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Figure 1. Methods for reconstructing a 3D scene from images, such as Neural Radiance Fields (NeRF), often exhibit artifacts when
trained with few input views. ReconFusion uses a diffusion model trained for novel view synthesis to regularize NeRF optimiza-
tion. When the reconstruction problem is severely underconstrained (3 and 9 views), this prior can greatly improve robustness and
often prevent catastrophic failures. Even in the case of significantly more observations (54 views), ReconFusion improves quality and
helps reduce “floater” artifacts common to volumetric reconstruction methods like NeRF. We encourage the reader to view the results
on reconfusion.github.io to see the clear improvement our method can provide in few-view captures of a variety of real world scenes.

Abstract
3D reconstruction methods such as Neural Radiance

Fields (NeRFs) excel at rendering photorealistic novel
views of complex scenes. However, recovering a high-
quality NeRF typically requires tens to hundreds of input
images, resulting in a time-consuming capture process. We
present ReconFusion to reconstruct real-world scenes us-
ing only a few photos. Our approach leverages a diffusion
prior for novel view synthesis, trained on synthetic and mul-
tiview datasets, which regularizes a NeRF-based 3D recon-
struction pipeline at novel camera poses beyond those cap-
tured by the set of input images. Our method synthesizes
realistic geometry and texture in underconstrained regions
while preserving the appearance of observed regions. We
perform an extensive evaluation across various real-world
datasets, including forward-facing and 360-degree scenes,
demonstrating significant performance improvements over
previous few-view NeRF reconstruction approaches. Please
see our project page at reconfusion.github.io.

1. Introduction

Advances in 3D reconstruction have enabled the transfor-
mation of images of real-world scenes into 3D models
which produce photorealistic renderings from novel view-
points [26, 32]. Methods like NeRF [32] optimize a 3D
representation whose renderings match observed input im-
ages at given camera poses. However, renderings from
under-observed views are artifact-prone, particularly in less
densely captured areas. As such, recovering a high-quality
NeRF requires exhaustive scene capture, where each region
is photographed from multiple angles multiple times.

NeRF’s dense capture requirement poses a major chal-
lenge, necessitating tens to hundreds of images for even
simple objects to ensure a clean reconstruction (Fig. 1).
Many methods aim to reduce the reliance on dense captures
by developing heuristic low-level regularizers based on re-
constructed depth [10, 16, 41], visibility [27, 49], appear-
ance [35, 64], or image-space frequencies [65]. However,
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even the most effective methods show considerable degra-
dation at novel viewpoints compared to denser captures.

With the recent success of diffusion models for im-
age generation [20, 51], researchers have applied diffusion
models to the task of novel view synthesis — modeling the
distribution of unseen views given observations from known
views [15, 29, 63]. While these models excel at generating
realistic images from novel view points, they do not pro-
duce a single consistent 3D shape from a sparse set of input
views. Existing work produces 3D models that are either
trained per category [5, 15, 54, 66, 72], or are limited to sin-
gle image inputs containing an object [29, 30, 48], prevent-
ing their use as a general prior for 3D scene reconstruction.

Our proposed method uses 2D image priors over novel
views to enhance 3D reconstruction. We derive this prior
from a diffusion model trained for novel view synthe-
sis. Given multiple posed images of a scene, this model
estimates the scene’s appearance from novel viewpoints.
As posed multiview data is limited (compared to massive
single image datasets), we finetune our diffusion model
from a pretrained latent diffusion model [43] on a mix-
ture of real world and synthetic multiview image datasets:
RealEstate10K [71], CO3D [39], MVImgNet [68], and Ob-
javerse [9]. Once trained, this model is used to regularize a
typical NeRF reconstruction pipeline by using an approach
similar to score distillation sampling (SDS) [37].

Our approach outperforms existing baselines on sev-
eral datasets of both forward-facing and unbounded 360◦

scenes. Furthermore, we show that our diffusion prior is
an effective drop-in regularizer for NeRFs across a range of
capture settings. In few-view scenarios with limited scene
observations, it provides a strong prior for plausible geom-
etry and appearance reconstruction. In denser capture set-
tings, it helps reduce distracting “fog” and “floater” artifacts
while preserving the appearance of well-sampled regions.

Many aspects of our pipeline have been explored in prior
work. We contribute an end-to-end system that markedly
improves 3D reconstruction quality, uniquely combining
the challenges of developing a multiview-conditioned im-
age diffusion model and integrating it into the NeRF opti-
mization process, minimizing the need for rigorous capture.

2. Related Work

Few-view NeRF Minimizing NeRF’s need for dense cap-
ture is crucial for democratizing 3D capture, and has moti-
vated many works [10, 16, 22, 27, 35, 41, 47, 49, 50, 58, 62,
64, 65, 69]. Most existing methods focus on regularizing the
geometry of the scene. DS-NeRF [10] utilizes sparse depth
outputs from Structure-from-Motion (SfM) as supervision.
DDP-NeRF [41] further uses a CNN to obtain dense depth
supervision from sparse inputs. SimpleNeRF [50] regular-
izes appearance and geometry by training two additional

models which respectively reduce positional encoding fre-
quencies and remove view-dependent components. Simi-
larly, FreeNeRF [65] demonstrates that simply regularizing
the frequency range of NeRF’s positional encoding features
improves quality in few-view scenarios. RegNeRF [35] in-
troduces a depth smoothness loss and a pre-trained normal-
izing flow color model to regularize the geometry and ap-
pearance of novel views. DiffusioNeRF [64] trains a diffu-
sion model to regularize the distribution of RGB-D patches
from perturbed viewpoints. GANeRF [42] trains a genera-
tor network to improve NeRF renderings and an image dis-
criminator network to provide feedback that can be used to
improve the reconstruction in a multiview-consistent man-
ner. While all these methods regularize ambiguous geom-
etry and appearance during NeRF optimization, they often
fail on larger scenes when the view sparsity is extreme.

Regression models for view synthesis While NeRFs are
optimized per-scene, other methods train feed-forward neu-
ral networks for generalized novel view synthesis. These
networks leverage large collections of posed multiview data
across many scenes [8, 11, 19, 21, 44, 55, 57, 60, 67,
71]. Most methods lift the input images into a 3D rep-
resentation, like using a plane sweep volume, and predict
novel views in a feed-forward manner. They work well
near the input views, but extrapolate poorly to ambiguous
views, where the distribution of possible renderings be-
comes multi-modal.

Generative models for view synthesis Extrapolating be-
yond observed inputs for view synthesis requires generat-
ing unknown parts of the scene. Earlier works address-
ing this problem primarily leverage Generative Adversarial
Networks (GANs) [3, 4, 12–14, 18, 33, 34, 46, 73]. More
recent works use diffusion models, following their immense
success on image generation [5, 15, 16, 24, 25, 29, 30, 36,
40, 48, 53, 54, 56, 66]. 3DiM [63] trains a pose-conditioned
image-to-image diffusion model on synthetic ShapeNet
data [6]. GeNVS [5] and SparseFusion [16] train on real-
world multiview data [39] and further incorporate 3D ge-
ometry priors by conditioning on rendered features [52, 67].
While they show promising results for novel view synthe-
sis, their models are category-specific and do not generalize
to arbitrary scenes. Recently, Zero-1-to-3 [29] fine-tunes a
large-scale pretrained diffusion model [43] on the synthetic
Objaverse dataset [9] and achieves strong zero-shot gener-
alization on real images. However, it only supports images
of objects with clean backgrounds (versus full real scenes)
and is limited to single-image inputs. ZeroNVS [45] further
fine-tunes Zero-1-to-3 to enable single-image reconstruc-
tion of general scenes. Our approach is similar, but utilizes
a PixelNeRF-based approach [67] for conditioning (simi-
lar to GeNVS [5]) to allow for any number of input images
and provide more precise pose conditioning, and fine-tunes
a pretrained image diffusion model on real-world multiview
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Figure 2. (a) We optimize a NeRF to minimize a reconstruction loss Lrecon between renderings and a limited set of input images, alongside
a sample loss Lsample comparing renderings from random poses and with predictions by a diffusion model for those poses. (b) To generate
the sample image, we use a PixelNeRF-style model [67] to fuse input image data, rendering a feature map for the sample view. (c) This
feature map, merged with the noisy latent (computed by adding some amount of noise to the current NeRF rendering from that pose),
is provided to a diffusion model. This model additionally uses CLIP embeddings of the input images via cross-attention, generating a
decoded output sample. This sample is used to apply an image-space loss to the corresponding NeRF rendering.

datasets [39, 68, 71], which combined facilitates few-view
reconstruction on arbitrary scenes.

Lifting 2D diffusion models for 3D generation Given
the limited amount of 3D data available for training, recent
works have attempted to leverage 2D diffusion models to
generate 3D assets from a text prompt [28, 37, 59, 61] or
an input image [29, 48]. DreamFusion [37] proposed score
distillation sampling (SDS), where a 2D diffusion model
acts as a critic to supervise the optimization of a 3D model.
SparseFusion [72] proposes multistep sampling where an
image is sampled given a noisy encoding of the current ren-
dering as a target for 3D reconstruction. We experiment
with both approaches in our reconstruction pipeline.

3. ReconFusion

ReconFusion consists of a diffusion model trained for novel
view synthesis and a 3D reconstruction procedure to make
use of this diffusion model. We describe the details of the
diffusion model training in Sec. 3.1 and how we use the
diffusion model as a prior for 3D reconstruction in Sec. 3.2.

3.1. Diffusion Model for Novel View Synthesis

Given a set of posed images, we seek to learn a prior that
can generate plausible novel views. If we can learn what
the back or side of an object looks like given images of the
front, we can use this to guide a 3D reconstruction process
to recover a plausible 3D scene. Formally, we are given a
set of input images xobs = {xi}Ni=1, corresponding camera
parameters πobs={πi}Ni=1, and a target camera for a novel
view π, and want to learn the conditional distribution over

the image x at the novel view: p
(
x|xobs, πobs, π

)
.

Diffusion Models We build on latent diffusion models
(LDMs) [43] for their ability to efficiently model high reso-
lution images. LDMs encode input images to a latent repre-
sentation using a pretrained variational auto-encoder (VAE)
E . Diffusion is performed on these latents, where a denois-
ing U-Net ϵθ maps noisy latents back to clean latents. Dur-
ing inference, this U-Net is used to iteratively denoise pure
Gaussian noise to a clean latent. To recover an image, the
latents are passed through a VAE decoder D.

Conditioning Similar to Zero-1-to-3 [29], we start from
an LDM trained for text-to-image generation, and addition-
ally condition on input images and poses. Converting a
text-to-image model into a posed images-to-image model
requires augmenting the U-Net architecture with additional
conditioning pathways. To modify the pretrained architec-
ture for novel view synthesis from multiple posed images,
we inject two new conditioning signals into the U-Net (see
Fig. 2(b)). For high-level semantic information about the in-
puts, we use the CLIP [38] embedding of each input image
(denoted eobs) and feed this sequence of feature vectors into
the U-Net via cross-attention. For relative camera pose and
geometric information, we use a PixelNeRF [67] model Rϕ

to render a feature map f with the same spatial resolution
as the latents from the target viewpoint π:

f = Rϕ

(
xobs, πobs, π

)
. (1)

This rendered feature map f is a spatially aligned condi-
tioning signal which implicitly encodes the relative camera
transform. We concatenate f with the noisy latent along
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the channel dimension, and feed it into the denoising U-
Net ϵθ. This feature map conditioning strategy is similar to
the one used in GeNVS [5], SparseFusion [72], and other
recent works to better provide an accurate representation
of the novel camera pose, as compared to attending over
a direct embedding of the camera extrinsics and intrinsics
themselves (an ablation study can be found in Sec. 4.3).
Training We freeze the weights of the pretrained encoder
and decoder, initialize the U-Net parameters θ from pre-
trained weights, and optimize the modified architecture for
view synthesis using the simplified diffusion loss [20]:

LDiff(θ, ϕ) = Ex,π,xobs,πobs,ϵ,t

∥∥∥ϵ− ϵθ(zt, t, e
obs, f)

∥∥∥2 , (2)

where t ∈ {1, . . . , T} is the diffusion timestep, ϵ ∼
N (0, I), zt = αtE(x) + σtϵ is the noisy latent at that
timestep, eobs are the CLIP image embeddings for the input
images xobs, and f is the rendered feature map from Pixel-
NeRF Rϕ. In addition to the loss in Eqn. 2, we optimize the
PixelNeRF parameters ϕ with a photometric loss:

LPixelNeRF(ϕ) = Exobs,πobs,x,π∥c− x↓∥2 , (3)

where c is an output of the PixelNeRF model (at the same
resolution as the feature map f ) and x↓ is the target image
downsampled to the spatial resolution of zt and f . This loss
encourages PixelNeRF to reconstruct the RGB target image,
which helps to avoid bad local minima where the diffusion
model is unable to leverage the PixelNeRF inputs.

Due to the use of cross-attention and the design of Pix-
elNeRF, both conditioning branches can take an arbitrary
number and permutation of input images. This enables the
model to be trained and evaluated with a variable number
of observed posed images. While there are many ways to
condition on images and poses, we found our design more
effective than alternatives (see the ablation in Sec. 4.3).

3.2. 3D Reconstruction with Diffusion Priors

The trained diffusion model produces plausible single im-
ages for novel camera poses, but generated images are of-
ten inconsistent for different poses or random seeds. State-
of-the-art NeRF methods produce 3D consistent 3D mod-
els, but often exhibit volumetric “floater” artifacts and in-
accurate (or totally unrecognizable) geometry from novel
views. To enable 3D reconstruction from a smaller number
of posed inputs, we augment the state-of-the-art 3D recon-
struction pipeline from Zip-NeRF [2] with a prior from our
diffusion model trained for novel view synthesis.
Reconstruction loss NeRF-based methods optimize a ran-
domly initialized 3D model to match a set of posed im-
ages. The NeRF parameters ψ are optimized by mini-
mizing the reconstruction error between a rendered image
x = x(ψ, πobs) and an observed image xobs at pose πobs:

LRecon(ψ) = Exobs,πobs

[
ℓ(x(ψ, πobs), xobs)

]
, (4)

where ℓ is an image similarity loss function such as the ℓ2-
norm or a robust loss. This loss is only evaluated where
we have observations, and thus the training procedure never
views the 3D model from novel views.
Diffusion loss In addition, we seek to optimize the 3D
model to produce realistic rendering at novel views unob-
served in the inputs. To do so, we use a diffusion model
which provides a prior on the distribution of plausible im-
ages of the scene. We distill this prior into a consistent 3D
model by using a regularization loss derived from the dif-
fusion model outputs. We experimented with several losses
and discuss our multistep sampling approach below.

At each iteration, we sample a random view and generate
an image from the diffusion model to produce a target image
(see Fig. 2(a)). We can control how grounded the target im-
age is to the current rendered image by starting the sampling
process from an intermediate noise level. Specifically, we
render an image x(ψ, π) from a sampled novel viewpoint π,
and encode and perturb it to a noisy latent zt with noise level
t ∼ U [tmin, tmax]. We then generate a sample from the la-
tent diffusion model by running DDIM sampling [51] for k
intermediate steps, uniformly spaced between the smallest
noise level and t, yielding a latent sample z0. This latent is
decoded to produce a target image x̂π = D(z0), which we
use to supervise the rendering:

Lsample(ψ) = Eπ,t

[
w(t) (∥x− x̂π∥1 + Lp(x, x̂π))

]
, (5)

where Lp is the perceptual distance LPIPS [70], and w(t)
is a noise-level dependent weighting function. This dif-
fusion loss is most similar to SparseFusion [72], and re-
sembles the iterative dataset update strategy of Instruct-
NeRF2NeRF [17], except we sample a new image at each
iteration. We empirically found this approach to work better
than score distillation sampling [37] (see supp. and Fig. 5).

Novel view selection Which views should we sample
when using our diffusion prior? We do not want to place
novel views inside of objects or behind walls, and the place-
ment of views often depends on the scene content and type
of capture. As in prior work such as RegNeRF [35], we
wish to define a distribution based on the known input poses
and capture pattern that will encompass a reasonable set of
novel camera poses, roughly matching the positions from
which we would expect to observe the reconstructed scene.

We achieve this by determining a base set or path of
poses through the scene, which we can randomly sample
and perturb to define a full pose distribution for novel views.
In forward-facing captures such as LLFF [31] and DTU [23]
or 360-degree captures such as mip-NeRF 360 [1], we de-
fine an elliptical path fit to the training views, facing toward
the focus point (the point with minimum average distance
to the training cameras’ focal axes). In more unstructured
captures such as CO3D [39] and RealEstate10K [71], we fit
a B-spline to roughly follow the trajectory of the training
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views. In either case, for each random novel view, we uni-
formly select one of the poses in the path and then perturb
its position, up vector, and look-at point within some range.
Please see the supplement for additional details.

3.3. Implementation Details

Our base diffusion model is a re-implementation of the
Latent Diffusion Model [43] that has been trained on an
internal dataset of image-text pairs with input resolution
512×512×3 and a latent space with dimensions 64×64×8.
The encoder of our PixelNeRF is a small U-Net that takes as
input an image of resolution 512×512 and outputs a feature
map of resolution 64 × 64 with 128 channels (see the sup-
plement for more details). We jointly train the PixelNeRF
and finetune the denoising U-Net with batch size 256 and
learning rate 10−4 for a total of 250k iterations. To enable
classifier-free guidance (CFG), we set the input images to
all zeros randomly with probability 10%.

We use Zip-NeRF [2] as our backbone and train the
NeRF for a total of 1000 iterations. The reconstruction term
Lrecon uses the Charbonnier loss [7] as in Zip-NeRF. The
weighting for Lsample is linearly decayed from 1 to 0.1 over
training, and the classifier-free guidance scale used for sam-
pling is set to 3.0. We fix tmax = 1.0 for all training steps,
and linearly anneal tmin from 1.0 to 0.0. Regardless of t,
we always sample the denoised image with k = 10 steps.
In practice, diffusion models for view synthesis can be con-
ditioned on a small number of observed input images and
poses. Given a target novel view, we select the 3 nearest
camera positions from the observed inputs to condition the
model. This enables our models to scale to large numbers of
input images while selecting inputs that are most useful for
the sampled novel view. Please refer to the supplementary
materials for more implementation details.

4. Experiments
We evaluate ReconFusion on five real-world datasets to
demonstrate the performance and generalizability of our ap-
proach for few-view 3D reconstruction (Sec. 4.2). We also
perform several ablations on the components of the diffu-
sion model and the 3D reconstruction procedure (Sec. 4.3).
Finally, we demonstrate that our method improves NeRF
reconstruction across a range of capture settings (Sec. 4.4).
Additionally, we strongly advise the reader to view our sup-
plementary video, as the visual difference in view synthesis
results is significantly clearer in video than in still images.

4.1. Experiment Setup

Training Dataset To learn a generalizable diffusion prior
for novel view synthesis, we train on a mixture of the syn-
thetic Objaverse [9] dataset and three real-world datasets:
CO3D [39], MVImgNet [68], and RealEstate10K [71]. For

Objaverse, we render each 3D asset from 16 randomly sam-
pled views at resolution 512×512 and composite the render-
ing onto a randomly selected solid color background. For
the other three real-world captured datasets, we center crop
and resize each frame to 512 × 512. For training, we sam-
ple 3 frames of the same scene as input views and sample
another frame as the target view. Please refer to the supple-
mentary materials for details about dataset mixing.
Evaluation Dataset We evaluate our method on
scenes from multiple datasets with 3, 6 and 9 input
views, which include in-distribution datasets (CO3D [39]
and RealEstate10K [71]) and out-of-distribution datasets
(LLFF [31], DTU [23] and mip-NeRF 360 [1]). LLFF and
DTU are datasets of forward-facing scenes, where we ad-
here to the evaluation protocol of RegNeRF [35]. For the
real-world object-centric scenes from CO3D we evaluate
on a subset of 20 scenes from 10 categories. RealEstate10K
contains video clips gathered from YouTube, and we sample
10 scenes (each with 100 frames) from its test set for eval-
uation. The mip-NeRF 360 dataset has 9 indoor or outdoor
scenes each containing a complex central object or area and
a detailed background. For CO3D and RealEstate10K, we
select the input views evenly from all the frames and use
every 8th of the remaining frames for evaluation. For the
mip-NeRF 360 dataset, we retain its original test set and se-
lect the input views from the training set using a heuristic to
encourage reasonable camera spacing and coverage of the
central object (see supplement for details).
Baselines For evaluation datasets, we compare against
the state-of-the-art dense-view NeRF model Zip-NeRF [2]
(which is also the reconstruction pipeline used in our
model), and state-of-the-art few-view NeRF regularization
methods including DiffusioNeRF [64], FreeNeRF [65], and
SimpleNeRF [50]. We also compare to ZeroNVS [45], con-
current work on novel view synthesis of scenes from a sin-
gle image. To adapt it to multiview inputs, we use the input
view closest to the sampled view as its input condition and
denote this method as ZeroNVS∗. On the CO3D dataset
we additionally compare to SparseFusion [72]. Following
their setup, we train the SparseFusion model in a category-
specific manner. However, unlike the original implementa-
tion, which masks out the foreground object and sidesteps
the difficulty of recovering the background of the scene, we
use the whole unmasked image. Please refer to the supple-
ment for more details about baselines.

4.2. Comparison Results

We report the quantitative results in Table 1 and show qual-
itative comparisons in Fig. 3. Please see the supplementary
video for more visuals. Our backbone NeRF model, Zip-
NeRF, often overfits to the input views and exhibits artifacts
like “foggy” geometry or “floaters”. State-of-the-art few-
view NeRF regularization methods (DiffusioNeRF, FreeN-

21555



Zip-NeRF DiffusioNeRF FreeNeRF SimpleNeRF ZeroNVS Ours Ground Truth

R
ea

lE
st

at
e1

0K
(3

)
L

L
FF

(3
)

D
T

U
(3

)
C

O
3D

(6
)

m
ip

-N
eR

F
36

0
(9

)

Figure 3. A visual comparison of rendered images and depth maps on scenes from the RealEstate10K [71], LLFF [31], DTU [23],
CO3D [39], and mip-NeRF 360 [1] datasets (input view count indicated in parentheses). Both the appearance and geometry of our method
are of higher quality than the baselines in these examples–typical failure modes exhibited by the baselines include “floater” artifacts visible
in depth maps, color artifacts or blurry low-fidelity geometry in minimally observed regions of the scenes, correct texture appearing in
incorrect locations in the image, and so on. We encourage the reader to watch our supplementary video, as many of these differences are
easier to identify with a moving camera trajectory.
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Zip-NeRF∗ 20.77 27.34 31.56 0.774 0.906 0.947 0.332 0.180 0.118
DiffusioNeRF 19.12 24.18 27.78 0.710 0.808 0.869 0.444 0.344 0.282
FreeNeRF 20.54 25.63 27.32 0.731 0.817 0.843 0.394 0.344 0.332
SimpleNeRF 23.89 28.75 29.55 0.839 0.896 0.900 0.292 0.239 0.236
ZeroNVS∗ 19.11 22.54 23.73 0.675 0.744 0.766 0.422 0.374 0.358
Ours 25.84 29.99 31.82 0.910 0.951 0.961 0.144 0.103 0.092

L
L

FF

Zip-NeRF∗ 17.23 20.71 23.63 0.574 0.764 0.830 0.373 0.221 0.166
RegNeRF 19.08 23.09 24.84 0.587 0.760 0.820 0.374 0.243 0.196
DiffusioNeRF 20.13 23.60 24.62 0.631 0.775 0.807 0.344 0.235 0.216
FreeNeRF 19.63 23.72 25.12 0.613 0.773 0.820 0.347 0.232 0.193
SimpleNeRF 19.24 23.05 23.98 0.623 0.737 0.762 0.375 0.296 0.286
ZeroNVS∗ 15.91 18.39 18.79 0.359 0.449 0.470 0.512 0.438 0.416
Ours 21.34 24.25 25.21 0.724 0.815 0.848 0.203 0.152 0.134

D
T

U

Zip-NeRF∗ 9.18 8.84 9.23 0.601 0.589 0.592 0.383 0.370 0.364
RegNeRF 19.39 22.24 24.62 0.777 0.850 0.886 0.203 0.135 0.106
DiffusioNeRF 16.14 20.12 24.31 0.731 0.834 0.888 0.221 0.150 0.111
FreeNeRF 20.46 23.48 25.56 0.826 0.870 0.902 0.173 0.131 0.102
SimpleNeRF 16.25 20.60 22.75 0.751 0.828 0.856 0.249 0.190 0.176
ZeroNVS∗ 16.71 17.70 17.92 0.716 0.737 0.745 0.223 0.205 0.200
Ours 20.74 23.62 24.62 0.875 0.904 0.921 0.124 0.105 0.094

C
O

3D

Zip-NeRF∗ 14.34 14.48 14.97 0.496 0.497 0.514 0.652 0.617 0.590
DiffusioNeRF 15.65 18.05 19.69 0.575 0.603 0.631 0.597 0.544 0.500
FreeNeRF 13.28 15.20 17.35 0.461 0.523 0.575 0.634 0.596 0.561
SimpleNeRF 15.40 18.12 20.52 0.553 0.622 0.672 0.612 0.541 0.493
SparseFusion 16.76 18.77 19.13 0.561 0.600 0.604 0.695 0.653 0.651
ZeroNVS∗ 17.13 19.72 20.50 0.581 0.627 0.640 0.566 0.515 0.500
Ours 19.59 21.84 22.95 0.662 0.714 0.736 0.398 0.342 0.318

m
ip

-N
eR

F
36

0 Zip-NeRF∗ 12.77 13.61 14.30 0.271 0.284 0.312 0.705 0.663 0.633
DiffusioNeRF 11.05 12.55 13.37 0.189 0.255 0.267 0.735 0.692 0.680
FreeNeRF 12.87 13.35 14.59 0.260 0.283 0.319 0.715 0.717 0.695
SimpleNeRF 13.27 13.67 15.15 0.283 0.312 0.354 0.741 0.721 0.676
ZeroNVS∗ 14.44 15.51 15.99 0.316 0.337 0.350 0.680 0.663 0.655
Ours 15.50 16.93 18.19 0.358 0.401 0.432 0.585 0.544 0.511

Table 1. Quantitative evaluation of few-view 3D reconstruction methods. Datasets are ordered in terms of sparsity from easier (novel views
are close to observed views) to harder (novel views are far from observed views). Our method is the first to be evaluated on such a wide
range of few-view real datasets. Despite this generality, we outperform all baselines across all domains. Baselines that we additionally
tuned for the task of few-view reconstruction are indicated with ∗.

eRF and SimpleNeRF) are able to significantly improve the
baseline quality on forward-facing scenes like LLFF and
DTU. However, they fall short on 360-degree scenes (e.g.
the CO3D dataset), where a large portion of the scene is
undersampled or even unobserved due to the a much larger
relative disparity between input views. On such scenes, Ze-
roNVS serves as a strong baseline as it often can reconstruct
a complete 3D scene, but with limited visual fidelity. Our
method outperforms all baselines on both in-distribution
and out-of-distribution datasets, achieving state-of-the-art
performance for few-view NeRF reconstructions.

4.3. Ablation Studies

In Table 2 and Fig. 4, we ablate two aspects of our diffu-
sion model: the use of pretrained diffusion model weights

(PT) and conditioning signal. To ablate “PT,” we train the
diffusion model from scratch. To ablate conditioning, in the
pose experiment we replace our PixelNeRF module with a
conditioning mechanism similar to ZeroNVS [45] (which
itself extends Zero-1-to-3 [29]). This alternative simply
concatenates the latents of all input images to the U-Net
input, and represents the relative camera transforms as vec-
tors (relative translation and rotation quaternion) which are
concatenated with the CLIP embeddings. Both variants pro-
duce sampled images of lower quality, which subsequently
degrades the NeRF reconstruction.

In Fig. 5, we ablate the choice of diffusion loss and find
standard SDS results contain more artifacts, and the multi-
step diffusion loss effectively mitigates these artifacts. Ad-
ditionally, annealing tmin leads to more details.

21557



NeRF renders Diffusion samples
PT Condition PSNR↑SSIM↑LPIPS↓ PSNR↑SSIM↑LPIPS↓

In
-d

om
ai

n ✓ pose 20.57 0.749 0.367 15.11 0.546 0.484
pixelnerf 25.15 0.815 0.246 22.40 0.723 0.314

✓ pixelnerf 25.34 0.823 0.232 24.05 0.751 0.281

O
ut

-d
om

ai
n ✓ pose 17.28 0.521 0.458 12.18 0.244 0.599

pixelnerf 19.82 0.580 0.383 16.46 0.420 0.452
✓ pixelnerf 20.23 0.596 0.355 17.44 0.464 0.411

Table 2. We ablate two aspects of our model: pretrained dif-
fusion weights (PT) and conditioning. For PT, we initialize the
diffusion model weights from a pretrained text-to-image model.
pose uses a pose conditioning similar to ZeroNVS [45] while
pixelnerf uses our PixelNeRF conditioning (Sec. 3.1). We
evaluate our model on both in-domain datasets (RealEstate10K,
CO3D) and out-of domain datasets (LLFF, mip-NeRF 360).

p
o
s
e

w
/o

PT
O

ur
s

G
ro

un
d

Tr
ut

h

Sample 1 NeRF render 1 Sample 2 NeRF render 2

Figure 4. Ablation of diffusion model on 3-view reconstruc-
tion. We show two samples from the diffusion model, and ren-
derings from the reconstructed NeRFs under the same viewpoints
for three variants: pose, without pretraining, and our full model.
The samples from nearby poses are inconsistent, but can be suc-
cessfully reconciled into an underlying NeRF reconstruction.

4.4. Scaling to More Views

To further investigate the effectiveness and robustness of
our diffusion prior, we evaluate our method and the back-
bone Zip-NeRF under various numbers of input views. As
the number of views increases, the input captures provide
better coverage of the entire scene, resulting in less ambigu-
ity. Therefore, we set the weighting factor for our diffusion
loss (Lsample) to be inversely proportional to the number of
input views in this case. As shown in Fig. 6, our test set
performance is consistently better than Zip-NeRF, indicat-
ing that our diffusion prior can serve as an effective drop-in
regularizer across a range of capture settings.

SDS Multistep Annealed Multistep
Figure 5. Comparing diffusion losses for 3D reconstruction. Note
the “blotchy” texture on the placemat and background chair when
using SDS, and improved background detail with annealing.
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Figure 6. Our learned diffusion prior improves performance over
the Zip-NeRF baseline up to as many as 81 input views on the
kitchenlego scene from the mip-NeRF 360 dataset. Though
most results in this paper focus on the challenging case of 3-9 in-
put views, achieving a high-quality reconstruction of a real-world
scene often requires significantly more images–this plot demon-
strates that our diffusion prior reduces this requirement at all points
along the capture density vs. quality curve.

5. Discussion

ReconFusion demonstrates the potential in piecing together
two powerful building blocks. First, a state-of-the-art
optimization-based 3D reconstruction pipeline. Second,
a powerful multiview-conditioned image diffusion model
for generating plausible novel views, which guides the re-
construction to avoid the artifacts resulting from an un-
derconstrained inverse problem. Many current limitations
are evident: the heavyweight diffusion model is costly and
slows down reconstruction significantly; our current results
demonstrate only limited 3D outpainting abilities compared
to what our image model can hallucinate in 2D; tuning the
balance of reconstruction and sample losses is tedious; etc.

However, this initial attempt at building such a system
has already produced compelling results across a variety of
scene types with significantly reduced view counts. We are
optimistic that it may possibly serve as a template for im-
provements in sparse reconstruction, as we move toward a
future of ever more accessible 3D reconstruction techniques
with dramatically reduced capture requirements.
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