneously improve per-
formance on multiple tasks of interests [6, 35]. Mixture-
of-experts (MoE) [25, 26, 47] approaches have recently
emerged as a promising solution for MTL [16], due to its
strategy of separating the parameter space and allowing rel-
evant model components to handle different tasks.

There is an increasing interest in investigating the appli-
cation of MoEs in Transformer-based large models. Some
methods adopt MoE in Transformer structure of large lan-
guage models [15, 18, 30, 48]. Gshard [30] introduced
the idea of scaling Transformer in LMMs with MoE lay-
ers, where every other feed forward layer is replaced
by a Sparsely-Gated MoE layer. This MoE Transformer
structure was then used in [15] to develop a family of
Decoder-only language models, and [48] which found
MoE-modified LLM models benefited more from instruc-
tion tuning than dense LLMs.

There has been work that explored combining MoE with
parameter-efficient fine-tuning. AdaMix [56] proposed a
mixture-of-adapters mechanism to improve per-task tuning
performance. Concurrent research [60] introduced mixture
of LoRA by computing weighted sum of different LoRA
outputs. While conceptually related, our SMoLA approach
differs by having significantly lower computational cost,
and also allowing hundreds of experts to handle single and
multiple modalities with negligible inference speed cost.
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We find that scaling to hundreds of experts is crucial to at-
taining improved generalist performance.

3. Methodology

3.1. Preliminaries

Low-rank Adaptation (LoRA). Low-Rank Adaptation
(LoRA) [23] is a technique designed to enhance the adapt-
ability of pretrained transformer models to new tasks with a
minor increase in trainable parameter counts. It can be ap-
plied on any linear layers, offering great compatibility with
recent large models.

We denote W ∈ Rd1×d2 as the weight matrix for a linear
layer from the large model. LoRA introduces two low-rank
matrices Win ∈ Rr×d1 and Wout ∈ Rd2×r for each layer,
where r � min{d1,d2}. The Win and Wout are consecu-
tively applied to the input of the linear layer to project the
input to a low rank space and then project back to the out-
put space. The adapted weights W′ can be represented as
W′ = W + WoutWin. As the rank of Win and Wout is lim-
ited by r and typically much smaller than d1 and d2, the
LoRA approach serves as a compact and efficient adapta-
tion mechanism.

Soft Mixture of Experts (Soft MoE). We briefly recap
the Soft MoE model in this section (details can be found in
[43]). The core idea is to learn a dispatcher module that can
dispatch input tokens to different experts, and a combiner
module that can combine the results from all the experts
and project them back to the original token space.

We denote the input to the transformer block as X ∈
RN×d1 , consisting of N tokens. Soft MoE introduces a rout-
ing matrix Φ ∈ RE×d1 that corresponds to E experts. The
dispatcher and combiner are represented by Eq. 1 and 2:
norm denotes l2 normalization and α is a learnable scalar.

D = softmax(α · norm(Φ)norm(X)T ,axis=1) (1)

C = softmax(α · norm(Φ)norm(X)T ,axis=0) (2)

Each expert model fi (usually MLP Blocks) operates on
the corresponding slice of dispatched inputs x̃i = (DX)i,:
to produce ỹi = fi(x̃i). Then, the combiner C projects the
output Ỹ = [ỹ0, ỹ1, ...ỹE-1] to the token space Y = CT Ỹ.

3.2. SMoLA Block

Conventional MoE design employs high rank experts in
their MLP blocks that directly learn to handle different in-
puts. Therefore, these experts are parameter-heavy and re-
quire expensive pretraining. The SMoLA approach relies
on adding (to an original base model denoted as θ∗) ex-
perts that use a Soft MoE architecture, while simultane-
ously avoiding significantly increasing the parameter count

by soft-mixing many zero-initialized low-rank experts. In-
tuitively, the original base model θ∗ serves as a founda-
tional backbone, and the additional low-rank experts serve
as “specialists” that gather additional specialized knowl-
edge and handle different use cases.

The base model θ∗ can be initialized with either pre-
trained (raw), multitask-tuned, or instruction-tuned check-
points. Using a raw checkpoint provides a more general
backbone, while a multitask-tuned checkpoint provides a
backbone focused on a required skill-set of the involved
tasks – we consider the decision of whether to use one or
the other as a backbone to be application-dependent. Our
choice for Soft MoE [43] to instantiate the SMoLA block
follows from the desirable properties this architecture ex-
hibits: fully differentiable, with no token dropping, and no
expert balance issues.

The right part of Fig 1 presents a SMoLA block. SMoLA
operates on linear layers for the maximum flexibility and
compatibility. We denote W∗ (W∗ ∈ Rd1×d2 ) as the weight
matrix of a linear layer in the base model θ∗ and X ∈ RN×d1

as the input with N tokens. Following [43], we introduce
the routing matrix Φ ∈ RE×d1 and compute the dispatcher
D ∈ RE×N and the combiner C ∈ RE×N using Eq. 1 and 2
for the E experts.

SMoLA adopts a LoRA-inspired approach for the expert
blocks. We introduce trainable low-rank matrices Wouti , Wini
for the i-th expert, producing the output ỹi as in Eq. 3.

ỹi = Wouti Wini (DX)Ti,: (3)

Then, the output of the SMoLA Y combines the outputs of
each expert and the original linear outputs, as in Eq. 4.

Y = XW∗ + CT [ỹ0, ỹ1, ...ỹE-1] (4)

We provide the pseudo code in the supplementary mate-
rials.

3.3. Omni-SMoLA

By default, SMoLA blocks take as inputs all the tokens, re-
gardless of their modality (denoted by SMoLAMM in the next
section). However, we note that various multimodal tasks
may place a different emphasis on how different modalities
are used. For example, image captioning relies more on the
visual tokens, VQA tasks on text-heavy images and using
upstream OCR focuses more on text, while natural-image
VQA must rely on both the visual and text tokens.

Inspired by [55], SMoLA can be seamlessly configured
to only adapt tokens for selected modalities. We denote the
SMoLA blocks that only take visual tokens or text tokens
as SMoLAV or SMoLAT, respectively. SMoLAMM refers to
the SMoLA blocks that take both visual and text tokens. As
shown in Figure 1, Omni-SMoLA (denoted by SMoLAO in
the next section) combines via sum the original backbone
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Figure 1. Omini-SMoLA model architecture contains three SMoLA blocks that take as input visual tokens, text tokens and multimodal
tokens. Each such block employs a large set of low-rank experts.

outputs with the outputs of SMoLAMM and the concatenated
outputs of SMoLAV and SMoLAT.

3.4. The Properties of Omni-SMoLA

Parameter Efficiency and Time Complexity. The inte-
gration of LoRA and Soft MoE results in a combination that
achieves a substantial reduction in the number of parameters
required for adaptation, compared to traditional MoE [30].
The low-rank matrices introduced by LoRA are of signifi-
cantly lower dimensionality than the full-rank feedforward
matrices, ensuring that the parameter increase is minimal
(and controlable via the rank hyperparameter). Not only
does this lead to a leaner model, but it also reduces memory
requirements, making it feasible to increase the number of
experts to enhance performance.

Moreover, the inference cost of applying Omni-SMoLA
is negligible. Let dmax denote max{d1,d2} and r denote
the rank per expert, the time complexity of SMoLA blocks
per-layer is O(ENdmax + E(d1 + d2)r). For one single
layer, it increases the cost from O(Nd1d2) to O(Nd1d2 +
ENdmax +E(d1 +d2)r). The number of expert E is always
much smaller than min{d1,d2}, while the rank r (typi-
cally a small integer like 4) is much smaller than the input
tokens length, especially for multimodal settings where a
single high resolution image may easily be responsible for
thousands of visual tokens.
Alternative Scaling Dimension. Traditional scaling meth-
ods in neural networks often involve increasing the size
of the model, either by adding more layers or increasing
the dimensionality of the existing layers. The proposed
method, on the other hand, introduces an alternative scaling
dimension. By leveraging sparse activation and parameter-
efficient adaptation, the proposed method achieves scal-
ing through increasing the number of the low-rank experts,
which in turn does not result in a severe increase of total
model parameter size.

Extensibility for Future Growth. The design of the pro-
posed method inherently supports extensibility, accommo-
dating future growth and adaptations with ease. As the re-
quirements of a task evolve, additional low-rank special-
ist modules can be seamlessly integrated into the architec-
ture, enhancing the model’s capability without necessitat-
ing a complete overhaul. This stands in stark contrast to
traditional scaling methods, which often require predefined
dimensions and layer numbers, limiting the model’s adapt-
ability to changing scenarios.

4. Experiments
4.1. Experimental setups

Training Mixtures. We considers three mixtures:

• Image Captioning mixture: COCO captions1 [27] ,
Textcaps [49], VizWiz-Cap [21].

• VQA mixture: VQAv22 [19], OK-VQA [37], VizWiz-
VQA [20], ST-VQA [4], TextVQA [50], OCRVQA [41],
InfoVQA [40], DocVQA [39], ChartQA [38], AI2D [28].

• Full mixture: combines the Image Captioning mixture
and the VQA mixture.

By default, we use the full mixture in our experiments to
simulate the scenario of mixing a wide variety of different
tasks. The only exception is Sec. 4.3.6, where we measure
the effect of using more focused mixtures.

Task Prompts. We do not use benchmark specific
prompts in order to achieve better versatility of the general-
ist models. Following [7] and [8], we use Generate the

1In keeping with the multilingual nature of PaLI models, here we used
a variant of the original English-only COCO captions that included trans-
lated captions for an additional 35 languages.

2Included translated questions for an additional 13 languages.
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COCO NoCaps† VQAv2 OKVQA A-OKVQA† Sci-QA† TallyQA†

Model Kar.-test val test-dev val DA MC test simple complex
Sp

ec
ia

lis
t

GIT2 [54] 145.0 126.9 81.7 - - - - -
BEiT-3 [55] 147.6 - 84.2 - - - - -
PaLM-E [14] 138.7 - 80.0 66.1 - - - -
InstructBLIP [12] - 123.1 - 62.1 62.1 73.4 90.7 - -
PaLI-X [7] 149.2 126.3 86.0 66.1 - - 86.0 75.6
CogVLM [58] 148.7 128.3 84.7 64.7 - - 92.7 - -

G
en

er
al

is
t

Unified-IO [36] 122.3 100.0 77.9 54.0 45.2 - - - -
Qwen-VL [2] - 121.4 79.5 58.6 - - 67.1 - -
CogVLM [58] 147.0 126.2 83.4 58.9 - - - - -
PaLI-3FT 144.4 120.3 82.5 56.2 59.0 78.7 55.2 80.4 65.4
SMoLA48

O -PaLI-3FT 146.5 120.3 83.6 58.2 59.8 79.3 55.8 81.8 65.1
PaLI-XFT 148.7 125.6 84.4 60.7 63.9 84.0 67.2 83.8 71.8
SMoLA48

O -PaLI-XFT 149.8 126.1 85.0 62.4 65.3 84.1 67.8 83.3 70.7

Table 1. Results on natural image captioning and question answering including COCO Captions (Karpathy split), NoCaps, VQAv2,
OKVQA, A-OKVQA, ScienceQA and TallyQA test split with end-to-end modeling without OCR pipeline input. Bold and underlined
numbers highlight best performance and best generalist performance, respectively. † denotes that there are no training examples from these
datasets during training (i.e. out-domain). The numbers in bracket denote the further per-task LoRA tuned performances. We use the same
SMoLA48

O -PaLI-XFT and SMoLA48
O -PaLI-3FT to handle inferences in Table 1 and Table 2.

Text VizWiz Text VizWiz ST OCR Info Doc AI2D Chart
Model Caps Cap VQA VQA VQA VQA VQA VQA VQA

val test test test-dev test test test test test test

without OCR pipeline input

Specialist SOTA 158.8 [8] 122.7 [7] 79.5[8] 76.4[58] 84.1[8] 76.7[8] 57.8[8]‡ 87.6[8]‡ 81.2[7] 70.9[7]

G
en

er
al

is
t

Unified-IO [36] - - - 57.4 - - - - - -
Qwen-VL [2] - - 63.8 - - 75.7 - 65.1 62.3 65.7
CogVLM [58] 151.3 - 68.1 - - 74.1 - - - -
mPLUG-DocOwl [59] 111.9 - 52.6 - - - 38.2 62.2 - 57.4
SMoLA48

O -PaLI-3FT 156.7 119.8 79.1 70.4 83.8 72.8 52.4 84.5 75.6 68.9
SMoLA48

O -PaLI-XFT 144.6 120.3 70.5 71.7 78.9 71.6 49.2 80.1 81.4 71.3

with OCR pipeline input

Specialist SOTA 161.0 [8] 125.7 [7] 80.8 [7] 76.4[58] 85.7[8] 77.8[8] 62.4[8] 88.6[8] 81.4[7] 72.3[7]
SMoLA48

O -PaLI-3FT 159.3 120.4 82.1 71.0 85.9 73.9 57.3 87.4 75.5 68.9
SMoLA48

O -PaLI-XFT 154.7 124.6 81.1 73.8 86.0 74.9 65.6 90.6 81.4 73.8

Table 2. Results on benchmarks more focused on text understanding capabilities. Bold and underlined numbers highlight SOTA perfor-
mance and SOTA generalist performance, respectively. ‡ marks specialist results with a higher resolution of 1064 where SMoLA used 812.
We use the same SMoLA48

O -PaLI-XFT and SMoLA48
O -PaLI-3FT to handle inferences with and without OCR pipeline input in Table 1 and

Table 2. ∗Results are missing because test server is not available.

alt text in {lang} at 0: as the captioning prompt
and Answer in en: {question} as the VQA prompt.

Base Models. We build SMoLA models on top of two
variants of PaLI models: PaLI-X [7] and PaLI-3 [8]. PaLI
models use contrastively pretrained ViT modules as the vi-
sual encoder to produce visual embeddings for input im-
ages; these visual embeddings are then concatenated with
text embeddings and passed to the encoder-decoder back-
bone. PaLI-X is a large-scale multimodal model that con-
tains around 55B parameters. We only experimented with
using the full-mixture in PaLI-X based experiments, where
we adopted a resolution of 672. PaLI-3 is a more nimble

variant. It is still highly performant with just around 5B pa-
rameters, achieving SOTA results on a broad range of image
captioning and VQA tasks that require text understanding
capabilities from images. For PaLI-3 based experiments,
we use a resolution of 812 for the full mixture and the im-
age captioning mixture, and 1064 for the VQA mixture.

Notation and implementation. We use SMoLAE
Y-PaLI-

3|XRAW|LoRA|FT to denote the config choices for SMoLA:
• E denotes the number of experts for each individual

modality and for multimodal experts.
• Y denotes the SMoLA’s modality configuration: MM or O.
• base model: PaLI-3 vs PaLI-X

14209



COCO Text VizWiz VQA OK Text VizWiz ST OCR Info Doc AI2D Chart Avg.
Model Cap Cap Cap v2 VQA VQA VQA VQA VQA VQA VQA VQA δ

K.test val test test-dev val val∗ test-dev test test test test test test

with OCR pipeline input, except for COCO Cap, VQAv2, OKVQA

PaLI-3 Specialist 145.9 161.0 120.3 85.0 60.1 78.3 72.2 85.7 77.8 62.4‡ 88.6‡ 75.2 69.5 0.00
SMoLA48

O -PaLI-3RAW 144.4 159.1 118.7 82.6 56.2 79.1 70.6 85.5 73.3 55.1 86.6 73.8 67.6 -2.26
PaLI-3FT 146.2 161.0 121.1 82.5 56.4 78.7 69.9 84.9 72.7 54.3 85.9 72.8 65.8 -2.31
SMoLA96

MM-PaLI-3FT 145.7 159.3 121.4 83.4 56.7 80.0 71.5 85.6 73.6 56.7 87.3 75.2 69.2 -1.26
SMoLA48

O -PaLI-3FT 146.5 159.3 120.4 83.6 58.2 80.1 71.0 85.9 73.9 57.3 87.4 75.5 68.9 -1.07

K.test val test test-dev val test test-dev test test test test test test

PaLI-X Specialist 149.2 159.6 125.7 86.0‡ 66.1‡ 80.8‡ 74.6‡ 84.5‡ 77.3‡ 54.8‡ 86.8‡ 81.4‡ 72.3‡ 0.00
PaLI-XLoRA 147.3 159.3 125.1 83.5 57.4 78.9 69.6 84.8 72.3 61.4 88.3 78.8 70.9 -1.65
SMoLA48

O -PaLI-XLoRA 148.6 158.8 125.2 84.7 60.8 80.3 73.1 85.2 74.2 64.8 90.1 80.2 73.0 -0.01
PaLI-XFT 148.7 157.0 125.3 84.4 60.7 79.6 72.2 84.7 73.5 62.4 88.2 80.7 70.2 -0.88
SMoLA48

O -PaLI-XFT 149.8 154.7 124.6 85.0 62.4 81.1 73.8 86.0 74.9 65.6 90.6 81.4 73.8 +0.38

Table 3. Ablation results on image captioning and question answering benchmarks. Bold and underlined numbers highlight best perfor-
mance and best generalist performance, respectively. ‡ denotes the specialist results with a higher resolution of 1064 for PaLI-3 and 756
resolution for PaLI-X, where we uses 812 for PaLI-3 series and 672 for PaLI-X series. ∗We use val split as TextVQA test server is broken.

• SMoLA’s initial checkpoint can be either the RAW check-
point of the base model, the base model tuned using LoRA

on a given training mixture, or full-model fine-tuned (FT)
using the training mixture. We use a rank of 128 for
LoRA tuning on all linear layers on the PaLI encoder.3

For simplicity, we assign the same number of experts to
each SMoLA block and use a rank of 4 per expert. SMoLA
is applied on all the linear layers in the attention and MLP
modules in PaLI encoder blocks. For example, SMoLA48

O -
PaLI-XFT with full-mixture denotes starting with PaLI-X
finetuned on the full-mixture, and then SMoLA-tuned on
the same mixture using 48 visual-token experts, 48 text-
token experts, and 48 multimodal-token experts.

Checkpoint selection. We monitor the scores on the vali-
dation splits4 every 500 iterations with at most 1,024 exam-
ples for each task and select the checkpoint with maximum
average validation scores.

4.2. Main Results

In this section, we present our main experimental results
using the full mixture. Recall that the full mixture contains
both image captioning and VQA tasks. We report SMoLA
results on the natural image tasks (as well as “out-domain”
tasks not included in the training mixture) in Table 1, and
results on tasks that focus on understanding texts in images
in Table 2. While results are split into these two tables for
easier consumption, they are from the same SMoLA-based
generalist models trained on one single mixture.

3LoRA with rank 512 did not achieve better overall performance.
4We use the Pix2Struct validation split for AI2D.

First, note that the generalist PaLI-XFT (PaLI-X fine-
tuned on the full-mixture) under-performs its specialist
counterparts (PaLI-X finetuned for each task individually)
on all the benchmark datasets shown in Table 1. Apply-
ing SMoLA over PaLI-XFT outperformed the base general-
ist model across the board. It effectively shortened the gap
to specialist performances, and notably introduced a new
SOTA CIDEr score of 149.8 on COCO captioning, outper-
forming all the specialist models for that task.

It is important to note that Table 1 presents results for
both “in-domain” tasks that are included in the training mix-
ture (COCO captioning, VQAv2, and OKVQA), as well
as “out-domain” tasks (those marked with †). The in-
domain tasks simulate usecases where we are interested in
serving one single model for a set of known tasks. The
out-domain tasks simulate usecases where we want to ap-
ply a generalist model to unseen tasks in a zero-shot set-
ting. The trend we noted above holds for both cases:
SMoLA48

O -PaLI-XFT outperforms base model PaLI-XFT for
both in-domain and out-domain tasks on average. Over-
all, SMoLA48

O -PaLI-XFT achieves new SoTA generalist re-
sults for all except NoCaps and TallyQA, and furthermore
beating fine-tuned specialist models for COCO (in-domain)
and A-OKVQA (out-domain). While PaLI-3FT based mod-
els overall under-performs PaLI-XFT based models on this
set of tasks, SMoLA nonetheless improves the base model
performance consistently, demonstrating the effectiveness
of this technique for both large- and small-scale models.

Table 2 presents SMoLA results on text-heavy tasks in
two experimental setups: (a) relying solely on a model’s
text understanding capabilities from the raw pixels (without
OCR input), and (b) including tokens extracted by an up-
stream OCR module as part of the text input (with OCR in-
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VQAv2 OK Text VizWiz ST OCR Info Doc AI2D Chart Avg.
Model VQA VQA VQA VQA VQA VQA VQA VQA δ

test-dev val test test-dev test test test test test test

without OCR pipeline input

PaLI-3 Specialist 85.0 60.1 79.5 71.9 84.1 76.7 57.8 87.6 75.2 70.0 0.0
PaLI-3FT 82.1 57.9 79.8 69.2 84.0 72.5 55.9 87.6 74.2 68.0 -1.53
SMoLA48

O -PaLI-3FT 83.4 57.7 80.0 70.8 84.0 73.4 57.3 87.8 75.9 70.1 -0.46

with OCR pipeline input

PaLI-3 Specialist - - 80.8 72.2 85.7 77.8 62.4 88.6 75.2 69.5
PaLI-3FT - - 81.7 70.0 85.5 73.6 59.8 88.8 74.7 67.3
SMoLA48

O -PaLI-3FT - - 82.2 72.0 85.8 74.6 61.1 89.3 76.0 70.4

Table 4. Generalist results using the VQA mixture. Bold numbers highlight the results outperforming single specialized PaLI-3 baselines,
and underlined numbers presents the results outperform multi-task fine-tuned baselines.

put). In the with-OCR setting, SMoLA48
O -PaLI-XFT shows

remarkable results: with one single model, it outperforms
specialist SoTA performance on 6 out of 10 datasets, yield-
ing new SoTA performance for TextVQA, ST-VQA, In-
foVQA, DocVQA, AI2D and ChartQA. It also improves
over the base model PaLI-xFT (see Section 4.3.1). This indi-
cates that SMoLA is effective in enabling joint processing
of information across different modalities: text situated in
image, as well as text tokens extracted by the upstream OCR
module. In the without-OCR setting, SMoLA48

O -PaLI-3FT
is able to take advantage of PaLI-3’s strong text under-
standing capability and achieves SOTA generalist score on
TextCaps, ST-VQA, InfoVQA, and DocVQA.

4.3. Ablation Studies

4.3.1 Different base models

In Section 4.2, we see strong performance from SMoLA48
O -

PaLI-XFT, starting from a strong checkpoint (full-model
PaLI-X finetuned). In this section, we examine the ef-
fect of switching to PaLI-XLoRA, which is LoRA-tuned on
the mixture and easier to obtain for large models. As
shown in Table 3, compared to their corresponding base
models, we find SMoLA helps both PaLI-XLoRA and PaLI-
XFT to achieve better overall results, obtaining +1.64 and
+1.26 improvements on average, respectively. While it is
slightly weaker than SMoLA48

O -PaLI-XFT, which outper-
forms per-task fine-tuned specialist models by an average
of 0.38 points, SMoLA48

O -PaLI-XLoRA still achieves com-
petitive performance versus the specialist models (on av-
erage only a difference of 0.01 point). It is worth noting
that the SMoLA design improves PaLI-XFT by +2.4 points
on DocVQA, +3.2 points on InfoVQA, and +3.6 points on
ChartQA, which all involve comprehending rich text and
symbols in images. We note some performance drop on the
TextCaps task, possibly due to overfitting and unambiguous
intention for image captioning tasks when the same prompt
is used for TextCaps and natural-image descriptions.

Table 3 also shows other ablation results on using differ-
ent starting checkpoints (θ∗) for SMoLA. Similar observa-
tion holds for the PaLI-3-based models. For instance, apply-
ing SMoLA to the raw checkpoint (i.e. PaLI-3RAW) achieves
better overall score than full model fine-tuning baseline
PaLI-3FT, and applying SMoLA to PaLI-3FT brings it more
competitive against PaLI-3 specialists, outperforming per-
task finetuned baselines on 4 benchmarks. One exception is
InfoVQA where the specialist uses a higher resolution.

4.3.2 Effect of Using Multi-Modal Experts

We validate the omni experts design by comparing the av-
erage performance of using 48 experts on each combination
of modalities (i.e. SMoLA48

O -PaLI-3FT) to using 96 experts
on all tokens (i.e. SMoLA96

MM-PaLI-3FT). These two variants
introduce the same additional FLOPS during inference. As
shown in Table 3, SMoLA48

O -PaLI-3FT has a slightly edge
in terms of average performance. This suggests that for the
similar amount of extra compute, there can be a slight ad-
vantage to allow modality-dependent SMoLA blocks.

4.3.3 Effect of Scaling Up the Expert Counts

Number of experts per modality

1.0

1.1

1.2

1.3

4 16 48 144

Average performance improvements over MT-FT

Figure 2. Average results of increasing number of experts.

We study the effect of scaling up the expert counts using
SMoLAE

O-PaLI-3FT. Figure 2 plots the average improve-
ments over PaLI-3FT using 4, 16, 48, and 144 experts per
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modality. The scores are averaged across the tasks pre-
sented in Table 3 on validation splits5 except for InfoVQA.
With only 4 experts per modality, SMoLA already yields
around +1.1 improvements over PaLI-3FT. Scaling up the
experts counts further improves the performance: 16, 48
and 144 experts provide 1.14, 1.2, 1.27 average points gain.

4.3.4 Further LoRA tuning to Push SOTA

We note that the SMoLA48
O -PaLI-XFT generalist model

can be considered a strong foundational model. With
further per-task LoRA tuning (using a rank of 4), the
SMoLA48

O -PaLI-XFT specialists achieve better results than
the SMoLA48

O -PaLI-XFT generalist, yielding new SOTA re-
sults on 9 benchmark datasets: COCO caption, OKVQA,
DocVQA, InfoVQA, AI2D, ChartQA, A-OKVQA, Sci-
enceQA and TallyQA (Table 5). These new SOTA results
indicate the extensibility of the Omni-SMoLA design.

Model Split PaLI-X SOTA Ours

COCO K.test 149.2 149.2 [7] 152.1
VQA v2 test-dev 86.0 86.0 [7] 85.7
OKVQA val 66.1 66.1 [7] 66.7
VizWiz-VQA test-dev 74.6 76.4 [58] 75.9
OCRVQA test 77.3 77.8 [8] 75.7
DocVQA test 86.8 88.6 [8] 90.8
InfoVQA test 54.8 62.4 [8] 66.2
AI2D test 81.4 81.4 [7] 82.5
ChartQA test 72.3 72.3 [7] 74.6

A-OKVQA DA (val) - 62.1 [12] 70.2
MC (val) - 73.4 [12] 88.2

ScienceQA test - 92.7 [58] 94.7

TallyQA simple 86.0 86.0 [7] 86.3
complex 75.6 75.6 [7] 77.1

Table 5. Further LoRA tuning SMoLA48
O -PaLI-XFT

4.3.5 Inference Speed Comparison

We compare the inference speed by measuring the number
of processed examples per second (eps) for PaLI-3FT and
SMoLA48

O -PaLI-3FT with a resolution of 812 in batch mode
(size 128) using beam decoding (beam size 4). We use
COCO caption as the evaluation task where the length of
outputs are around 10 tokens on average. We sample 18 for-
ward batches to compute the statistics. PaLI-3FT processed
31.29± 0.63 examples per second and SMoLA48

O -PaLI-3FT
processed 30.85± 0.70 examples per second, yielding only
1.4% slow-down when using 48 experts in each SMoLA
block, on all linear layers in the PaLI encoder.

4.3.6 Effects of different training mixtures

We evaluate SMoLA on the VQA and captioning mixture
with PaLI-3 in order to examine its effectiveness when all

5We use test split for AI2D as there are only 120 examples in val split.

training tasks are under the same umbrella of either VQA
or captioning. We adopt a resolution of 1064 for the VQA
mixture and 812 for the captioning mixture, and finetune
the PaLI-3 raw checkpoints on each mixture as baselines.

VQA Mixture As shown in Table 4, while still underper-
forming the per-task fine-tuned specialist models by 0.46,
SMoLA improves over the PaLI-3FT baseline by +1.07 on
average. In particular, it helps the base model on most of
the tasks with and without OCR inputs except for a 0.2 per-
formance drop on OK-VQA. The significant performance
improvements over the PaLI-3FT baseline on InfoVQA and
ChartQA persist as observed when training with the full
mixture. Furthermore, it also helps the PaLI-3-based model
to achieve a new SOTA result of 82.2 on TextVQA.
Image Captioning Mixture Table 6 summarizes results of
applying SMoLA to PaLI-3LoRA and PaLI-3FT using the im-
age captioning mixture. We observe similar trends as in the
case of using the full mixture: PaLI-3FT outperforms PaLI-
3LoRA on average, indicating limitations of LoRA tuning on
a wide range of tasks; and SMoLA helps both the baselines
achieve better average performance. The SMoLA48

O -PaLI-
3FT outperforms the per-task fine-tuned specialist models
by 0.64 on average, and sets a new SOTA for a generalist
image-captioning system.

COCO TextCap VizWizCap Avg.
Model ocr× ocrX ocr× ocrX δ

K. test val val test test

PaLI-3 Specialist 145.9 158.8 161.0 119.6 120.3 0.0
PaLI-3LoRA 143.6 158.6 161.3 118.8 120.5 -0.56
SMoLA48

O -PaLI-3LoRA 143.9 160.6 162.6 119.1 120.8 +0.28
PaLI-3FT 145.0 159.9 160.9 120.3 120.9 +0.28
SMoLA48

O -PaLI-3FT 146.5 159.5 161.7 120.5 120.6 +0.64

Table 6. Generalist results using the image captioning mixture.
Bold and underlined numbers highlight best performance and best
generalist performance, respectively.

5. Conclusion

In this work, we present Omni-SMoLA, a multimodal archi-
tecture that mixes many multi-modal experts efficiently and
achieves both high specialist and generalist performance. In
contrast to previous models for which we see performance
degradation on average when training the models on a wide
range of tasks, we show that the SMoLA low-rank experts
are able to model different skills and tasks, leading to over-
all performance improvements as a generalist model. This
finding indicates that simple LMM fine-tuning is subopti-
mal for handling a wide range of tasks, incorporating specif-
ically designed architecture adjustments during fine-tuning
can unlock better performing models.
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