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Abstract

Vision-language pre-training (VLP) aims to learn joint
representations of vision and language modalities. The con-
trastive paradigm is currently dominant in this field. How-
ever, we observe a notable misalignment phenomenon, that
is, the affinity between samples has an obvious disparity
across different modalities, namely “Affinity Inconsistency
Problem”. Our intuition is that, for a well-aligned model,
two images that look similar to each other should have the
same level of similarity as their corresponding texts that
describe them. In this paper, we first investigate the rea-
son of this inconsistency problem. We discover that the
lack of consideration for sample-wise affinity consistency
across modalities in existing training objectives is the cen-
tral cause. To address this problem, we propose a novel loss
function, named Sample-wise affinity Consistency (SaCo)
loss, which is designed to enhance such consistency by min-
imizing the distance between image embedding similarity
and text embedding similarity for any two samples. Our
SaCo loss can be easily incorporated into existing vision-
language models as an additional loss due to its comple-
mentarity for most training objectives. In addition, con-
sidering that pre-training from scratch is computationally
expensive, we also provide a more efficient way to contin-
uously pre-train on a converged model by integrating our
loss. Experimentally, the model trained with our SaCo loss
significantly outperforms the baseline on a variety of vision
and language tasks.

1. Introduction

Vision-language pre-training (VLP) has shown remarkable
success since the emergence of contrastive vision-language
learning [55], which aims to promote the paired image and
text samples closer while simultaneously pushing unpaired
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samples away. The following works achieved further im-
provements through vision masked modeling [9, 33], fine-
grained supervision [23, 53], label smoothing [84], augmen-
tations [32], text refinement [11, 21] and noisy data filtering
[14, 67], and text generation supervision [26, 27]. However,
during the contrastive training process, we observe an Affin-
ity Inconsistency Problem, that is, the correlation between
the sample-wise affinity (similarity) in language modality
and visual modality is extremely low. For a highly aligned
vision-language embedding space, the similarity between
every two images shall be similar to the similarity between
their corresponding texts, as both the paired image and text
describe the same object or scene. The detailed qualitative
(Figure 2) and quantitative (Figure 3a) analysis of this prob-
lem are discussed in Sec. 3.2.

The reason is that contrastive pre-training mainly focuses
on aligning or pushing away the cross-modal embeddings,
while ignoring whether the affinity between samples is con-
sistent in different modalities, see Sec. 3.3 for more anal-
ysis. For better clarity, we present an illustration in Fig-
ure 1a, which depicts an embedding space with the affin-
ity inconsistency problem. Taking three image-text pairs as
an example, the circle and square with the same color de-
note the embedding of paired image and text, respectively.
The blue triangle ( ) connecting three circles represents the
relationship between images. Similarly, the red triangle
( ) connecting three squares reflects the relationship be-
tween texts. The shorter side between two images or texts
means the greater affinity between them. In Figure 1a(ii),
we show the geometric inconsistency between “ ” and “ ”
in the contrastively trained space, highlighting the dispar-
ity in sample-wise affinity between the vision and language
modalities.

To address this problem, we propose a simple but effec-
tive loss function, named Sample-wise affinity Consistency
(SaCo) loss, whose core idea is to minimize the disparity
between image embedding similarity and text embedding
similarity for any two image-text pairs. Intuitively, it is de-
signed to specifically promote the consistency of affinity
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Figure 1. (a) Comparison on the optimization objective of our SaCo loss and contrastive loss. As in (i), contrastive loss aims to pull the
embeddings of paired image and text together ( ) while pushing those of unpaired ones apart ( ), optimizing the embedding space to
(ii). The blue ( ) and red ( ) triangles in (ii) represent the image embedding affinity and text embedding affinity, respectively. Our SaCo
loss strives for the geometric consistency between “ ” and “ ”, and optimize the embedding space to (iii) with consistent affinity. (b)
Performance comparison on various tasks, where the baseline is CLIP with ViT-B/32 image encoder.

between samples in different modalities. Since our SaCo
loss is complementary to most training objectives, it can be
seamlessly integrated into existing vision-language models
as an additional loss. In practice, pre-training from scratch
is computationally expensive. Accordingly, we have also
explored another more efficient approach to endow an exist-
ing excellent model with the property of cross-modal affin-
ity consistency, which is achieved by performing continu-
ous pre-training for a few epochs with our SaCo loss.

Extensive experiments on various tasks demonstrate the
effectiveness of our approach. As shown in Figure 1b, our
SaCo loss achieves superior performance compared to the
CLIP baseline. It improves Recall@1 performance by 9.3%
and 5.3% in zero-shot Image-to-text retrieval on Flickr30K
[52] and MS-COCO [38], respectively. Additionally, it
enhances Recall@1 performance by 6.1% and 3.7% in
zero-shot text-to-image retrieval on the Flickr30K and MS-
COCO datasets, respectively. Furthermore, it boosts Top-
1 Accuracy performance by approximately 6.4% and 13%
in zero-shot and linear prob image classification on the
ImageNet-1K dataset. For more evaluations, we have in-
cluded our experiments on image retrieval and text classifi-
cation in the supporting materials.

2. Related Work

Vision-language Pre-training. Vision-language pre-
training (VLP) is one of the most important advancements
in multi-modal learning [2, 20, 55, 68, 80, 82] . It strives to
learn general and transferable representations for both vi-
sual and linguistic modalities from large-scale data. Ear-
lier works adopted a single-stream structure, using a sin-
gle transformer to learn both joint image and text repre-
sentations by concatenating image and text input embed-

dings [4, 24, 28, 30, 31]. Later, the emergence of CLIP
[55] opened up the dual-stream structure, which separately
encodes image and text with decoupled image and text en-
coder. CLIP has shown remarkable performance on zero-
shot transferability for various downstream tasks by lever-
aging contrastive learning on large-scale image-text pairs.
Subsequently, a series of works continued to improve this
contrastive paradigm by introducing new optimization ob-
jectives. DeCLIP [32] and SLIP [47] introduced addi-
tional self-supervision training objectives in order to im-
prove data efficiency [60]. FLIP [33] and MaskCLIP [9]
incorporated the visual masked modeling [13, 88] to en-
hance local semantics. FILIP [23], LOUPE [25], and
VoLTA [53] explored more accurate fine-grained alignment
between the two modalities [85, 87, 89]. SoftCLIP [84]
and PyramidCLIP [83] relaxed the strict one-to-one con-
straint to a soft cross-modal alignment. Image-text match-
ing is further integrated into the contrastive paradigm as a
complement [1, 26, 27] to predict whether an image-text
pair is positive (matched) or negative (unmatched) via bi-
nary classification. To facilitate both understanding tasks
[5, 10, 13, 17, 36, 37, 75] and generation tasks [90], CoCa
[44] and BLIP series [26, 27, 92] combined a text gener-
ation objective through language-masked modeling. Dif-
ferent from them, this paper focuses on another objective,
targeting the consistent sample-wise affinity across modal-
ities. In addition, our approach is complementary to pre-
vious training objectives and therefore can be seamlessly
incorporated into existing vision-language models.

Consistency-based Supervision. The consistency-based
supervision is highly favored in deep learning. Cycle con-
sistency is commonly used in bidirectional scenarios, such
as machine translation [3, 7], unpaired image-to-image
translation [18], vision-language generation [29], cross-
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Figure 2. Qualitative illustration for the “affinity inconsistency problem”. For the query image-text pair, we query its neighbors in a
multi-modal dataset based on its image embedding or text embedding, separately. The embeddings are obtained from the official CLIP
[55]. However, queries in different modalities return very different results. When querying with image embedding, the top-ranked images
(in green shadow) are all related to “bus”. While the top-ranked texts (in blue shadow) are mostly related to “automobile” when querying
with image embedding.

modal retrieval [8, 39, 69–71, 73] and domain adaption
[81]. Temporal consistency is an essential technique in var-
ious video generation and understanding tasks [12, 22, 46,
48, 77, 91]. Similarly, spatial consistency is also an ef-
fective prior in computer vision, for example, point cloud
registration [78], graph matching [40, 59, 61], distillation
[51], representation learning [66, 76] and scene understand-
ing [19, 34, 35, 42, 45, 58, 62–65, 74, 79]. Furthermore,
feature consistency, between local and global, can facili-
tate deep feature clustering [6], and neighbor consistency in
the feature or prediction space can improve noisy learning
[15, 43]. In this paper, we extend consistency supervision to
the field of vision-language representation learning, which
introduces a new method for exploiting the inherent consis-
tency among different modalities.

3. Affinity Inconsistency Problem

In this section, we first revisit the current dominant con-
trastive pre-training paradigm in Sec. 3.1. Then, we experi-
mentally explore the affinity inconsistency problem in Sec.
3.2 and further investigate its reasons in Sec. 3.3.

3.1. Preliminaries

The contrastive language-image loss [55] has been uti-
lized in most popular vision-language models [16, 26, 27,
54, 55, 72, 86] during pre-training. It aims to learn an
aligned embedding space for visual and language modal-
ities. Specifically, given a batch of N image-text pairs
{(xI

i ,x
T
i )}Ni=1, each image xI

i and text xT
i are passed

through the image encoder and text encoder independently
to get their corresponding embedding. After the linear pro-
jection and L2 normalization, we obtain the final embed-

dings {(Ii,Ti)}Ni=1 for all the pairs, where the paired im-
age and text (Ii,Ti) is treated as the positive pair and the
unpaired one (Ii,Tj(j ̸=i)) forms the negative pair. The con-
trastive loss can be formulated as follows:

Lcont = −

Image → Text︷ ︸︸ ︷
1

N

N∑
i=1

log
e(Sii/τ)∑N

j=1 e
(Sij/τ)

−

Text → Image︷ ︸︸ ︷
1

N

N∑
i=1

log
e(Sii/τ)∑N

k=1 e
(Ski/τ)

,

(1)
where Sij = ⟨Ii,Ti⟩ is the cross-modal inner-product sim-
ilarity, and τ is a learnable temperature parameter [55] to
control the smoothness of distribution. The contrastive loss
minimizes the distance between the embeddings of the pos-
itive pair across different modalities and maximizes the dis-
tance between the embeddings of the negative pair. Thus,
the contrastive loss enables images or texts that share the
same semantic information to have similar representations
in the feature space.

3.2. Problem Discovery

Contrastive pre-training can basically ensure that images
and texts with the same semantic information also have sim-
ilar representations in the feature space, thereby aligning the
embeddings in different modalities. However, we observe a
significant misalignment phenomenon. Specifically, given
the i-th image-text pair from a multi-modal dataset (such
as CC3M [56]), we first utilize a public vision-language
model to extract its image embedding Ii and text embed-
ding Ti, which are separately used to compute the image
embedding similarities SI

i ∈ RN and text embedding simi-
larities ST

i ∈ RN between the query and all the other sam-
ples within the dataset. The calculation is as follows,

SI
i,j = ⟨Ii, Ij⟩, ST

i,j = ⟨Ti,Tj⟩, (2)
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Figure 3. (a) Comparison of the affinity consistency metric de-
fined in Eq.(4). We use the public CLIP [55] and BLIP [26] as
baseline models. (b) Comparison of the disparity of affinity across
modalities, which is measured by the SaCo loss defined in Eq.(5).
We show the fluctuation of this metric during training under dif-
ferent objectives.

where ⟨·, ·⟩ denotes the inner-product operation.
Qualitative Analysis. We first sort the samples in descend-
ing order based on the two similarity vectors. This process
yields a sorted sequence of image similarities and a sorted
sequence of text similarities. Ideally, these two sequences
should be highly consistent, as both the given image and
text represent the same object or scene. While, in practice,
they exhibit obvious inconsistency. A qualitative example is
shown in Figure 2, containing the top-5 entities from both
sequences.
Quantitative Analysis. For more quantitative analysis, we
utilize the Pearson correlation coefficient defined as fol-
lows,

ρ(U,V) =

∑C
i=1(Ui − Ū)(Vi − V̄)√∑C

i (Ui − Ū)2
∑C

i (Vi − V̄)2
, (3)

where C is the dimensional size of input vectors, Ū and V̄
indicate the mean value. The Pearson correlation coefficient
ranges from -1 to +1, encompassing a spectrum of relation-
ships between variables, ranging from negative correlation
to positive correlation. When ρ = 0, there is no correlation
between the examined variables. Specifically, we iteratively
treat each sample in the dataset as a query sample to calcu-
late the image similarities and text similarities and average
their Pearson correlation coefficient to obtain the so-called
affinity consistency metric, that is,

Raffinity-consistency =
1

|D|

|D|∑
i=1

ρ(SI
i ,S

T
i ), (4)

where |D| is the dataset size. As shown in Figure 3a, ex-
isting popular models (CLIP [55] and BLIP [26]) present
quite low correlation in cross-modal similarity compared to
their counterparts pre-trained with our approach. Since the
similarity querying result essentially reflects the affinity be-
tween each candidate sample and the query sample, we refer
to such inconsistency as the affinity inconsistency problem.

Figure 4. A simulated example to indicate why the dominant
contrastive pre-training has the affinity inconsistency problem. (a)
illustrates the settings of the simulation. We consider three image-
text pairs, each distinguished by a different color and represented
by circles and squares. The circles or squares with black edges
remain fixed, while only the one square with red edge is allowed
to vary by an angle θ along the red dotted circle with a radius of
ε from its corresponding image embedding. (b) The results of the
simulation demonstrate how the contrastive loss (CL) defined in
Eq.(1) and affinity consistency (AC) metric defined in Eq.(4) vary
with the angle θ under different radius ε settings.

3.3. Reason Analysis

In this subsection, we investigate why it is difficult for con-
trastive pre-training to learn consistent cross-modal affinity
between samples. First, we monitor the variation of affinity
disparity (one minus the averaged affinity consistency) dur-
ing the standard contrastive pre-training process. As shown
in the black curve in Figure 3b, we observe an increasing
trend in this metric as training progresses. However, when
compared to the training process under our paradigm (red
curve), it can be found that the affinity disparity metric of
the vanilla contrastive pre-training quickly stagnates at an
unsatisfactory level (around 0.15).

Intuitive Simulation. To clearly illustrate this, we also pro-
vide an intuitive simulation in Figure 4. As shown in Figure
4a, we take three image-text pairs as an example (repre-
sented by different colors). Their image and text embedding
are denoted by circles and squares, respectively. Supposing
that only one sample’s text embedding (marked with a red
edge) is changeable along the circle (denoted as a red dot-
ted circle) of radius ε from its corresponding image embed-
ding, and other embeddings with black edges are fixed. We
simulate the training process by varying the radius ε of the
circle (also the distance between cross-modal embedding)
and the angle θ between the features. In the simulation, we
monitor the changes in both the contrastive loss by Eq.(1)
and affinity consistency by Eq.(4), as shown in Figure 4b.
It can be observed that changes in radius ε significantly af-
fect the contrastive loss, whereas changes in angle θ sig-
nificantly affect the affinity consistency. This implies that
during the training process, the contrastive loss only has a
direct impact on the relative distance (similarity) between
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cross-modal features, but is less sensitive to their relative
angular relationships. However, these angular relationships
significantly affect affinity consistency, leading to the affin-
ity inconsistency problem.

4. Methodology
In this section, we first present the design of our proposed
SaCo loss in Sec. 4.1, and then introduce two strategies
for incorporating our loss function into vision-language pre-
training in Sec. 4.2.

4.1. SaCo Loss

To address the affinity inconsistency problem, we propose
a simple yet powerful loss function, named sample-wise
affinity consistency (SaCo) loss. The idea of our loss is
quite intuitive. Specifically, given a batch of N image-text
pair samples, they are passed through the corresponding en-
coder to extract the image embedding {Ii}Ni=1 and text em-
bedding {Ti}Ni=1, respectively. Note that the embeddings
are L2-normalized. First, for the i-th data point, we calcu-
late the image embedding similarity vector SI

i and the text
embedding similarity vector ST

i between the current data
and each data within the same batch, check Eq.(2) for de-
tails. Then, our SaCo loss can be formulated as follows:

LSaCo =

N∑
i=1

D
(
SI
i ,S

T
i

)
, (5)

where D(·, ·) denotes the L1 distance between two input
vectors as defined in Eq.(3). It measures the consistency
degree between the vision-modality affinity and language-
modality affinity. Therefore, minimizing this SaCo loss can
specifically bridge the gap between vision and language
modality on sample-wise affinity. We will show that our
SaCo loss is well-compatible with existing vision-language
pre-training models via experimentation.

4.2. Vision-language Pre-training with SaCo Loss

Our SaCo loss has broad applicability and can be used as an
additional loss function for existing vision-language mod-
els. The overall training loss can be expressed as a weighted
combination of the original loss functions (such as the con-
trastive loss in the CLIP model, as shown in Eq. (1)) and
our loss. The equation for the total loss is as follows:

Ltotal = Loriginal + αLSaCo, (6)

where α represents the weight coefficient. We then present
two strategies for incorporating our SaCo loss into vision-
language pre-training, along with detailed designs.

4.2.1 Pre-training from Scratch

Pre-training from scratch is the most commonly used strat-
egy, in which the parameters are randomly initialized before

Figure 5. (a) The evolution of affinity accuracy during training.
(b) Comparison of different solutions for the instability issue when
pre-training from scratch. The pseudo-affinity mimicking strategy
performs best. All the experiments are pre-trained on the CC3M
dataset and utilize the CLIP with ViT-B/32 image encoder as the
baseline model.

training. In practice, we observe some instabilities when
pre-training from scratch with our SaCo loss. As shown in
the yellow curve in Figure 3b, it first drops sharply, then
starts to rise, and finally decreases again in the later train-
ing stage. To investigate the reason, we monitor how the
accuracy of affinity varies with training. The accuracy is
estimated by the correlation between the affinity from dif-
ferent training stages and that from a well-trained model,
such as CLIP ViT-L/14. As shown in Figure 5a, in the early
training stage, the correlation is quite low and the query re-
sults almost have no common visual components with the
query image containing “Pastries”. Obviously, the affinity
in both modalities is extremely noisy in the early training
stage. At this time, it is ineffective to overemphasize the
affinity consistency and will hinder the optimization of em-
bedding space. For the aforementioned problem, we design
and compare several strategies as follows:
1) Incremental loss weight. Considering that inaccurate

affinity usually appears in the early training stage, we
gradually increase the weight α of the SaCo loss in
Eq.(6) as the training progresses.

2) Sample-wise masking. We utilize the similarity between
image and text embeddings as a criterion to assess the
representation quality. The larger the similarity, the more
reliable the representations are. By thresholding the sim-
ilarity, we obtain a binary mask that indicates whether
each sample needs to be subjected to SaCo loss.

3) Pseudo-affinity mimicking. We allow the training model
to mimic a pseudo-affinity predicted by a public well-
trained model (e.g., CLIP [55], DINOv2 [49]). Similar
to the SaCo loss, this pseudo-affinity mimicking process
can be formulated as follows:

Lmimic =

N∑
i=1

D
(
SI
i , S̃

I
i

)
, (7)

where S̃I
i is the predicted pseudo-affinity, and D(·, ·) de-

notes L1 distance. This objective is also integrated via
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weighted summation, and the total loss is an extension
to Eq.(6), that is,

Ltotal = Loriginal + αLSaCo + βLmimic, (8)

where β is the weight for pseudo-affinity mimicking.
Experimentally, we find that the third solution is the most
effective choice (see Figure 5b). Note that this mimicking is
better to be only performed in the visual modality (detailed
in Sec. 5.4 and Table 5). Please refer to supplementary
materials for more motivations, details, analysis, and other
potential solutions.

4.2.2 Continue Pre-training

Given a well-trained vision-language model (VLM), one
can also continuously pre-train the well-trained model by
incorporating our SaCo loss. In this case, we empirically
find that it is no longer necessary to mimic the pseudo-
affinity for training stability, as the affinity of a well-trained
model has already been optimized to a good state. In ad-
dition, under this strategy, it is not indispensable to use the
original pre-training dataset of the well-trained VLM. As
shown in Table 3, even a relatively small public dataset can
lead to significant improvement. Therefore, it is beneficial
for models trained with private data and efficient training.

5. Experiments
We first briefly describe the experimental setups in Sec.
5.1. Then, we analyze the performance on various vision-
language tasks in Sec. 5.2 and 5.3. Ablation studies are
conducted in Sec. 5.4 to investigate the effect of each key
design and hyper-parameter.

5.1. Experimental Setup

Datasets. For pre-training, the experiments are conducted
on two open-source image-text datasets at different scales:
CC3M [56] and YFCC15M [32]. We perform evaluations
across a wide range of tasks. The datasets utilized for each
task are detailed in the supplementary materials.
Baseline Models. In our experiments, the main baseline
model is the CLIP [55] with three kinds of image encoders:
ResNet-50 [55], ViT-B/32 [10], and ViT-B/16 [10].
Pre-train Settings. The experiments are conducted on 16
NVIDIA V100 GPUs, and implemented with PyTorch [50].
Details are listed in supplementary materials.

5.2. Comparison on Pre-training from Scratch

Zero-shot Classification. Zero-shot classification [57]
requires a model to classify data it has never been explic-
itly trained on. Table 1 compares the zero-shot ImageNet-
1K classification accuracy of the models pre-trained from
scratch on datasets with different scales. When pre-training

Pre-train
Dataset Method Image

Encoder
ImageNet-1K

Top-1 Acc. Top-5 Acc.

CLIP R50 17.9 36.3
CLIP + Ours R50 22.5 (+4.6) 41.3 (+5.0)
CLIP ViT-B/32 11.9 26.2
CLIP + Ours ViT-B/32 18.3 (+6.4) 35.1 (+8.9)
CLIP ViT-B/16 16.6 33.1

CC3M

CLIP + Ours ViT-B/16 21.8 (+5.2) 40.0 (+6.9)

CLIP R50 37.2 62.1
CLIP + Ours R50 42.0 (+4.8) 67.6 (+5.5)
CLIP ViT-B/32 31.2 55.7
CLIP + Ours ViT-B/32 38.0 (+6.8) 63.2 (+7.5)
CLIP ViT-B/16 37.6 63.5

YFCC15M

CLIP + Ours ViT-B/16 43.5 (+5.9) 69.3 (+5.8)

Table 1. Zero-shot ImageNet-1K classification results for the mod-
els pre-trained from scratch. “Acc.” is the short for “Accuracy”.

on CC3M, our approach can bring consistent performance
improvement to all the CLIP variants, for example, +4.6%,
+5.2%, and +6.4% accuracy gain for R50, ViT-B/16, and
ViT-B/32 respectively. The model with 15M pre-trained
data still shows similar improvement from +4.8% to +6.8%
top-1 accuracy across all variants.

Zero-shot Image-Text Retrieval. The zero-shot retrieval
experiments include image-to-text (I2T) retrieval and zero-
shot text-to-image (T2I) retrieval. The recall performance
on these two tasks is summarized in Table 2, considering
two widely-used benchmarks. Strikingly, pre-training with
our loss yields a significant improvement over the base-
line by a large margin. Specifically, for the Flickr30K
[52] dataset, we achieve a remarkable improvement rang-
ing from +8.0% to +12.8% in Recall@1 for I2T retrieval,
and +6.1% to +7.9% in Recall@1 for T2I retrieval, across
different baseline variants. For the more challenging MS-
COCO [38] dataset, our loss leads to an improvement of ap-
proximately +5% in Recall@1 for I2T retrieval, and a gain
of +2.7% to +3.7% in Recall@1 for T2I retrieval. When
considering the top-10 retrieval results (measured by Re-
call@10), the improvement more than doubles, achieving
+8.0% to +11.5% for I2T retrieval, and +4.3% to +10.3%
for T2I retrieval.

When pre-training on a larger dataset (YFCC15M [32]),
our loss continues to achieve sustained improvements on the
MS-COCO dataset. We observe an approximate increase of
+3% to +5% in Recall@1 and +4% to +7% in Recall@5 for
both I2T and T2I retrieval. On the Flickr30K dataset, al-
though the improvement margin slightly narrows compared
to that of the CC3M pre-trained model, it is still substantial.
We observe an improvement of approximately +5% in Re-
call@1 for I2T retrieval and +4.8% to +6.4% in Recall@1
for T2I retrieval. It is worth highlighting the significant per-
formance gain achieved with our loss on both datasets.
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Pre-train
Dataset Method Image

Encoder

Flickr30K (1K test set) MS-COCO (5K test set)
Image → Text Text → Image Image → Text Text → Image

R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10 R@1 / R@5 / R@10

CLIP R50 29.2 / 58.5 / 70.5 24.8 / 51.7 / 63.2 16.4 / 38.2 / 50.2 13.3 / 32.4 / 43.5

CLIP + Ours R50
42.0 / 72.1 / 80.1

(+12.8 / +13.5 / +9.6)
31.8 / 57.8 / 67.9

(+7.0 / +6.1 / +4.7)
21.1 / 45.3 / 58.1

(+4.7 / +7.1 / +7.9)
16.0 / 36.5 / 47.8

(+2.7 / +4.1 / +4.3)

CLIP ViT-B/32 16.0 / 39.1 / 51.7 12.2 / 30.1 / 40.3 8.2 / 22.5 / 32.0 6.5 / 18.2 / 25.8

CLIP + Ours ViT-B/32
25.3 / 51.1 / 63.8

(+9.3 / +12.0 / +12.1)
18.3 / 40.0 / 50.5

(+6.1 / +9.9 / +10.2)
13.5 / 32.5 / 43.5

(+5.3 / +10.0 / +11.5)
10.2 / 25.8 / 36.1

(+3.7 / +7.6 / +10.3)

CLIP ViT-B/16 26.7 / 54.4 / 65.9 18.8 / 41.0 / 52.4 13.2 / 31.5 / 43.2 10.0 / 25.6 / 35.8

CC3M

CLIP + Ours ViT-B/16
34.7 / 65.8 / 76.6

(+8.0 / +11.4 / +10.7)
26.7 / 51.4 / 62.0

(+7.9 / +10.4 / +9.6)
17.2 / 39.6 / 51.2

(+4.0 / +8.1 / +8.0)
13.3 / 32.1 / 43.1

(+3.3 / +6.5 / +7.3)

CLIP R50 54.0 / 81.3 / 87.7 35.6 / 63.5 / 74.0 27.8 / 51.9 / 63.1 16.3 / 37.1 / 48.9

CLIP + Ours R50
59.1 / 84.6 / 91.0

(+5.1 / +3.3 / +3.3)
40.4 / 66.8 / 76.1

(+4.8 / +3.3 / +2.1)
32.7 / 58.8 / 70.4

(+4.9 / +6.9 / +7.3)
20.9 / 43.8 / 55.6

(+4.6 / +6.7 / +6.7)

CLIP ViT-B/32 42.1 / 68.9 / 78.8 25.3 / 50.1 / 61.9 23.1 / 46.0 / 57.8 13.8 / 32.6 / 43.7

CLIP + Ours ViT-B/32
47.2 / 75.6 / 85.6

(+5.1 / +6.7 / +6.8)
31.7 / 57.7 / 67.7

(+6.4 / +7.6 / +5.8)
27.2 / 53.4 / 65.9

(+4.1 / +7.4 / +8.1)
17.9 / 39.3 / 50.6

(+4.1 / +6.7 / +6.9)

CLIP ViT-B/16 53.5 / 80.5 / 89.1 34.5 / 61.6 / 72.8 30.3 / 55.6 / 66.7 18.0 / 40.4 / 51.8

YFCC15M

CLIP + Ours ViT-B/16
58.9 / 85.7 / 91.9

(+5.4 / +5.2 / +2.8)
40.5 / 67.9 / 77.0

(+6.0 / +6.3 / +4.2)
33.4 / 60.1 / 71.6

(+3.1 / +4.5 / +4.9)
22.7 / 45.4 / 56.7

(+4.7 / +5.0 / +4.9)

Table 2. Zero-shot image-text retrieval results. All the models are pre-trained from scratch. “R@k” is short for “Recall@k”.

Method Image
Encoder

Flickr30K (1K test set) MS-COCO (5K test set) ImageNet-1K
Image → Text Text → Image Image → Text Text → Image Top-1 Acc.R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP ViT-B/32 77.8 94.1 57.0 82.8 49.6 73.6 29.3 54.7 63.0
CLIP + Ours ViT-B/32 81.7 (+3.9) 95.5 (+1.4) 64.9 (+7.9) 88.1 (+5.3) 54.6 (+5.0) 77.6 (+4.0) 36.1 (+6.8) 62.0 (+7.3) 64.0 (+1.0)

CLIP ViT-B/16 81.7 96.0 60.8 85.1 51.8 75.7 32.0 57.2 68.2
CLIP + Ours ViT-B/16 85.5 (+3.8) 96.5 (+0.5) 69.1 (+8.3) 90.1 (+5.0) 57.8 (+6.0) 80.0 (+4.3) 39.8 (+7.8) 64.7 (+7.5) 69.3 (+1.1)

Table 3. Performance of the continuously pre-trained models on zero-shot classification and image-text retrieval. We perform continue
pre-training on the baseline CLIP model published by OpenAI. “R@k” is short for “Recall@k”.

Summary and Analysis. Interestingly, we notice about
1∼2 times the performance gain on I2T retrieval than T2I
retrieval, which indicates that our loss brings a more promi-
nent improvement for the text embedding space than image
embedding space. It reveals that there is a greater improve-
ment potential for text embedding space, as our design has
no particular preference for the language modality. These
findings demonstrate the benefits of our proposed loss for
enhancing the joint embedding space across modalities.

5.3. Comparison on Continue Pre-training

We build upon OpenAI’s publicly available CLIP1 as the
baseline and conduct continuous pre-training using our pro-
posed loss on the LLaVA-595K dataset [41]. The superior-
ity of our approach is demonstrated in Table 3. Notably, the
most substantial improvement is observed in the image-text
retrieval task, with a Recall@1 increase of approximately
+3% to +4%. This improvement is approximately three

1https://github.com/openai/CLIP

times larger than the improvement observed in the classi-
fication task. Here, the significant enhancement is actually
due to the fact that the retrieval task places a higher demand
on the quality of the affinity. Our proposed approach better
aligns the affinities between images and their corresponding
text descriptions, resulting in better affinity affinities and
improved retrieval performance.

5.4. Ablation Study

Component Effect. Table 4 shows that both SaCo loss
and pseudo-affinity label mimicking are essential compo-
nents for achieving the best performance in our approach.
Mimicking the pseudo affinity alone only brings a minor
improvement, as it does not effectively constrain the cross-
modal consistency of sample-wise affinity. This highlights
the importance of cross-modal affinity consistency as an
indispensable objective, while pseudo-affinity mimicking
contributes to training stability and convergence to a better
local optimum. For continue pre-training, solely using our
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Pre-train
Schedule

SaCo
Loss

Pseudo
Affinity

ImageNet-1K Flickr30K
Top-1 Acc. I2T(R@1) T2I(R@1)

11.9 16.0 12.2
✓ 17.5 (+5.6) 23.2 (+7.2) 16.3 (+4.1)

✓ 12.4 (+0.5) 17.8 (+1.8) 13.7 (+1.5)
From

Scratch
✓ ✓ 18.3 (+6.4) 25.3 (+9.3) 18.3 (+6.1)

63.0 77.8 57.0
✓ 64.0 (+1.0) 81.7 (+3.9) 64.9 (+7.9)

✓ 60.8 (-2.2) 76.3 (-1.5) 52.6 (-4.4)Continue

✓ ✓ 63.2 (+0.2) 78.6 (+0.8) 59.8 (+2.8)

Table 4. Ablation on the effect of each component. The CLIP
with ViT-B32 image encoder is used as the baseline model. We
report the Top-1 Accuracy (Acc.) for zero-shot classification, and
Recall@1 (R@1) for both zero-shot image-to-text (I2T) and text-
to-image (T2I) retrieval.

SaCo loss performs best while mimicking pseudo-affinity
leads to a significant decline in overall performance. This
can be attributed to the fact that a well-trained model has al-
ready learned a relatively optimal sample-wise affinity, and
forcibly aligning its affinity with the pseudo-affinity pre-
dicted by another model will excessively disrupt its embed-
ding space.

Investigate the Pseudo-affinity. Table 5 highlights sev-
eral important findings. Firstly, replicating pseudo-affinity
in both modalities simultaneously (row 1 vs 7) conflicts with
the purpose of our approach, which is to address the poor
cross-modal consistency of pseudo-affinity in existing mod-
els. Secondly, mimicking visual pseudo-affinity is bet-
ter than linguistic counterpart due to noisy textual infor-
mation in image-text datasets (see row 2-3 vs 7). Images
provide more comprehensive information. Thirdly, vision-
language models like CLIP [55] yield better pseudo-affinity
than vision-only models like DINOv2 [49]. ImageNet-1K
pre-trained models have the worst results (see line 9,10) due
to limited semantic concepts in the training data. In addi-
tion, It is better to use a similar architecture vision model to
generate pseudo-affinity for training vision-language mod-
els.

Loss Weights. Figure 6 shows the effect of weight coeffi-
cient α and β corresponding to our SaCo loss and pseudo-
affinity mimicking, respectively. For both of them, the per-
formance shows an unimodal shape as weight varies. We
empirically set α = β = 5.

6. Conclusion
This paper investigates and analyzes a problem of inconsis-
tent cross-modal affinity in vision-language models, namely
“Affinity Inconsistency Problem”. To solve this problem,
we propose a novel loss function, named Sample-wise affin-
ity Consistency (SaCo) loss, which aims to enhance the

Model
Pseudo Affinity Source ImageNet-1K Flickr30K

Modality Model Top-1 Acc. I2T T2I
R@1 R@1

1
Vision-

Language CLIP ViT-L/14 18.5 26.1 20.1

2 CLIP-Text 20.7 32.5 24.5
3 Language BERT-Base 20.5 31.5 23.3

4 R50† 20.6 32.4 23.7
5 ViT-B/32† 21.3 33.6 25.8
6 ViT-B/16† 21.7 34.0 26.2
7 ViT-L/14† 21.8 34.7 26.7
8 ViT-L/14⋆ 21.6 34.0 26.3
9

CLIP
ViT-B/16

Vision

ViT-L/14‡ 19.4 29.8 22.0

10 R50‡ 18.8 31.0 26.0
11 R50† 22.5 42.0 31.8
12 ViT-B/16† 22.5 40.1 30.8
13

CLIP
R50 Vision

ViT-L/14† 22.2 39.5 30.7

Table 5. Ablation on the effect of pseudo-affinity. All the ex-
periments are pre-trained from scratch on CC3M. We report the
Top-1 Accuracy (Acc.) for zero-shot classification, and Recall@1
(R@1) for both zero-shot image-to-text (I2T) and text-to-image
(T2I) retrieval. “‡” denotes the model is supervised pre-trained on
ImageNet-1K. “†” represents the official CLIP [55] published by
OpenAI. “⋆” indicates the model is self-supervised pre-trained via
DINOv2 [49].
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Figure 6. Ablation on loss weights. α is the weight coefficient for
our SaCo loss. β corresponds to the pseudo-affinity mimicking
objective.

sample-wise affinity consistency by minimizing the dis-
tance between image embedding similarity and text embed-
ding similarity for any two samples. Our loss can either be
used to pre-train models from scratch or applied to well-
trained models via continue pre-training. Extensive experi-
ments indicate that our SaCo loss can bring significant im-
provement in a broad range of tasks, which highlights the
importance of sample-wise affinity consistency across dif-
ferent modalities.
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