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Figure 1. We present challenging video frame interpolation examples, demonstrating our approach excels in handling large motion,
outperforming alternatives prone to blurriness or ghosting.

Abstract

Previous methods for Video Frame Interpolation (VFI)
have encountered challenges, notably the manifestation of
blur and ghosting effects. These issues can be traced
back to two pivotal factors: unavoidable motion errors
and misalignment in supervision. In practice, motion esti-
mates often prove to be error-prone, resulting in misaligned
features. Furthermore, the reconstruction loss tends to
bring blurry results, particularly in misaligned regions.
To mitigate these challenges, we propose a new paradigm
called PerVFI (Perception-oriented Video Frame Interpo-
lation). Our approach incorporates an Asymmetric Syn-
ergistic Blending module (ASB) that utilizes features from
both sides to synergistically blend intermediate features.
One reference frame emphasizes primary content, while the
other contributes complementary information. To impose
a stringent constraint on the blending process, we intro-
duce a self-learned sparse quasi-binary mask which effec-
tively mitigates ghosting and blur artifacts in the output.
Additionally, we employ a normalizing flow-based genera-
tor and utilize the negative log-likelihood loss to learn the
conditional distribution of the output, which further facili-
tates the generation of clear and fine details. Experimen-
tal results validate the superiority of PerVFI, demonstrat-
ing significant improvements in perceptual quality com-
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pared to existing methods. Codes are available at https:
//github.com/mulns/PerVFI

1. Introduction

Video frame interpolation (VFI) is an important task in
computer vision that focuses on synthesizing intermediate
frames between consecutive frames in a video sequence.
This technique plays a crucial role in various applications
such as video enhancement [27, 56], slow-motion render-
ing [18, 52, 53], and frame rate conversion [33], especially
for producing high-definition videos [17, 44].

Recently, the VFI task has also derived benefits from the
application of deep neural networks [17–19, 24, 26, 29–
32, 34, 36, 37, 39, 42–44, 48, 51, 55, 56, 58]. We broadly
posit that recent methods typically consist of 3 main mod-
ules. The motion estimation module is used to estimate mo-
tion between consecutive frames using optical flow or de-
formable kernels. Subsequently, the alignment and fusion
module aligns reference frames via warping operator or de-
formable convolution. Finally, the reconstruction module
generates final results from extracted features. Despite the
success of recent methods, blurry results and ghosting ar-
tifacts persist as inevitable problems. (shown in Figure 1).
We attribute this primarily to two inherent challenges:
Inevitable Motion Errors. Ideally, with accurate motion
estimates, the aforementioned procedure can yield satisfac-
tory results. However, achieving error-free pixel-wise cor-
respondence for real-world videos proves challenging, es-
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pecially in the presence of large-scale motions. Unlike sev-
eral prior methods [8, 19, 40, 44] that primarily focus on
enhancing the quality of motion estimation, our objective
is to fortify our network against alignment errors. Specif-
ically, after a thorough investigation of existing methods,
we conclude that in cases of inaccurate motion estimation,
the network struggles to discern the correct frame. Con-
sequently, preceding algorithms often produce blurred and
ghosted results by averaging multiple frames. We contend
that basing the output on a single frame while utilizing other
frames to supplement specific details holds the potential to
yield clearer and more plausible results.
Temporal Supervision Misalignment. Another crucial yet
often overlooked issue in VFI is the temporal uncertainty.
During the training phase, the ground truth (GT) intermedi-
ate frame only provides a reference at a specific time. How-
ever, in the case of a continuous natural video, scenes cap-
tured in the time interval between two frames can offer mul-
tiple potential solutions. Therefore, the learned intermedi-
ate features can vary across different training videos. We
term this issue Temporal Supervision Misalignment, and
this misalignment may cause the network to produce blurry
results. To address this problem, conventional pixel-wise
loss functions such as L1 and L2 are inadequate. Instead,
we opt for generative models to reconstruct results sampled
from a distribution.

In order to tackle the aforementioned challenges, we
propose a novel perception-oriented video frame interpo-
lation paradigm in this paper, referred to as PerVFI. Our
approach introduces an Asymmetric Synergistic Blending
(ASB) module and a self-learned sparse quasi-binary mask
to fuse multi-frame features. In this process, one refer-
ence frame emphasizes primary content, while the other
provides complementary information. Additionally, we em-
ploy a normalizing flow-based generator to decode the in-
termediate features. This generator models the conditional
distribution of the output based on the reference inputs.
Unlike GAN-based methods that struggle to converge [8]
and diffusion-based methods [11] with numerous iterations,
our normalizing flow-based approach demonstrates stabil-
ity during training and low latency during inference. The
proposed PerVFI paradigm consistently produces visually
high-quality results, even in the presence of misalignment
due to inaccurate motion estimates.

The contributions of this paper are as follows:
• We introduce a novel paradigm called PerVFI, specifi-

cally designed for the perception-oriented task of VFI.
Our proposed method tackles the issue of misalign-
ment by incorporating an asymmetric synergistic blend-
ing module (ASB) and a conditional normalizing flow-
based generator.

• To effectively control the blending process in ASB, we
propose a novel quasi-binary mask. This mask allows for

sparse confidence values overall and adaptive values for
partial areas, effectively addressing the occlusion and im-
posing a strict constraint on blending process.

• We have conducted extensive experiments to validate the
efficacy of the proposed PerVFI. The experimental re-
sults demonstrate that the PerVFI paradigm is capable of
generating visually plausible outputs even in the presence
of inaccurate motion estimates, exhibiting state-of-the-art
performance in terms of perceptual quality.

2. Related Works
2.1. Video frame interpolation.

Existing VFI approaches are mostly based on deep learn-
ing , and can be generally categorized as optical flow-based
or kernel-based. Optical flow-based methods rely on op-
tical flow estimation to generate interpolated frames[17–
19, 24, 32, 36, 37, 39, 40, 44, 55, 56]. On the other hand,
kernel-based methods argue that optical flows can be unre-
liable in dynamic texture scenes [4, 6, 13, 15, 25, 34, 38], so
they predict locally adaptive convolution kernels to synthe-
size output pixels. Other than these two classes, there are
also attempts to combine flows and kernels [2, 3, 8, 26] and
to perform end-to-end frame synthesis [7, 21]. It is noted
that the above methods use symmetric blending, which eas-
ily blends the features from two sides with equal contribu-
tion, even when they are misaligned. Although these re-
sults in reasonably good PSNR performance, it has been
previously reported [9] that PSNR does not fully reflect
the perceptual quality of interpolated videos, exhibiting
poor correlation performance with subjective ground truth.
To improve perceptual performance, some existing meth-
ods [36, 37] use the perceptual loss [45] in combination
with the L1 loss. An alternative approach uses GANs [8, 25]
to enhance perceptual quality of interpolated videos. How-
ever, due to the instability of GAN training, these models
are pretrained using L1 loss before fine-tuned with adver-
sarial loss, leading to limited improvement in perceptual
quality.

2.2. Normalizing Flow-based model.

Recently, normalizing flow-based models have shown re-
markable performance in synthesizing high-fidelity images
and videos [14, 23, 35, 49]. These models leverage an in-
vertible network to establish a mapping from a complex
distribution to a simple distribution. Users can then de-
code a latent code sampled from the simple distribution to
the target domain. Normalizing flow-based methods have
been reported to outperform GANs in image generation
tasks [23, 35, 49]. To the best of our knowledge, we are
the first to adopt a normalizing flow-based model for VFI.
In particular, we utilize conditional normalizing flow-based
models [35], which have demonstrated a strong ability to
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synthesize images with conditional information.

3. Proposed Method: PerVFI
Given two referenced frame images I0 and I1 ∈ RH×W×3

with height H and width W , our goal is to reconstruct the
intermediate frame It regarding the target time t ∈ (0, 1).
The overall framework of PerVFI is presented in Figure 2-
(a), which includes an asymmetric synergistic blending
(ASB) module illustrated in Figure 2-(b) and a conditional
normalizing flow-based generator illustrated in Figure 2-(c).

Our first step is to estimate bidirectional optical flows,
denoted by F0→1 and F1→0, using a motion estimator such
as RAFT [47] or GMFlow [54]. Concurrently, we use
a pyramidal architecture that extracts features at different
scales to capture multiscale information. Specifically, we
encode the two images into pyramid features with L levels
using a feature encoder Eθ, denoted as fi = Eθ(Ii) for i =
0, 1. Once the bidirectional optical flow and feature pyra-
mid have been obtained. We utilize a feature blending mod-
ule, denoted as Bθ and obtain intermediate pyramid features
by blending, denoted as ft = Bθ(t, f0, f1,F0→1,F1→0).
Then, we decode ft into the output frame It using a con-
ditional normalizing flow-based generator Gθ which is in-
vertible, denoted as It = G−1

θ (z; ft) where z ∼ N (0, τ) ∈
RH×W×3 is a variable sampled from a normal distribution
with temperature τ . The feature pyramid, ft = {f l

t | l ∈
[0, 1, . . . , L − 1]} represents L features with shapes of
H
2l
× W

2l
.

3.1. Asymmetric Synergistic Blending

To effectively learn ft immune to bidirectional motion mis-
alignment, an intuitive insight involves extracting primary
information from one reference frame and compensating for
occlusion information from the other frame, instead of sim-
ply averaging the information from both frames without any
constraints. This can be achieved by obtaining a binary oc-
clusion mask that describes whether certain regions are oc-
cluded or not, and blending the aligned features from both
sides using this mask. However, due to the inaccurate mo-
tion estimates, obtaining an accurate binary occlusion mask
is challenging, and aligning the features from both sides
is non-trivial. Therefore, we propose a novel Asymmet-
ric Synergistic Blending (ASB) module, which focuses on
addressing these two problems. The ASB module consists
of two major components: the Pyramid Alignment Mod-
ule (PAM) and the Adaptive Dilation Module (ADM). The
PAM is designed to achieve more accurate alignment of fea-
tures from both sides, while the ADM aims to provide a
quasi-binary mask that can serve as a weighting mask for
better handling of occlusion.
Pyramid Alignment Module. Alignment is a crucial
step in our framework, involving the warping of reference
frames and aligning pyramid features. We employ differ-

ent warping operators: backward warping (←−ω ) and forward
warping with different splatting methods. For multiple-to-
one situations [37], we use the average splatting operator
(−−→ωavg) and the softmax splatting operator (−→ωZ) which sub-
jects to an importance metric Z.

Following Niklaus and Liu [37], the f0 is warped to time
t using a Forward Warping module with a small neural net-
work vθ. The importance metric Z is computed as:

Z = vθ(f
0
0 ,−

∥∥f0
0 −←−ω (f0

1 ,F0→1)
∥∥), (1)

and the warped pyramid features ft,0 are obtained through:

f l
t,0 = −→ωZ(f

l
0, t,F

l
0→1;Z

l), l = 0, 1, . . . , L− 1 (2)

where Fl
0→1 and Zl are spatially downscaled optical flow

and metric, respectively, by a factor of 2l.
To handle occlusion regions in the warped features ft,0,

we introduce a Pyramid Alignment Module (PAM) to align
f1 to the target time t, producing ft,1. The PAM utilizes
a multiscale deformable convolution network u to perform
alignment. Instead of warping f1 directly using F1→t,
which may cause misalignment because of inaccurate bidi-
rectional optical flows, the PAM converts F1→t to an ini-
tialized offset to guide the alignment process. This ap-
proach improves the handling of occlusion regions, result-
ing in more accurate alignment. The alignment process is
formulated as:

F1→t = (1− t) · F1→0, (3)
ft,1 = uθ(−1×−−→ωavg(F1→t,F1→t), f1, ft,0). (4)

The network uθ iteratively refines the transformation pa-
rameters in a coarse-to-fine manner, starting with aligning
the features at the coarsest scale and propagating the align-
ment to finer scales. This helps to handle large pixel dis-
placements and achieve more accurate alignment of features
at different scales. A detailed network structure of uθ and
vθ can be found in the appendix.
Adaptive Dilation Module. To mitigate errors caused by
binary masks generated from motion estimates and im-
prove occlusion compensation, we introduce a lightweight
Adaptive Dilation module (ADM). This module generates a
quasi-binary weighting mask to control the blending of fea-
tures from two sides. Specifically, ADM adaptively dilates
the binary mask with convolution layers and maintains the
sparsity property. In ADM, we independently generate one
weighting mask for each pyramid level. Before dilation, we
obtain the binary occlusion mask M l

b ∈ R
H

2l
×W

2l at level l
by applying a threshold method, denoted as Ob, to Fl

0→1:

M l
b = Ob(F

l
0→1). (5)

For each pixel x ∈ (1, . . . , H
2l
)× (1, . . . , W

2l
), we compute:

M l
b(x) =

{
1, if −−→ωavg(M

l
1, t · Fl

0→1)(x) < ϵ;

0, otherwise.
(6)
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Figure 2. (a): Overview of the entire PerVFI framework. (b): Structure of the proposed Asymmetric Synergistic Blending (ASB) module.
(c): Structure of the conditional normalizing flow-based generator.

Here, M l
1 is a constant metric with the same shape as M l

b

filled with value 1, and the threshold ϵ is a constant set to
0.5 by default.

ADM generates the quasi-binary mask M̃ l
b based on M l

b

and the two aligned feature sets ft,0 and ft,1, as illustrated
in Figure 3. Firstly, we expandMb to C feature maps using
convolution layers denoted as Fex, consisting of three bias-
free convolutional layers with kernel sizes (7, 3, 1), respec-
tively. The combination of these layers results in a 17× 17
dilation field for each occluded pixel in M l

b. We then ob-
tain a sample-dynamic attention weight a ∈ RC derived
from reference features using squeeze and excitation layers,
denoted asFatt. The expanded features are scaled with nor-
malized attention weights, denoted as Fscale. Afterwards,
the scaled features are projected to metric M̂ l through one
bias-free convolution layer with kernel size 1, denoted as
Fproj . The procedure can be formulated as:

M̂ l = Fproj(Fscale(Fexp(M
l
b),Fatt(f

l
t,0, f

l
t,1))). (7)

Finally, the quasi-binary mask is obtained using the follow-
ing equation:

M̃ l
b = tanh(abs(M̂ l + α · n) + β ·M l

b). (8)

Here, β controls the salience of occluded regions and set
to 2 by default. n ∼ U(−1, 1) is a random noise with the
same shape as M l

b, and α is set to 1e−3 during training and 0
during inference. We found it necessary to add the random
noise during training to avoid gradient vanishing and lead to

more robust occlusion compensation. By blending the two
sides information through quasi-binary mask, we obtain the
output pyramid feature ft as follows:

f l
t = f l

t,0 · (1− M̃ l
b) + f l

t,1 · M̃ l
b. (9)

The adaptive dilation field of the quasi-binary mask main-
tains its sparsity and reduces the impact of errors in the bi-
nary mask, therefore providing more plausible primary con-
tent. Moreover, the sample-dynamic attention mechanism
in the ADM module adapts to different pyramid levels and
reference features, providing more robust occlusion com-
pensation.

3.2. Normalizing Flow Generator

To parameterize the conditional distribution p(It|ft), we
utilize an invertible neural network Gθ, which maps the
intermediate feature ft and the target image It to a la-
tent variable z = Gθ(It; ft). By employing an invert-
ible normalizing flow-based generator Gθ, we ensure that
It can be accurately reconstructed from the latent encoding
z as y = G−1

θ (z; ft). By assuming a simple distribution
pz(z) (e.g., Gaussian) in the latent space z, the distribu-
tion p(It|ft, θ) is implicitly defined through the mapping
y = G−1

θ (z; ft) of z ∼ pz . In a normalizing flow-based
generator, the probability density p can be explicitly com-
puted as:

p(It|ft, θ) = pz(Gθ(It; ft))
∣∣∣∣det ∂Gθ∂It

(It; ft)

∣∣∣∣ , (10)
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Figure 3. The Adaptive Dilation Module (ADM) produces the quasi-binary mask M̃ l
b by leveraging the binary occlusion mask M l

b and
the two aligned feature sets ft,0 and ft,1. Panel (a) provides a visualization of the input and output masks, while panel (b) presents the
flowchart outlining the operations of ADM. Further information regarding the intricacies of the module is detailed in Equations 5 - 8.

and we can train the parameters θ by minimizing the nega-
tive log-likelihood (NLL). Let p̂ = − log pz(Gθ(It; ft)), the
NLL is formulated as:

Lnll(θ; ft, yt) = − log p(It|ft, θ)

= p̂− log

∣∣∣∣det ∂Gθ∂It
(It; ft)

∣∣∣∣ . (11)

As shown in Figure 2-(c), we decompose Gθ into a sequence
of N invertible layers hn+1 = Gnθ (hn; ft), where we have
h0 = It and hN = z. The invertible layers consist of
Squeeze Layer, Transition Layer, Invertible 1x1Conv Layer,
Actnorm Layer, Affine Coupling Layer, and Split Layer. By
applying the chain rule along with the multiplicative prop-
erty of the determinant, the NLL can be expressed as:

Lnll(θ; ft, It) = p̂−
N−1∑
n=0

log

∣∣∣∣det ∂Gn
θ

∂hn
(hn; ft)

∣∣∣∣ . (12)

We thus only need to compute the log-determinant of the
Jacobian ∂Gn

θ

∂hn for each individual flow-layer Gnθ . Other than
NLL loss, we also adopt perceptual loss as auxiliary loss
implemented with VGG-network [20]. We find that the in-
troduction of auxiliary loss can significantly improve the
convergence speed of the network training, and the final
generated images are less noisy and clearer. The auxiliary
loss is calculated as follows:

z′ ∼ N (mean(Gθ(I
GT
t ; ft)), var(Gθ(I

GT
t ; ft))), (13)

Lper(θ; ft, z
′) = ||Fvgg(G−1

θ (z′; ft))−Fvgg(I
GT
t )||2. (14)

Here, we first encode the It to latent space z, then randomly
sample z′ according to the mean and variation of z for de-
coding. The final bidirectional loss is formulated as:

L(θ; ft, It) = Lnll + µ · Lper. (15)

Affine Coupling. The affine coupling layer integrate the
condition information and easily invertible. Unlike the con-
ditional affine coupling layer introduced in [35], where the

inverse operation is afflicted by numerical instability, we
modify it into a more stable version as follows:

hn+1
A = hn

A,

hn+1
B = exp(λn · tanh(wn

s (h
n
A; ft)) + ηn) · hn

B

+wn
b (h

n
A; ft). (16)

Here, hn = (hn
A, h

n
B) is a partition of the feature map in the

channel dimension. wn
s and wn

b are neural networks gener-
ating the scaling and bias of hn

B . λn and ηn are learnable
scalars. For stability, we initialize parameters of λn and ηn

to 1, and the last convolutional layer of wn
s and wn

b to 0.
Since the Jacobian of (16) is triangular, its log-determinant
is easily calculated as

λn ·
∑
ijk

(tanh(wn
s (h

n
A; ft))ijk +

∑
ijk

ηn. (17)

Other Details. The Invertible 1× 1 Conv layer, ActNorm
Layer, Squeeze Layer and Transition Layer are following
the basic settings in [35]. Specifically, we stack L = 3
blocks regarding three pyramid levels, each containing K =
16 flow-steps. During encoding, in each block, the Split
Layer outputs a latent variable zl, and the final latent vari-
able z = (zl)

L
l=1 models variations in the image at different

resolutions. During decoding, all the components in z are
independently sampled. More details can be found in the
appendix.

4. Experiments
4.1. Experimental Settings

Training Settings. The PerVFI network is trained using
the bidirectional loss in Equation (15), with µ set to 0.2 as
the default value. It is worth noting that during training,
we enhance the robustness of our network by randomly se-
lecting motion estimates generated by RAFT [47] and GM-
Flow [54]. For motion estimation modules, we utilize the
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official pretrained models on the Sintel dataset and freeze
their parameters. Our training dataset consists of frame-
triples from the training portion of the publicly available
Vimeo-90k [56] dataset. Throughout the training process,
we employ a patch size of 256 × 256, with a batch size
of 16 for each iteration. The ADAM optimizer with de-
fault hyperparameter settings in [22] is used, and the initial
learning rate is set to 5e−4. The learning rate is halved ev-
ery 20 epochs. The PerVFI model is trained until conver-
gence, which typically occurs around 64 epochs, using two
NVIDIA RTX 3090 GPUs.
State-of-the-art Methods. We compare our approach to
several state-of-the-art video frame interpolation methods,
including EDSC [5], RIFE [17], VFIFormer [34], EMA-
VFI [59], AMT [28] and STMFNet [8], using their publicly
available implementations. Additionally, we include LD-
MVFI [11] and refer to the data reported in paper [11]. Our
PerVFI uses RAFT [47] as motion estimator, and we sample
the latent code z using temperature τ = 0.3.
Datasets. To evaluate the performance of the models,
we employ commonly used VFI benchmarks: Vimeo-
90K [56], DAVIS (2017) [41] and Xiph [37] datasets. We
opted for video datasets to evaluate perceptual metrics like
VFIPS [16] and FloLPIPS [10] (two bespoke VFI metrics).
Evaluations for the DAVIS dataset are conducted at both
480P (640 × 480) and 1080P (1920 × 1080) resolutions.
For the Xiph dataset, 8 video sequences, each containing
101 4K frames, are used. Following the approach in [37],
we resize the 4K frames to 2K (2048×1080) or extract a 2K
center crop. All video sequences interpolate even frames
based on the corresponding odd frames. Results of com-
parisons on Middlebury [1] and UCF101 [46] datasets are
included in the appendix.
Metrics. We mainly employ the following metrics for per-
formance evaluation: LPIPS [60] and DISTS [12] (image
quality metric); VFIPS [16] and FloLPIPS [10] (video qual-
ity metric). These metrics have demonstrated a stronger
correlation with human judgments of frame interpolation
quality. For completeness, we also present the performance
of traditional metrics PSNR and SSIM [50]. However, it
is important to note that they are not the primary focus of
this paper. Higher values indicate better performance for
PSNR, SSIM, and VFIPS, while lower values indicate bet-
ter results for LPIPS and FloLPIPS. Results of comparisons
using DISTS [12] are included in the appendix.

4.2. Quantitative Evaluation

We present a comparative analysis of PerVFI against state-
of-the-art methods in Table 1 and 2. While STMFNet [8]
achieves the highest PSNR and SSIM values, its perfor-
mance falls short in perceptual quality according to the
other three metrics. Notably, the utilization of symmet-
ric blending in all methods, except for PerVFI, results in
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Figure 4. User study results.

noticeable ghosting and blur artifacts. This is observed
even in methods with advanced synthesis modules such as
the GAN-based STMFNet [8] and the diffusion-based LD-
MVFI [11]. By leveraging the ASB module, our PerVFI
surpasses other methods significantly in terms of perceptual
quality. Moreover, when comparing high resolution videos,
our PerVFI, trained exclusively on the Vimeo90K dataset,
maintains superior visual quality even when compared to
STMFNet [8] and LDMVFI [11], which are trained on high-
resolution datasets. This further showcases the generaliza-
tion capability of our proposed method.

4.3. Qualitative Evaluation

We also compare the visual quality of different methods
in DAVIS dataset, as illustrated in Figure 5. In regions
with significant pixel displacement, it is evident that other
methods produce outputs with noticeable ghosting artifacts
or blurriness, resulting in a significant degradation of vi-
sual quality. In contrast, PerVFI consistently generates out-
puts with sharp edges and intact content, leading to visually
pleasing results. It is important to note that while the Per-
VFI results may not exhibit perfect pixel-wise alignment
with the ground-truth image, the overall visual quality re-
mains consistent with the reference images.

Additionally, to facilitate a more comprehensive exam-
ination of the visual quality, we conduct a user study in-
volved 33 participants comparing 98 videos interpolated
with 5 methods. We conduct A/B test on perceptual quality,
where the ratio values indicate the percentages of partici-
pants preferring the corresponding model. Statistical results
are presented in Figure 4, demonstrating our method consis-
tently outperforms others.

4.4. Ablation Experiments

Symmetric vs. Asymmetric blending. To emphasize the
importance of asymmetric synergistic blending, we have de-
signed a symmetric blending module for a fair comparison.
In this module, we introduce a learnable bias after each con-
volution layer in the Adaptive Blending Module (ADM),
allowing the output mask to be fully adaptive without any
constraints. As depicted in the first row of Figure 6-(a),
the fully adaptive mask tends to merge features from both
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Table 1. Performance comparison of VFI algorithms on DAVIS-2017 [41]. The scores for LDMVFI [11] are taken from their paper and
indicated with the † symbol. ‘OOM’ means out of memory. The best values are highlighted in red and the second-best values are in blue.

DAVIS (480P) DAVIS (1080P)

PSNR↑ SSIM ↑ LPIPS↓ FloLPIPS↓ VFIPS↑ PSNR↑ SSIM↑ LPIPS↓ FloLPIPS↓ VFIPS↑
EDSC [5] 26.52 0.784 0.132 0.093 72.62 24.54 0.768 0.205 0.138 51.05
RIFE [17] 26.97 0.807 0.085 0.063 80.19 25.89 0.803 0.134 0.097 62.56
STMFNet [8] 28.55 0.850 0.121 0.086 77.38 27.43 0.844 0.178 0.119 60.25
LDMVFI [11] 25.54 † - 0.107 † 0.153 † 75.78 † - - - - -
VFIFormer [34] 27.33 0.814 0.124 0.090 77.32 OOM OOM OOM OOM OOM
EMA-VFI [59] 28.83 0.856 0.127 0.085 78.84 27.61 0.846 0.203 0.131 60.87
AMT [28] 27.42 0.818 0.101 0.073 80.57 25.72 0.806 0.177 0.122 60.39
PerVFI (ours) 26.83 0.804 0.077 0.058 87.51 26.23 0.808 0.114 0.087 72.52

Table 2. Performance comparison of VFI algorithms on Xiph4K [37] and Vimeo-90K [57]. The best values are highlighted in red, while
the second-best values are in blue. ‘OOM’ means out of memory.

Xiph - 2K Xiph - “4K” Vimeo-90K

LPIPS↓ FloLPIPS↓ VFIPS↑ LPIPS↓ FloLPIPS↓ VFIPS↑ PSNR↑ SSIM↑ LPIPS↓
EDSC [5] 0.085 0.072 64.73 0.177 0.120 51.24 34.86 0.961 0.027
RIFE [17] 0.041 0.050 65.26 0.099 0.067 54.31 34.16 0.955 0.020
STMFNet [8] 0.110 0.063 65.19 0.245 0.128 53.33 - - -
VFIFormer [34] OOM OOM OOM OOM OOM OOM 36.38 0.971 0.021
EMA-VFI [59] 0.110 0.081 65.12 0.241 0.114 53.57 36.34 0.967 0.026
AMT [28] 0.089 0.055 65.60 0.199 0.114 53.22 35.79 0.968 0.021
PerVFI (ours) 0.038 0.032 68.67 0.086 0.062 57.47 33.89 0.953 0.018

Table 3. Ablation Experiment Results. We show the PSNR and
VFIPS on DAVIS (480P) dataset.

Mask Noise Prior Loss PSNR VFIPS

Binary ✗ ✓ Bi-D. 26.52 81.01
Quasi-B. ✗ ✓ Bi-D. 26.71 81.24
Quasi-B. ✓ ✗ Bi-D. 27.10 82.27
Quasi-B. ✓ ✗ L1 26.81 80.34
Quasi-B. ✓ ✓ L1 27.15 80.50
Quasi-B. ✓ ✓ NLL 26.98 81.88
Binary ✓ ✓ Bi-D. 26.69 81.25

Adaptive ✓ ✓ Bi-D. 27.61 78.20

Quasi-B. ✓ ✓ Bi-D. 27.16 83.30

sides equally, resulting in a blurry output, as shown in the
second row. Furthermore, in Figure 6-(b), we provide a his-
togram illustrating the distribution of values for different
types of masks. The quasi-binary mask (denoted as Quasi-
B.) maintains overall sparsity while being partially adaptive.
In Table 3, we use “Adaptive” to indicate the fully adaptive
mask without any constraints, and “Quasi-B.” to represent
the quasi-binary mask. As observed, symmetric blending
with a fully adaptive weighting mask achieves higher PSNR
values but lower VFIPS scores compared to the asymmet-

ric blending with the quasi-binary mask. This phenomenon
demonstrates the significance of imposing strict constraints
during the blending process to enhance the perceptual qual-
ity of the output.

Quasi-binary mask. In the ADM, we introduce a random
uniform noise term n during training. This is done because
multiplying with a sparse mask could potentially lead to
gradient vanishing issues. To showcase the importance of
this operation, we conduct experiments where we train the
model without the adding the noise. Specifically, we evalu-
ate the model using either the quasi-binary mask or a binary
mask without dilation. As presented in the first and second
rows of Table 3, the performance of the model experiences
a noticeable degradation when trained without the inclusion
of random noise. This emphasizes the necessity of incor-
porating the random noise term during training. We will
provide further visual comparisons in the appendix to com-
plement these findings.

PAM module. In the PAM, we utilize the optical flow
F1→0 as prior information for alignment. We found it nec-
essary to incorporate this prior in order to effectively handle
occlusion compensation. As demonstrated in Table 3, re-
moving prior information from the PAM leads to failures in
occlusion compensation in the resulting frames. Additional
visual comparisons are shown in the appendix, highlight-
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Figure 5. Perceptual quality comparison between different methods. Our approach produces a high-quality result in spite of the fast-moving
objects that is subject to large motion. Red arrows emphasize areas where PerVFI excels in visual quality compared to other methods.
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Figure 6. The first row visualize different masks, and the second
row exhibits histograms for each. The fully-adaptive mask tends
to center around 0.5, signifying an equal contribution from both
sides features. The quasi-binary mask maintains sparsity while be-
ing partially adaptive, providing an effective blending mechanism.
The third row presents results using these masks. Red arrows em-
phasize areas where the quasi-binary mask excels in visual quality
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Figure 7. Different τ during inference. The SSIM is divided with
10 to enhance visibility.

ing the impact of the prior information on the quality of the
interpolated frames.
Different loss functions. In Table 3, we also compare dif-

ferent loss functions in the training stage. Our PerVFI em-
ploys the bi-directional loss (denoted as Bi-D) as described
in Equation (15). For comparison, we also train the network
only using the negative log-likelihood (NLL) loss or the L1
loss. We have observed that training with only the NLL loss
introduces certain noise in the output frames, particularly in
misaligned regions. However, by introducing the perceptual
loss, we are able to suppress this noise and generate better
results. As shown in table 3, the L1 loss yields higher PSNR
but lower VFIPS. To further highlight the superiority of our
loss function, we provide additional visual samples in the
appendix, demonstrating the effectiveness of our approach
in producing visually superior results.
Different variances for latent codes. In Figure 7, we
present results by sampling the latent codes with different
variances τ during the inference stage. We can observe that
the three metrics (SSIM, LPIPS and FloLPIPS) exhibit dif-
ferent optimal ranges. It is worth noting that the latent code
can be flexibly customized to strike a balance between dif-
ferent metrics based on specific preferences.

5. Conclusion
We introduce PerVFI, a novel approach for video frame in-
terpolation that decisively tackles issues of blur and ghost-
ing artifacts, thereby significantly elevating perceptual qual-
ity. Our design incorporates an asymmetric blending mod-
ule that strategically leverages features from two reference
frames: one for primary content and the other for occlusion
information. The model employs a normalizing flow-based
generator with negative log-likelihood loss to capture the
latent conditional distribution. The experiments validate its
superiority in artifact reduction and high-quality generation.

6. Acknowledgment
The work was supported by the National Natural Sci-
ence Foundation of China (62301310, U23A20391), the
Shanghai Pujiang Program (22PJ1406800), and the Guang-
Dong Basic and Applied Basic Research Foundation
(2023A1515010644, 2021B151520011).

2760



References
[1] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth,

Michael J. Black, and Richard Szeliski. A database and eval-
uation methodology for optical flow. In ICCV, 2007. 6

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,
Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In CVPR, 2019. 2

[3] Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao,
and Ming-Hsuan Yang. Memc-net: Motion estimation and
motion compensation driven neural network for video inter-
polation and enhancement. IEEE Trans. Pattern Anal. Mach.
Intell., 43(3):933–948, 2021. 2

[4] Xianhang Cheng and Zhenzhong Chen. Video frame interpo-
lation via deformable separable convolution. In AAAI, 2020.
2

[5] Xianhang Cheng and Zhenzhong Chen. Multiple video
frame interpolation via enhanced deformable separable con-
volution. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):
7029–7045, 2021. 6, 7

[6] Xianhang Cheng and Zhenzhong Chen. Multiple video
frame interpolation via enhanced deformable separable con-
volution. IEEE Trans. Pattern Anal. Mach. Intell., 44(10):
7029–7045, 2022. 2

[7] Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and
Kyoung Mu Lee. Channel attention is all you need for video
frame interpolation. In AAAI, 2020. 2

[8] Duolikun Danier, Fan Zhang, and David Bull. St-mfnet: A
spatio-temporal multi-flow network for frame interpolation.
In CVPR, 2022. 1, 2, 6, 7, 8

[9] Duolikun Danier, Fan Zhang, and David R. Bull. A sub-
jective quality study for video frame interpolation. In ICIP,
2022. 2

[10] Duolikun Danier, Fan Zhang, and David R. Bull. Flolpips:
A bespoke video quality metric for frame interpolation. In
PCS, 2022. 6

[11] Duolikun Danier, Fan Zhang, and David Bull. Ldmvfi: Video
frame interpolation with latent diffusion models. arXiv
preprint arXiv:2303.09508, 2023. 2, 6, 7

[12] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P. Simoncelli.
Image quality assessment: Unifying structure and texture
similarity. arXiv preprint arXiv:2004.07728, 2020. 6

[13] Tianyu Ding, Luming Liang, Zhihui Zhu, and Ilya Zharkov.
CDFI: compression-driven network design for frame inter-
polation. In CVPR, 2021. 2

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real NVP. In ICLR, 2017. 2

[15] Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao.
Featureflow: Robust video interpolation via structure-to-
texture generation. In CVPR, 2020. 2

[16] Qiqi Hou, Abhijay Ghildyal, and Feng Liu. A perceptual
quality metric for video frame interpolation. In ECCV, 2022.
6

[17] Zhewei Huang, Tianyuan Zhang, Wen Heng, Boxin Shi,
and Shuchang Zhou. Rife: Real-time intermediate flow
estimation for video frame interpolation. arXiv preprint
arXiv:2011.06294, 2020. 1, 2, 6, 7, 8

[18] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik G. Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In CVPR, 2018. 1

[19] Xin Jin, Longhai Wu, Guotao Shen, Youxin Chen, Jie Chen,
Jayoon Koo, and Cheul-hee Hahm. Enhanced bi-directional
motion estimation for video frame interpolation. In WACV,
2023. 1, 2

[20] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016. 5

[21] Tarun Kalluri, Deepak Pathak, Manmohan Chandraker, and
Du Tran. Flavr: Flow-agnostic video representations for
fast frame interpolation. arXiv preprint arXiv: 2012.08512,
2021. 2

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

[23] Diederik P. Kingma and Prafulla Dhariwal. Glow: Genera-
tive flow with invertible 1x1 convolutions. In NeurIPS, 2018.
2

[24] Lingtong Kong, Boyuan Jiang, Donghao Luo, Wenqing Chu,
Xiaoming Huang, Ying Tai, Chengjie Wang, and Jie Yang.
Ifrnet: Intermediate feature refine network for efficient frame
interpolation. In CVPR, 2022. 1, 2

[25] Hyeongmin Lee, Taeoh Kim, Tae-Young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive col-
laboration of flows for video frame interpolation. In CVPR,
2020. 2

[26] Changlin Li, Guangyang Wu, Yanan Sun, Xin Tao, Chi-
Keung Tang, and Yu-Wing Tai. H-VFI: hierarchical frame
interpolation for videos with large motions. arXiv preprint
arXiv: 2211.11309, 2022. 1, 2

[27] Wenhao Li, Guangyang Wu, Wenyi Wang, Peiran Ren, and
Xiaohong Liu. Fastllve: Real-time low-light video enhance-
ment with intensity-aware look-up table. In ACMMM, 2023.
1

[28] Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-
Le Guo, and Ming-Ming Cheng. Amt: All-pairs multi-field
transforms for efficient frame interpolation. In CVPR, 2023.
6, 7

[29] Xiaohong Liu, Lei Chen, Wenyi Wang, and Jiying Zhao.
Robust multi-frame super-resolution based on spatially
weighted half-quadratic estimation and adaptive BTV regu-
larization. IEEE Trans. Image Process., 27(10):4971–4986,
2018. 1

[30] Xiaohong Liu, Lingshi Kong, Yang Zhou, Jiying Zhao, and
Jun Chen. End-to-end trainable video super-resolution based
on a new mechanism for implicit motion estimation and
compensation. In WACV, 2020.

[31] Xiaohong Liu, Kangdi Shi, Zhe Wang, and Jun Chen. Ex-
ploit camera raw data for video super- resolution via hidden
markov model inference. IEEE Trans. Image Process., 30:
2127–2140, 2021.

[32] Yihao Liu, Liangbin Xie, Siyao Li, Wenxiu Sun, Yu Qiao,
and Chao Dong. Enhanced quadratic video interpolation. In
ECCVW, 2020. 1, 2

2761



[33] Guo Lu, Xiaoyun Zhang, Li Chen, and Zhiyong Gao. Novel
integration of frame rate up conversion and HEVC coding
based on rate-distortion optimization. IEEE Trans. Image
Process., 27(2):678–691, 2018. 1

[34] Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya
Jia. Video frame interpolation with transformer. In CVPR,
2022. 1, 2, 6, 7

[35] Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and
Radu Timofte. Srflow: Learning the super-resolution space
with normalizing flow. In ECCV, 2020. 2, 5

[36] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In CVPR, 2018. 1, 2

[37] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, 2020. 1, 2, 3, 6, 7

[38] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive separable convolution. In ICCV, 2017.
2

[39] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su Kim.
BMBC: bilateral motion estimation with bilateral cost vol-
ume for video interpolation. In ECCV, 2020. 1, 2

[40] Junheum Park, Chul Lee, and Chang-Su Kim. Asymmetric
bilateral motion estimation for video frame interpolation. In
ICCV, 2021. 2

[41] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
CVPR, 2016. 6, 7

[42] Zhihao Shi, Xiaohong Liu, Chengqi Li, Linhui Dai, Jun
Chen, Timothy N. Davidson, and Jiying Zhao. Learning
for unconstrained space-time video super-resolution. IEEE
Trans. Broadcast., 68(2):345–358, 2022. 1

[43] Zhihao Shi, Xiaohong Liu, Kangdi Shi, Linhui Dai, and Jun
Chen. Video frame interpolation via generalized deformable
convolution. IEEE Trans. Multim., 24:426–439, 2022.

[44] Hyeonjun Sim, Jihyong Oh, and Munchurl Kim. Xvfi: ex-
treme video frame interpolation. In ICCV, 2021. 1, 2

[45] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015. 2

[46] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from
videos in the wild. arXiv preprint arXiv:1212.0402, 2012,
2012. 6

[47] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field
transforms for optical flow. In ECCV, 2020. 3, 5, 6

[48] Wenyi Wang, Guangyang Wu, Weitong Cai, Liaoyuan Zeng,
and Jianwen Chen. Robust prior-based single image super
resolution under multiple gaussian degradations. IEEE Ac-
cess, 8:74195–74204, 2020. 1

[49] Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-
Pui Chau, and Alex C. Kot. Low-light image enhancement
with normalizing flow. In AAAI, 2022. 2

[50] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.
Simoncelli. Image quality assessment: from error visibility
to structural similarity. IEEE Trans. Image Process., 13(4):
600–612, 2004. 6

[51] Guangyang Wu, Lili Zhao, Wenyi Wang, Liaoyuan Zeng,
and Jianwen Chen. Pred: A parallel network for han-
dling multiple degradations via single model in single image
super-resolution. In ICIP, 2019. 1

[52] Guangyang Wu, Xiaohong Liu, Kunming Luo, Xi Liu,
Qingqing Zheng, Shuaicheng Liu, Xinyang Jiang, Guangtao
Zhai, and Wenyi Wang. Accflow: Backward accumulation
for long-range optical flow. In ICCV, 2023. 1

[53] Xiaoyu Xiang, Yapeng Tian, Yulun Zhang, Yun Fu, Jan P.
Allebach, and Chenliang Xu. Zooming slow-mo: Fast and
accurate one-stage space-time video super-resolution. In
CVPR, 2020. 1

[54] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In CVPR, 2022. 3, 5

[55] Xiangyu Xu, Li Si-Yao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In NeurIPS,
2019. 1, 2

[56] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T. Freeman. Video enhancement with task-oriented
flow. Int. J. Comput. Vis., 127(8):1106–1125, 2019. 1, 2, 6

[57] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T. Freeman. Video enhancement with task-oriented
flow. Int. J. Comput. Vis., 127(8):1106–1125, 2019. 7

[58] Guanghao Yin, Xinyang Jiang, Shan Jiang, Zhenhua Han,
Ningxin Zheng, Xiaohong Liu, Huan Yang, Donglin Bai,
Haisheng Tan, Shouqian Sun, Yuqing Yang, Dongsheng
Li, and Lili Qiu. Online video streaming super-resolution
with adaptive look-up table fusion. arXiv preprint arXiv:
2303.00334, 2023. 1

[59] Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen,
Gangshan Wu, and Limin Wang. Extracting motion and ap-
pearance via inter-frame attention for efficient video frame
interpolation. In CVPR, 2023. 1, 6, 7, 8

[60] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In CVPR, 2018. 6

2762


