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Figure 1. We present PanoRecon, which realizes an online reconstruction at the level of stuff and things with only monocular video as

input. The system runs in real-time, and performs online 3D geometry reconstruction as well as dense semantic labeling for all map region

and segmentation of individual things.

Abstract

We introduce the Panoptic 3D Reconstruction task, a
unified and holistic scene understanding task for a monoc-
ular video. And we present PanoRecon - a novel frame-
work to address this new task, which realizes an online ge-
ometry reconstruction alone with dense semantic and in-
stance labeling. Specifically, PanoRecon incrementally per-
forms panoptic 3D reconstruction for each video fragment
consisting of multiple consecutive key frames, from a vol-
umetric feature representation using feed-forward neural
networks. We adopt a depth-guided back-projection strat-
egy to sparse and purify the volumetric feature represen-
tation. We further introduce a voxel clustering module to
get object instances in each local fragment, and then de-
sign a tracking and fusion algorithm for the integration of
instances from different fragments to ensure temporal co-
herence. Such design enables our PanoRecon to yield a
coherent and accurate panoptic 3D reconstruction. Exper-
iments on ScanNetV2 demonstrate a very competitive ge-
ometry reconstruction result compared with state-of-the-art

reconstruction methods, as well as promising 3D panoptic
segmentation result with only RGB input, while being real-
time. Code is available at: https://github.com/
Riser6/PanoRecon.

1. Introduction
3D scene understanding from a posed monocular video is

a fundamental task of 3D computer vision and robotics.

The understanding ability to infer the underlying geomet-

ric structures and recognize object with semantics imme-

diately, is critical towards many downstream applications,

such as Augmented and Virtual Reality(AR and VR), inte-

rior modeling and human-robot interaction.

Recently, significant advances have been made in 3D

geometric reconstruction. Many depth-fusion methods [1–

5] and feature-fusion methods [6–12] are proposed, each

with its own strengths(see Sec. 2.3). Although the water-

tight reconstruction of whole scene can be produced, dif-

ferent objects in the scene are unable to be decoupled due

to lack of the ability to distinguish instance. On the other
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hand, many algorithms are proposed to perform semantic

segmentation [13–16] or instance segmentation [17–22] in

3D scene but require dedicated depth sensors, which are

more expensive, less compact than cameras. Thus we aim

to view the three separate tasks as a new unified task, called

panoptic 3D reconstruction. For panoptic 3D reconstruc-

tion, we aim to recover the surface geometry of the scene

from a monocular video and also assign semantic and in-

stance label for geometry elements. Following the task for-

mat of 2D panoptic segmentation [23], for ”stuff’ elements

that refer the structural regions of similar texture or mate-

rial such as wall, floor, the instance ID is often ignored, but

for ”things” elements that denote countable objects such as

chair, table, both semantic label and instance ID need to be

distinguished(see Fig. 1).

To address this panoptic 3D reconstruction task, we pro-

pose a novel framework that jointly infers geometric struc-

ture, semantic label and instance id from a monocular video,

called PanoRecon. As illustrated in Fig 2, PanoRecon in-

crementally performs 3D geometric reconstruction and 3D

panoptic segmentation(consists of 3D semantic segmenta-

tion and 3D instance segmentation) in a view-independent

3D feature volume. Given a posed monocular video, we

successively split it into multiple non-overlapping frag-

ments. Then in order to form a sparse and valid 3D fea-

ture volume of each fragment, we adopt a depth-guided

back-projection strategy to reduce erroneous feature allo-

cation(detailed in Sec. 3.1). After getting the fused 3D fea-

ture volume, we introduce a Voxel-wise Prediction Network

to decode semantic and geometric primitive for each voxel

in the feature volume(detailed in Sec. 3.2). With the hy-

brid primitives, we introduce a voxel clustering module to

get instance detection of each local fragment, and then a

Tracking and Fusion module is designed for the integration

of instances fragment by fragment to ensure global consis-

tency(detailed in Sec. 3.3), yielding the final panoptic re-

construction.

The contributions of our work can be summarized as fol-

lows:

• We introduce the task of Panoptic 3D Reconstruction

from posed monocular video, which aims for holistic 3D

scene understanding by jointly reasoning scene geometry

and instance-level semantics.

• We propose a novel system, PanoRecon, which realizes

coherent while high-detailed geometry reconstruction as

well as reasonable panoptic segmentation of the scene,

and run in real-time.

• The experimental results on ScanNetV2 [24] show that

PanoRecon achieves competitive geometry reconstruc-

tion quality compared with state-of-the-art methods and

quite considerable 3D panoptic segmentation results in

absence of depth input.

2. Related Work

2.1. Semantic SLAM and Neural Field

Recent developments in deep learning have also enabled

the integration of rich semantic information within Simulta-

neous Localization and Mapping (SLAM). [25–29] Com-

bine the semantic segmentation network with SLAM sys-

tem can incrementally compute semantic 3D map of the

environment, but no instance information is included. As

the pioneer of object-level SLAM, SLAM++ [30] repre-

sents the scene with known CAD object models. Node-

SLAM [31] and DSP-SLAM[32] take this direction of us-

ing a category-specific learnt shape prior to build the scene

instead of CAD model. [33–38] drop the requirement for

prior shape knowledge and instead take advantage of 2D

instance segmentation masks to obtain object-level scene

map. Our work will further get rid of the dependence of

2D semantic mask prior, and directly make prediction for

3D map at one stage. In addition, most of these systems

rely on the RGBD sensor data input [26, 27, 30–37], some

of them focus more on pose estimation but do not recover

the continuous scene surface geometry [25, 27, 38]. Our

method takes only RGB image sequence as input while re-

covering surface geometry and instance-level semantics of

the environment.

Neural fields have recently been used as a flexible repre-

sentation of the whole scene [39–41]. SemanticNeRF [42]

and iLabel [43] reveal the coherence properties of neural

fields via adding semantic output channel, but they do not

explicitly model each semantic entity’s geometry. PNF [44]

and Panoptic NeRF [45] take a set of images, 3D bounding

primitives and 2D predictions as input, and can render RGB

color and panoptic segmentation map at arbitrary view. To

represent multiple objects, [46–48] take pre-computed in-

stance masks as additional input and conditioned object

representation with learnable activation code, but all these

methods are still trained offline. vMAP [49] represents

each object by a small MLP and takes depth as additional

input, which can detect and optimise object instances on-

the-fly. However, these neural field methods rely on time-

consuming per-scene optimization, while our method uses

a feed-forward neural network to directly predict scene ge-

ometry and instance-level semantics in real-time.

2.2. Panoptic Segmentation

Kirillov et al. [23] proposes the task of 2D panoptic segmen-

tation, establishing a unified, holistic scene understanding

task for a single RGB image. This unified task aim to as-

sign each pixel in 2D image with an semantic label and an

instance ID. The semantic labels can be divided into two

parts: ’stuff’ and ’thing’, where ’stuff’ labels do not dis-

tinguish instance ID. VPSNet [50] proposes and explores a

new video extension of this unified task, called video panop-
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tic segmentation(VPS). [51–53] present depth-aware VPS

network by introducing additional depth information. In

contrast to these existing methods, we try to directly infer-

ence the instance-level semantics in the 3D space, and are

more concerned with the global results rather than the re-

sults of individual frames.

Another line of works take RGBD sequences or point

cloud as input and output the semantic label of 3D input

data. Broadly speaking, there are two kinds of approaches

to solve this problem: (1) Predict semantics of 2D image

using 2D segmentation network [54–56] and back-project

the semantic label to 3D data [27, 36, 57]. (2) Directly

inference the semantic labels in the 3D space. [13–16]

take voxelized point clouds as input and then apply 3D con-

volution on the voxel grid, which output the class seman-

tics of each voxel regardless of the instance ID. In order

to produce instance-level semantics of per-voxel, proposal-

based methods [17, 18] and grouping-based methods [19–

22] are presented to detect object instances. Different from

these works, we propose a baseline to a relatively untouched

problem of 3D panoptic segmentation without depth sensor.

2.3. 3D Reconstruction

There has been a long history of researches on multi-view

stereo reconstruction [1, 58], which pose 3D reconstruc-

tion as per-pixel depth estimation. Recent works [2–5] ex-

tend the classical MVS with neural network to construct

3D cost volume with multi-view features, which is used to

regress the dense depth maps. Although these methods have

shown strong results, performing especially well on recov-

ering highly detailed geometry, a known drawback is that

the estimation of each depth map is independent, so con-

tinuity across different frames is not constrained, and this

often leads to artifacts.

An alternative method has been proposed to address 3D

reconstruction in Altas [6], which proposed direct predic-

tion of TSDF and label volume from back-projected image

features with a 3D CNN. [7, 9–11] adopt a sparse 3D CNN

to perform feature volume-based reconstruction fragment

by fragment for better efficiency and scalability, and utilize

a GRU to fuse fragment feature volumes over time for bet-

ter coherence. The main advantage of these method is that

the 3D CNN can learn to produce smooth and consistent

surfaces. However, the geometric reconstruction with these

methods still remains coarse. In order to recover more ac-

curate surfaces, [9, 12] propose to use multi-view depth es-

timates as guidance to enhance the scene representation and

produce high-resolution predictions. Moreover, although

these methods can produce watertight reconstruction of the

whole scene, the scene entities can not be split to different

objects due to lack of instance-level information.

We share a similar pipeline with PlanarRecon [59],

where we recover panoptic watertight mesh instead of low-

polygonal geometry of planar instances. [60, 61] address

the panoptic 3D scene reconstruction task from a single im-

age rather than monocular video. Our work will combine

the advantages of multi-view stereo method and volumetric-

based method, achieving highly detailed and coherent re-

construction, and for the first time show an instance-level

reconstructed map from a posed monocular video.

3. Methods
Given a sequence of monocular video frames {It} and their

camera poses {ξt} ∈ SE (3) provided by a SLAM system,

our goal is to incrementally reconstruct the underlying geo-

metric structures and recognize objects as well as semantics.

To achieve online reconstruction, we sequentially select

suitable key frames from the incoming image stream fol-

lowing [7]. A new incoming frame is selected as key frame

if the camera motion is greater than a predefined thresh-

old [7]. We then split the key frame stream into multiple

non-overlapping fragments Fi = {Ii,j}Nj=1, each of which

consists of N consecutive key frames. With these frag-

ments, we then perform online panoptic 3D reconstruction.

An overview of our proposed method is shown in Fig

2. We divide our framework into three major compo-

nents, namely Depth-guided Feature Allocation and Fu-

sion, Voxel-wise Prediction Network, and Instance Detec-

tion, Tracking and Fusion. Below, we will introduce these

components in detail.

3.1. Depth-guided Feature Allocation and Fusion

Overview. The task of panoptic 3D reconstruction re-

quires coherent geometry recovered from the whole scene,

also detailed reconstruction of foreground objects. So we

choose to utilize the high-detailed depth prior from an MVS

network to guide the volxel feature allocation and fusion.

As MVS is a well-studied problem, we leverage an off-the-

shelf method [5] due to its outstanding efficiency and accu-

racy.

Feature Allocation. Unlike most existing volume-based

methods that allocate dense feature volume along each ray,

our method allocates sparse feature volumes from locations

only where the surface is likely located according to the

depth prior, similar to [9, 10]. Given a predicted depth

map and 2D feature which extracted by a 2D CNN from

key frame image, our method back-projects the 2D feature

only to the voxels within a predefined distance �d from the

corresponding estimated depth surface along the ray. This

simple and direct approach can not only sparse the feature

volume for efficiency, but also avoid the problem of irrel-

evant 2D feature filling due to the occlusion of foreground

objects. An illustration of this module is included in sup-

plementary material.
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Figure 2. PanoRecon Framework. PanoRecon back-projects the 2D image features into a fragment bound volume Fi with the guidance

of MVS depth estimation, and gradually processes the feature volume in a coarse-to-fine paradigm with the 3D CNN and GRU, then

forms a temporal coherent feature volume. A voxel-wise prediction network will be used to decode geometric and semantic primitives

{Ôi,k, T̂i,k, Ŝi,k,�x̂i,k} for each voxel in this fragment. Then the hybrid primitives {Ŝi,k,�x̂i,k+xi,k} are sent to the instance detection

module to obtain the instance objects Oi = {Oi,m} in this fragment. The tracking and fusion module matches the current instances Oi

with the global instances Og
i−1 from all previous fragments, and then performs fusion for matched instances as well as initialization for

new instances, yielding the current global panoptic reconstruction.

Mean-shift
GNN Matching

InitializeFusionVoxel Center

Shift Vector

Semantic Class

Instance Object

No match

Figure 3. 2D illustration of Instance Detection, Tracking and
Fusion. We use different shapes to represent different semantic

classes, and use different colors to distinguish instances. The red

dot means the coordinate center of each voxel.

Feature Fusion. After back-projecting view-dependent

2D features into 3D volume, the view-independent feature

volume is obtained by directly averaging the features from

different views. Thanks to the guidance of depth prior, we

do not encouter the noise problem caused by the fusion of

irrelevant feature, mentioned in [8]. Following [7], we use

3D sparse convolution to efficiently process the feature vol-

ume and adopt the Gated Recurrent Unit(GRU) to perform

feature fusion between current-fragment reconstruction and

previously reconstructed global volume for temporal coher-

ence, in a coarse-to-fine paradigm.

3.2. Voxel-wise Prediction Network

Overview. After obtaining the general 3D feature volume,

there are four branches applied to decode the voxel-wise

properties of geometric and semantic for the panoptic 3D

reconstruction task.

Occupancy prediction branch. Given a voxel-wise fea-

ture, the occupancy prediction branch can predict the per-

voxel occupancy score Ôk. The voxel whose occupancy

score is lower than a predefined threshold θ will be spar-

sified. The supervision of this branch is defined as cross-

entropy(BCE) between the predicted occupancy score and

the ground-truth occupancy values.

TSDF prediction branch. After the occupancy analy-

sis, our model will obtain a set of features of occupied

voxels. We apply a simple MLP for regressing TSDF

T̂k. The TSDF loss between the TSDF prediction and the

groundtruth TSDF is defined as: LT = |�(T̂k) − �(Tk)|,
where �(x) = sgn(x) log(|x| + 1) is the log scale function

and sgn(·) is the sign function.

Semantic prediction branch. Paralleled with the TSDF

prediction branch. We apply an additional MLP to produce

semantic scores of classes we considered for each occupied

voxel. The class with highest score will be be regraded as

the predicted semantic label Ŝk. The cross-entropy loss is

used to train this branch.

Offset prediction branch. With the semantic predictions,

our model can distinguish voxels of different semantic

classes, but still may fail to separate two instances who have
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the same semantic label, especially when they’re close to-

gether. Inspired by [62], we also estimate the voxel-wise

center shift vector �x̂k, which represents the offset from

each voxel to its instance center. The instance center is de-

fined as the coordinate mean of all voxels belong to this

instance. The predicted 3D shift vector �x̂k is supervised

by L1 loss.

3.3. Instance Detection, Tracking and Fusion

Overview. The panoptic 3D reconstruction task requires

instance-level reconstruction rather than voxel-level recon-

struction. Hence, we perform a clustering-based instance

segmentation scheme to detect all potential instance ob-

jects Oi = {Oi,m} in each fragment Fi. Meanwhile,

we maintain a set of global instance object reconstruction

Og
i−1 = {Og

i−1,n} from previous fragments. In order to as-

sociate instance detections between Oi and Og
i−1 and inte-

grate instance detections from different fragments to obtain

a globally consistent 3D instance object reconstruction, we

introduce an instance-level tracking and fusion module. An

illustration of this procedure is shown in Fig. 3.

Voxel clustering. Once we have geometric and semantic

primitives for each occupied voxel, we group the voxels to

form instance in each local fragment Fi. With the estimated

shift vector �x̂k ∈ R
3, we shift every voxel xk toward

its instance center, making the voxels of the same instance

spatially closer to each other, defined as:

x
′
k = xk +�x̂k (1)

Then, we ignore the voxels belong to the background

(stuff region) and use the predicted semantic label Ŝ to split

voxels of different foreground classes. With the shifted co-

ordinate x
′
k, we adopt a simple yet efficient mean-shift clus-

tering algorithm [63] to perform intra-class instance seg-

mentation. Then, we get the instance detection sets Oi in

current fragment Fi.

Instance tracking. In order to get the correspondences

between two sets of object instances, Oi and Og
i−1, we first

compute the similarity S(m,n) between instance Oi,m ∈
Oi and every instance Og

i−1,n ∈ Og
i−1. We initialize in-

stance embedding ei,m of each instance Oi,m by average

pooling all voxel features of this instance. Inspired by

[59, 64], we resort to a GNN with attention mechanism [65]

to allow message passing between different instances, and

then get augmented embedding vectors ēi,m and ēgi−1,n, of

Oi,m and Og
i−1,n respectively. The similarity between them

is formulated as:

S(m,n) =
〈
ēi,m, ēgi−1,n

〉
(2)

Then we use a differentiable Sinkhorn algorithm [66, 67] to

solve the optimal matching M∗:

M∗ = argmin
M

∑

m,n

M(m,n)S(m,n) (3)

Where M(m,n) ∈ {0, 1}. We will include the loss func-

tion of this module in the supplementary material.

Integration to global map. After instance tracking, there

are three possible cases, as shown in Fig. 3. If some global

instances in Og
i−1 do not find their correspondences since

they may not be visible in current fragment Fi, we will keep

these instances unchanged. In addition, for a local instance

in Oi may not find its correspondence in global set, it could

be a new instance observed for the first time, so we initialize

this new instance to Og
i . Lastly, if two instances, Oi,m and

Og
i−1,n have been successfully matched, we will integrate

them into a global instance Og
i,n and adopt a GRU module

to fuse their instance embeddings:

egi,n = GRU(ēgi−1,n, ēi,m) (4)

where ēgi−1,n and ēi,m are used as the hidden state and input

to the GRU module.

3.4. Implementation Details

Our 2D CNN architecture is a Feature Pyramid Net-

work [68] using EfficientNetV2-S [69] as backbone, and

we use torchsparse [70] for 3D sparse convolution. Our

network is trained using Adam optimizer on four Nvidia

RTX 3090 GRU for 60 epochs. Following [7], we use three

coarse-to-fine layers and set the voxel size of each layer as

16cm, 8cm, 4cm respectively. The predefined distance �d
is set to be 32cm. The TSDF truncation distance is set as

three times of the voxel size for each layer. The occupancy

pruning threshold is set to 0.

4. Experiments
4.1. Dataset, Metrics and Baseline.

Dataset. We perform our experiments on Scan-

Net(V2) [24]. ScanNet consists of 1613 scans across

807 distinct scenes with RGB images, groundtruth depths,

camera poses, surface reconstructions and instance-level

semantic segmentations. Following previous works [6, 7],

we use the official train/val/test split to train and evaluate

our method in order to make a fair comparison.

Metrics. We follow the 3D geometry metrics used in [6,

7] to evaluate the 3D geometry reconstruction performance

of our approach. Among these 3D metrics, we regard the

F-score as the most important metric to measure 3D ge-

ometry reconstruction quality since both the accuracy and
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completeness of the reconstruction are taken into account.

Inspired by [6], we transfer the semantic and instance la-

bel from the predicted mesh to the groundtruth mesh us-

ing nearest neighbor lookup on each vertices. The stan-

dard mIoU, mAP@50 and mAP@25 are used to evaluate

the prediction of semantic label and instance label respec-

tively. The detailed definitions of all these metrics above

are included in the supplementary material.

Baseline. For the evaluation of 3D geometry reconstruc-

tion, we compare our method with multi-view depth esti-

mation methods [1–5] and end-to-end reconstruction meth-

ods [6–9]. Among them, NeuralRecon [68] and Zuo et

al. [9] are two end-to-end incremental volumetric recon-

struction methods that are the most relevant ones to our

approach. In order to evaluate the prediction of semantic

label , we compare our method with some prior methods

that include depth as input [14–16, 24, 36, 71–73], as well

as Atlas [6] using only RGB images as input, as we do. As

for the evaluation of instance label prediction, in addition

to some previous works with 3D input [17, 74–78], we also

compare with an original but classic algorithm [56], which

also include only 2D images as input.

4.2. Results

Evaluation of 3D Geometry Reconstruction. The ex-

perimental results of 3D reconstruction on ScanNet dataset

are shown in Tab. 1. Our method outperforms existing on-

line feature fusion methods [7, 9], and slightly better than

the state of the art depth fusion method [5] in terms of F-
score metric. The advantage on F-score is due to the fact

that our method have achieved a good balance between the

accuracy and completeness. With the assistance of MVS

depth, our method can recover more complete and detailed

geometry than the pure feature fusion method [7]. Thanks

to the de-noise ability of feature fusion, our method can re-

cover more coherent and accurate geometry than [5]. The

qualitative comparison and analysis are shown in Fig. 4.

Our method presents more complete and coherent recon-

struction of the whole scene while preserving many details

of foreground objects. Moreover, we additionally conduct

evaluation of geometry reconstruction at instance level, and

provide average metrics for each semantic category in the

supplementary material.

Evaluation of 3D Panoptic Segmentation. The quanti-

tative results of 3D semantic segmentation on ScanNetV2

are reported in Tab. 2. Despite the unfair setup since we

use only RGB data, our method is still surprisingly com-

petitive with(even beats) some prior works with 3D input

data. In the same case with only RGB images as input,

our method outperforms Altas by a large margin(+18.4) in

terms of mIoU. As the qualitative comparison shown in

Method Online Comp↓ Acc↓ Recall↑ Prec↑ F-score↑

D
ep

th
F

u
si

o
n COLMAP [1] - 6.9 13.5 0.634 0.505 0.558

MVDNet [2] - 4.0 24.0 0.831 0.208 0.329

DPSNet [3] - 4.5 28.4 0.793 0.223 0.344

GPMVS [4] - 10.5 19.1 0.423 0.339 0.373

SimRec [5] - 6.2 10.1 0.636 0.536 0.577

F
ea

tu
re

F
u

si
o

n Atlas [6] x 8.3 10.1 0.566 0.600 0.579

Vortx [8] x 8.1 6.2 0.605 0.689 0.643
NeuRec [7] � 13.7 5.6 0.470 0.678 0.553

Zuo et al. [9] � 11.0 5.8 0.505 0.665 0.572

Ours � 8.9 6.4 0.530 0.656 0.584

Table 1. Quantitative Result of 3D Geometry Reconstruction
on ScanNetV2 test set. We highlight the best results for Depth

Fusion, Offline Feature Fusion and Online Feature Fusion meth-

ods in green, magenta, and cyan, respectively. The experimental

results of Simplerecon [5] are reproduced with the official code-

base and published weights. Other results come from [9].

Fig. 5, the advance of performance is due to the improve-

ment of both reconstruction quality and segmentation accu-

racy. It is worth mentioning that due to the setting of online

panoptic reconstruction, our method do not have the access

to full batch data with global context, which is extremely

challenging for geometry reconstruction and semantic seg-

mentation. In addition, we also report the 3D instance

segmentation results in Tab. 3. In absence of depth sen-

sor and post process procedure, such as Non-max suppres-

sion(NMS), our method still achieves decent performance

of instance segmentation. The quantitative result of 3D in-

stance segmentation is illustrated in the Fig. 2 of the sup-

plementary material, our method is able to accurately recon-

struct while successfully splitting the 3D scene into multiple

instance objects.

Method with Depth mIoU↑
ScanNet [24] � 30.6

PointNet++ [14] � 33.9

SPLATNet [71] � 39.3

3DMV [72] � 48.4

SegFusion [73] � 51.5

PanopticFusion [36] � 52.9

SparseConvNet [15] � 72.5

MinkowskiNet [16] � 73.4

Altas [6] x 34.0

Ours x 52.4

Table 2. Quantitative Result of 3D Semantic Segmentation on
ScanNetV2 test set. The experiment results of other methods are

borrowed from Altas [6] and the ScanNetV2 benchmark [24].

Ablation Study of different designs of choices. In

Tab. 4, we conduct ablation experiments to verify the effect

of different designs of choices. We experiment with dif-

ferent number of keyframes in each fragment(row (a), (b))

rather than the default 9 views(row (f)), and replace Mnas-
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SimpleRecon NeuralRecon Ours GroundTruth

Figure 4. Qualitative Result of 3D Geometry Reconstruction on ScanNet val set. Since SimpleRecon relies on the non-learnable depth

fusion method, it generates artifacts and duplicate surfaces (highlighted with the yellow boxes). With the incorporation of MVS depth, our

geometry reconstruction results are more complete while preserving more details of foreground objects(highlighted with the red boxes)

compared with NeuralRecon.

Method with Depth AP50↑ AP25↑
SGPN [74] � 0.143 0.390

ASIS [75] � 0.199 0.422

Gspn [76] � 0.306 0.544

3D-SIS [17] � 0.382 0.558

SegGroup [77] � 0.445 0.637

PBNet [78] � 0.747 0.825

MaskRCNN [56] x 0.058 0.261

Ours x 0.227 0.484

Table 3. Quantitative Result of 3D Instance Segmentation on
ScanNetV2 test set. The experiment results of other methods are

borrowed from the ScanNetV2 benchmark [24].

Net [79] as backbone(row (c)) instead of EfficientNetV2-

S(row (d). We also conduct an ablation study to verify the

effect of depth guidance strategy(row (d), (e), (g)). By com-

paring the row (d) and row (f), it is obvious that introducing

the strategy of depth-guided feature allocation brings con-

siderable improvement to all metrics. We also attempt to

adopt the traditional TSDF-Fusion to form TSDF volume,

and then enhance the feature volume by concatenating with

the TSDF Volume(row(e)). But this strategy does not bring

the expected improvement, so we abandon it in our final

scheme. There is a significant improvement of geometric

quality by directly using gt depth as input without any fine-

tuning or re-training(row (g)), which indicates our method

can benefit from more advanced depth estimation models.

In addition, the ablation of tracking and fusion module is

detailed in supplementary material.

Runtime analysis. We conduct runtime evaluation on a

desktop computer equipped with Intel i9-12900KS CPU

and NVIDIA RTX3090 GPU. Our method takes an average

of 700 ms to process one fragment including 9 key frames,

which composed of 430ms for MVS Network, 30 ms for

2D CNN, 137 ms for 3D Network(consists of 3D CNN,

GRU and voxel-wise prediction network), and 103 ms for
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Figure 5. Qualitative Result of 3D Semantic Segmentation on ScanNetV2 val set. Our method produces more accurate geometry

reconstruction and semantic labeling than Atlas, though Atlas have the access to full batch data with global context.

Method Recall↑ Prec↑ F-score↑ mIoU↑
(a) 7 views. 0.580 0.680 0.623 54.3

(b) 11 views. 0.552 0.666 0.600 52.5

(c) MnasNet. 0.551 0.655 0.596 52.6

(d) Ours w/o guide proj. 0.548 0.661 0.597 53.6

(e) Ours with tsdf agu. 0.582 0.679 0.624 53.7

(f) Ours 0.593 0.681 0.631 54.2

(g) with depth sensor. 0.761 0.874 0.810 55.5

Table 4. Ablation of different designs of choices on ScanNetV2
val set.

instance detection, tracking and fusion. Since keyframes

are created at a far lower frequency than the framerate, our

model still achieves a real-time panoptic reconstruction of

12.85 key frames per second (KFPS).

5. Conclusion

In this work, we introduce the task of panoptic 3D recon-

struction from a posed monocular video. This unified task

aims to obtain the holistic understanding of global scene

consisting of geometric reconstruction, 3D semantic seg-

mentation and 3D instance segmentation. We also present

a novel system, PanoRecon, for real-time panotic 3D re-

construction. The main idea of PanoRecon is to use the

volumetric feature representation to perform geometry re-

construction and panoptic segmentation fragment by frag-

ment. Experiments show that PanoRecon achieves compet-

itive geometry reconstruction compared with the state-of-

the-art methods and promising 3D panoptic segmentation,

while running in real-time. We hope this work will help to

push forward research towards more comprehensive holis-

tic scene understanding and introduce new algorithm chal-

lenges and additional insights to this area.
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