
SeeSR: Towards Semantics-Aware Real-World Image Super-Resolution

Rongyuan Wu1,2, Tao Yang3, Lingchen Sun1,2, Zhengqiang Zhang1,2, Shuai Li1,2 Lei Zhang1,2,*

1The Hong Kong Polytechnic University 2OPPO Research Institute 3ByteDance Inc.
{rong-yuan.wu, ling-chen.sun, zhengqiang.zhang, novak.li}@connect.polyu.hk

yangtao9009@gmail.com, cslzhang@comp.polyu.edu.hk

Abstract

Owe to the powerful generative priors, the pre-trained
text-to-image (T2I) diffusion models have become increas-
ingly popular in solving the real-world image super-
resolution problem. However, as a consequence of the
heavy quality degradation of input low-resolution (LR) im-
ages, the destruction of local structures can lead to am-
biguous image semantics. As a result, the content of re-
produced high-resolution image may have semantic errors,
deteriorating the super-resolution performance. To address
this issue, we present a semantics-aware approach to bet-
ter preserve the semantic fidelity of generative real-world
image super-resolution. First, we train a degradation-
aware prompt extractor, which can generate accurate soft
and hard semantic prompts even under strong degrada-
tion. The hard semantic prompts refer to the image tags,
aiming to enhance the local perception ability of the T2I
model, while the soft semantic prompts compensate for the
hard ones to provide additional representation information.
These semantic prompts encourage the T2I model to gen-
erate detailed and semantically accurate results. Further-
more, during the inference process, we integrate the LR
images into the initial sampling noise to mitigate the dif-
fusion model’s tendency to generate excessive random de-
tails. The experiments show that our method can repro-
duce more realistic image details and hold better the se-
mantics. The source code of our method can be found at
https://github.com/cswry/SeeSR.

1. Introduction

Images inevitably undergo degradation due to factors such
as subpar imaging devices, unfavorable capturing environ-
ments, transmission losses, etc. This degradation manifests
in various forms, including low-resolution, blurriness and
noise. Image super-resolution (ISR) aims to reconstruct a
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high-resolution (HR) image from the given low-resolution
(LR) input. Traditionally, researchers investigate the ISR
problem by assuming simple and known image degrada-
tions (e.g., bicubic downsampling), and developed many
successful models [7, 8, 14, 33, 41, 53, 74, 75, 79]. How-
ever, these methods often yield over-smoothed outcomes
due to their fidelity-focused learning objectives. To enhance
visual perception, generative adversarial networks (GANs)
[15] have been adopted to solve the ISR problem [56]. By
using the adversarial loss in training, the ISR models can
be supervised to generate perceptually realistic details, yet
there can be much visual artifacts.

Despite the remarkable advancements, when applying
the above mentioned models to real-world LR images,
whose degradations are much more complex and even un-
known, the output HR images can have low visual quality
with many artifacts. This is mainly caused by the domain
gap between the synthetic training data and the real-world
test data. The goal of real-world ISR (Real-ISR) is to re-
produce a perceptually realistic HR image from its LR ob-
servation with complex and unknown degradation. To this
end, some researchers proposed to collect real-world LR-
HR image pairs using long-short camera focal lens [3, 61].
Another more cost-effective way is to simulate the complex
real-world image degradation process using random combi-
nations of basic degradation operations. The representative
work along this line include BSRGAN [70], Real-ESRGAN
[57] and their variants [6, 34, 35, 63]. With the abundant
amount of more realistic synthetic training pairs, the GAN-
based Real-ISR methods can generate more authentic de-
tails. However, they still tend to introduce many unpleas-
ant visual artifacts due to the unstable adversarial training.
LDL [34] can suppress much the visual artifacts by detect-
ing the problematic pixels using local image statistics. Un-
fortunately, it is not able to generate additional details.

Recently, denoising diffusion probabilistic models
(DDPMs) [22] have exhibited remarkable performance in
the realm of image generation, gradually emerging as
successors to GANs in various downstream tasks [46,
48]. Some researchers [26, 58] have leveraged pretrained
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DDPMs to effectively tackle the inverse image restora-
tion problems. However, their application to the chal-
lenging Real-ISR scenarios is hindered by the assumptions
of known linear degradation model. Considering that the
large-scale pretrained text-to-image (T2I) models [46, 48],
which are trained on a dataset exceeding 5 billion image-
text pairs, encompass more potent natural image priors,
some methods have recently emerged to harness their poten-
tials to address the Real-ISR problem, including StableSR
[55], PASD [65] and DiffBIR [40]. These diffusion prior
based Real-ISR methods have demonstrated highly promis-
ing capability to generate realistic image details; however,
they still have some limitations. StableSR [55] and Diff-
BIR [40] solely rely on input LR images as control signals,
overlooking the role of semantic text information in the pre-
trained T2I models. PASD [65] attempts to utilize off-the-
shelf high-level models to extract semantic prompts as ad-
ditional control conditions for the T2I model. However, it
encounters difficulties when dealing with scenes containing
a variety of objects or severely degraded images.

In this work, we investigate in-depth the problem that
how to extract more effective semantic prompts to harness
the generative potential of pretrained T2I models so that
better Real-ISR results can be obtained. By analyzing the
effects of different types of semantic prompts on the Real-
ISR outcomes, we conclude two major criteria. Firstly,
the prompt should cover as many objects in the scene as
possible, helping the T2I model to understand different lo-
cal regions of the LR image. Secondly, the prompt should
be degradation-aware to avoid erroneous semantic restora-
tion results. (Please refer to Section 3.1 for more discus-
sions.) While the prompt extractor undergoes low-level data
augmentation during training [18], there still exists much
gap between this augmentation and real-world degradation.
Hence, it is not suitable to directly extract semantic prompts
from real-world LR inputs.

Based on the aforementioned criteria, we present a
Semantic-aware SR (SeeSR) approach, which utilizes high-
quality semantic prompts to enhance the generative capac-
ity of pretrained T2I models for Real-ISR. SeeSR consists
of two stages. In the first stage, the semantic prompt ex-
tractor is fine-tuned to acquire degradation-aware capabili-
ties. This enables it to extract accurate semantic informa-
tion from LR images as soft and hard prompts. In the sec-
ond stage, the pristine semantic prompts collaborate with
LR images to exert precise control over the T2I model, fa-
cilitating the generation of rich and semantically correct de-
tails. Moreover, during inference stage, we incorporate the
LR image into the initial sampling noise to alleviate the dif-
fusion model’s propensity for generating excessive random
details. Our extensive experiments demonstrate the supe-
rior realistic detail generation performance of SeeSR while
preserving well the image semantics of Real-ISR outputs.

2. Related Work
GAN-based Real-ISR. Starting from SRCNN [14], deep
learning based ISR has become prevalent. A variety of
methods focusing on model design have been proposed [7–
10, 33, 36, 74–76] to improve the accuracy of ISR recon-
struction. However, most of these methods assume sim-
ple and known degradations such as bicubic downsampling,
limiting their effectiveness when dealing with complex and
unknown degradations in real world. Recent advancements
in Real-ISR have explored more complex degradation mod-
els to approximate the real-world degradations. Specifi-
cally, BSRGAN [70] introduces a randomly shuffled degra-
dation modeling strategy, while Real-ESRGAN [57] em-
ploys a high-order degradation modeling process. Using
the training samples with more realistic degradations, both
BSRGAN and Real-ESRGAN utilize GANs [15] to recon-
struct desired HR images. While generating more perceptu-
ally realistic details, the training of GANs is unstable and
Real-ISR outputs often suffer from unnatural visual arti-
facts. Many following works such as LDL [34] and DeSRA
[63] can suppress much the artifacts, yet they are difficult to
generate more natural details.
Diffusion Probabilistic Models. Inspired by the non-
equilibrium thermodynamics theory [24] and sequential
MonteCarlo [43], Sohl-Dickstein et al. [51] proposed the
diffusion model to model complex datasets. Subsequently,
a series of fruitful endeavors [12, 22, 52] have been made to
apply diffusion models in the realm of image generation,
especially since the development of DDPM [22]. Rom-
bach et al. [46] expanded the training of DDPMs to the
latent space, greatly facilitating the development of large-
scale pretrained text-to-image (T2I) diffusion models such
as stable diffusion (SD) [1] and Imagen [47]. It has been
demonstrated that T2I diffusion priors are powerful in im-
age editing [42, 72], video generation [50, 62], 3D content
generation [37, 60, 60], etc.
Diffusion Prior based Real-ISR. Early attempts [26, 49,
58] using DDPMs to address the ISR problem are mostly as-
suming simple downsampling degradation. However, such
an assumption of known linear image degradation restricts
their practical application in complex scenarios like Real-
ISR. Recently, some researchers [40, 54, 55, 65] have em-
ployed powerful pretrained T2I models such as SD [1] to
tackle the real-ISR problem. Having been trained on bil-
lions of image-text pairs, these models can perceive strong
image priors for tackling Real-ISR challenges. StableSR
[55] achieves this goal by training a time-aware encoder
to fine-tune the SD model and employing feature warping
to balance between fidelity and perceptual quality. Diff-
BIR [40] adopts a two-stage strategy to tackle the Real-ISR
problem. It first reconstructs the image as an initial estima-
tion, and then utilizes the SD prior to enhance image details.

The aforementioned methods solely rely on images as
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Figure 1. The comparison of different styles of prompts and their corresponding Real-ISR results with PASD [65]. (a) Input LR image.
(b)-(d) show the extracted classification-style, caption-style and tag-style prompts from LR image and the corresponding Real-ISR results.
(e) Null prompt and its corresponding Real-ISR result. (f)-(h) show the extracted classification-style, caption-style and tag-style prompts
from HR image and their corresponding Real-ISR results. (i) HR image.

conditions to activate the generative capability of the T2I
model. In contrast, PASD [65] goes further by utilizing off-
the-shelf high-level models (i.e., ResNet [16], Yolo [45] and
BLIP [28]) to extract semantic information to guide the dif-
fusion process, stimulating more generative capacity of the
T2I model. However, ResNet and Yolo have limited object
recognition ability, leading to a diminished recall rate. The
captions generated by BLIP struggle to comprehensively
describe the semantic information in images, particularly
in scenes with a rich diversity of objects. Therefore, how
to introduce prompts to more effectively elicit the potential
of pretrained T2I models in assisting Real-ISR needs deep
investigation, which is the goal of this work.

3. Methodology
3.1. Motivation and Framework Overview

Motivation. To unleash the generative potential of pre-
trained T2I model while avoiding semantic distortion in
Real-ISR outputs, we investigate the use of three represen-
tative styles of semantic prompts, including classification-
style, caption-style and tag-style. In specific, we use the
methods in [16] , [28] and [77] to extract classification-
style, caption-style and tag-style prompts, respectively.

The classification-style prompt provides only one cate-
gory label for the entire image, which is robust to image
degradation due to its global view. However, such kind of

prompts lack the ability to provide semantic support of local
objects, particularly in scenes containing multiple entities.
As shown in Figs. 1(b) and 1(f), by using the classification-
style prompts extracted from the LR and the HR images,
the Real-ISR results are almost indistinguishable from that
obtained by using the null prompt (see Fig. 1(e)).

The caption-style prompt provides a sentence to describe
the corresponding image, offering richer information com-
pared to the classification-style prompt. However, it still
has two shortcomings. Firstly, the redundant prepositions
and adverbs in this type of prompt may scatter the attention
of T2I models towards degraded objects [19]. Secondly, it
is prone to semantic errors due to the influence of degrada-
tion in LR images. As shown in Fig. 1(c), the T2I model
mistakenly reconstructs a bird instead of a ship due to the
incorrect caption extracted from the LR image.

The tag-style prompt provides category information for
all objects in the image, offering a more detailed descrip-
tion of the entities compared to caption-style prompt. Even
without providing object location information, it is found
that the T2I model can align the semantic prompts with the
corresponding regions in the image due to its underlying se-
mantic segmentation capability [68]. Unfortunately, similar
to the captioning models, the tagging models are also sus-
ceptible to image degradations, resulting in erroneous se-
mantic cues and semantic distortion in the reconstructed re-
sults. As shown in Fig. 1(d), the wrong semantic prompt

25458



Table 1. Comparison of different prompt styles.

Rich
Objects

Concise
Description

Degradation
Aware

Classification-style % ! !

Caption-style ! % %

Tag-style ! ! ! %

Our DAPE ! ! ! !

“airplane” leads to distorted reconstruction of the ship.
We summarize the characteristics of different styles of

prompts in Table 1. This motivates us that if we can adapt
the tag-style prompt to be degradation-ware, then it may
help the T2I models generate high-quality Real-ISR outputs
while preserving correct image semantics.
Framework Overview. Based on the above discussions,
we propose to extract high-quality tag-style prompts from
the LR image to guide the pretrained T2I model, such as sta-
ble diffusion (SD) [46], for producing semantics-preserved
Real-ISR results. The framework of our proposed method,
namely Semantic-aware SR (SeeSR), is shown in Fig. 2.
The training of SeeSR goes through two stages. In the first
stage (Fig. 2(a)), we learn a degradation-aware prompt ex-
tractor (DAPE), which consists of an image encoder and a
tagging head. It is expected that both the feature represen-
tations and tagging outputs of the LR image can be as close
as possible to that of the corresponding HR image by us-
ing the original tag model. The learned DAPE is copied
to the second stage (Fig. 2(b)) to extract the feature rep-
resentations and tags (as text prompts) from the input LR
image, which serve as control signals over the pretrained
T2I model to generate visually pleasing and semantically
correct Real-ISR results. During inference, only the second
stage is needed to process the input image. Fig. 2(c) illus-
trates the collaborative interplay between the image branch,
feature representation branch, and text prompt branch in
governing the pretrained T2I model.

3.2. Degradation-Aware Prompt Extractor

The DAPE is fine-tuned from a pretrained tag model, i.e.,
RAM [77]. As depicted in Fig. 2(a), the HR image x goes
through a frozen tag model to output representation embed-
ding frep

x and logits embedding f logits
x as anchor points to

supervise the training of DAPE. LR images y are obtained
by applying random degradations to x, and they are fed into
the trainable image encoder and tagging head. To make
DAPE robust to image degradation, we force the represen-
tation embedding and logits embedding from the LR branch
to be close to that of the HR branch. The training objective
is as follows:

LDAPE = Lr(f
rep
y , frep

x ) + λLl(f
logits
y , f logits

x ), (1)

where λ is a balance parameter, frep
y and f logits

y are the
representation embedding and logits embedding from LR
branch. Lr is the mean squared error (MSE) loss, while
Ll is the cross-entropy loss [16]. By aligning the outputs
from LR and HR branches, DAPE is learned to predict high-
quality semantic prompts from corrupted image inputs.

Once trained, DAPE undertakes the crucial role of ex-
tracting reliable semantic prompts from the LR images. The
prompts can be classified into two categories: hard prompts
(i.e., tag texts from the tagging head) and soft prompts (i.e.,
representation embeddings from the image encoder). As
shown in Figs. 2(b) and 2(c), hard prompts are directly
passed to the frozen text encoder built into the T2I model to
enhance its local understanding capability. The abundance
of text prompts is controlled by a preset threshold. If the
threshold is too high, the accuracy of predicted categories
will improve but the recall rate can be affected, and vice
versa. Therefore, the soft label prompts are used to com-
pensate for the limitations of hard prompts, which are free
of the impact of threshold and avoid the low information
entropy issue caused by one-hot categories [21].

3.3. Training of SeeSR Model

Fig. 2(c) illustrates the detailed structure of the controlled
T2I diffusion model. Given the successful application of
ControlNet [72] in conditional image generation, we utilize
it as the controller of the T2I model for Real-ISR purpose.
In specific, we clone the encoder of the Unet in pre-trained
SD model as a trainable copy to initialize the Control-
Net. To incorporate soft prompts into the diffusion process,
we adopt the cross-attention mechanism proposed in PASD
[65] to learn semantic guidance. The representation cross-
attention (RCA) modules are added to the Unet and placed
after the text cross-attention (TCA) modules. Note that the
randomly initialized RCA modules are cloned simultane-
ously with the encoder. In addition to the text branch and
representation branch, the image branch also plays a role
in reconstructing the desired HR image. We pass the LR
images through a trainable image encoder to obtain the LR
latent, which is input to ControlNet. The structure of train-
able image encoder is kept the same as that in [72].

The training process of the SeeSR model is as follows.
The latent representation of an HR image is obtained by the
encoder of pretrained VAE [46], denoted as z0. The diffu-
sion process progressively introduces noise to z0, resulting
in a noisy latent zt, where t represents the randomly sam-
pled diffusion step. With the diffusion step t, LR latent zlr,
hard prompts ph and soft prompts ps, we train our SeeSR
network, denoted as ϵθ, to estimate the noise added to the
noisy latent zt. The optimization objective is:

L = Ez0,zlr,t,ph,ps,ϵ∼N

[
∥ϵ− ϵθ (zt, zlr, t, ph, ps)∥22

]
.

(2)
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Figure 2. Overview of SeeSR. (a) In the first stage, we train a degradation-aware prompt extractor (DAPE), which is initialized from a tag
model. DAPE is trained to align the encoding of the degraded LR image to the encoding of the corresponding HR image by a tag model
(e.g., RAM [77] in our work), enabling DAPE the degradation-awareness. (b) In the second stage, the well-trained DAPE provides both
soft prompts (representation embedding) and hard prompts (tagging text), which are combined with the LR image to control a pretrained
T2I model (e.g., SD [46] in our work). The detailed structure of the controlled T2I diffusion model is shown in (c).

For saving the training cost, we freeze the parameters of the
SD model while training solely on the newly added mod-
ules, including the image encoder, the ControlNet and the
RCA modules within the Unet.

3.4. LR Embedding in Inference

The pretrained T2I models such as SD, during their training
phase, do not completely convert the images into random
Gaussian noises. However, during the inference process,
most of existing SD-based Real-ISR methods [40, 55, 65]
take a random Gaussian noise as their start point, leading
to a discrepancy on the noise handling procedure between
training and inference [38]. In the Real-ISR task, we ob-
serve that this discrepancy can confuse the model to per-
ceive degradation as content to be enhanced, particularly in
smooth regions such as the sky, as shown in the top row of
Fig. 3. To address this issue, we propose to directly embed
the LR latent into the initial random Gaussian noise accord-
ing to the training noise scheduler. This strategy is applica-
ble to most of the SD-based Real-ISR methods [40, 55, 65].
As shown in the bottom row of Fig. 3, the proposed LR
embedding (LRE) strategy alleviate much the inconsistency
between training and inference, providing a more faithful
start point for the diffusion model and consequently sup-

pressing much the artifacts in the sky region. Note that all
experiments of SeeSR in the subsequent sections utilize the
LRE strategy by default.

Figure 3. Effectiveness of the LR embedding (LRE) strategy in
alleviating the discrepancy between training and inference of SD-
based Real-ISR methods [40, 55, 65]. Top row: results without us-
ing LRE. Bottom row: results with LRE. We see that many falsely
generated details in the sky area are removed.

4. Experiments
Following previous works [57, 70], we focus on the chal-
lenging ×4 Real-ISR tasks, while the proposed method can
be applied to other scaling factors. Furthermore, we evalu-
ate the semantic restoration capability of SeeSR and other
Real-ISR methods on the well-known COCO dataset [39].
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Table 2. Quantitative comparison with state-of-the-art methods on both synthetic and real-world benchmarks. The best and second best
results of each metric are highlighted in red and blue, respectively. LDM is not tested on RealLR200 because the related codebase does
not provide tiled functionality, which results in the issue of out-of-memory when testing on higher-resolution inputs.

Datasets Metrics BSRGAN [70]
Real- [57]
ESRGAN LDL [34] DASR [35] FeMaSR [5] LDM [46] StableSR [55] ResShift [66] PASD [65] DiffBIR [40] SeeSR

DIV2K-Val

PSNR ↑ 21.87 21.94 21.52 21.72 20.85 21.26 20.84 21.75 20.77 20.94 21.19
SSIM ↑ 0.5539 0.5736 0.5690 0.5536 0.5163 0.5239 0.4887 0.5422 0.4958 0.4938 0.5386
LPIPS ↓ 0.4136 0.3868 0.3995 0.4266 0.3973 0.4154 0.4055 0.4284 0.4410 0.4270 0.3843
DISTS ↓ 0.2737 0.2601 0.2688 0.2688 0.2428 0.2500 0.2542 0.2606 0.2538 0.2471 0.2257

FID ↓ 64.28 53.46 58.94 67.22 53.70 41.93 36.57 55.77 40.77 40.42 31.93
NIQE ↓ 4.7615 4.9209 5.0249 4.8596 4.5726 6.4667 4.6551 6.9731 4.8328 4.7211 4.9275

MANIQA ↑ 0.4834 0.5251 0.5127 0.4346 0.4869 0.5237 0.5914 0.5232 0.6049 0.6205 0.6198
MUSIQ ↑ 59.11 58.64 57.90 54.22 58.10 56.52 62.95 58.23 66.85 65.23 68.33

CLIPIQA ↑ 0.5183 0.5424 0.5313 0.5241 0.5597 0.5695 0.6486 0.5948 0.6799 0.6664 0.6946

RealSR

PSNR ↑ 26.39 25.69 25.28 27.02 25.07 25.48 24.70 26.31 24.29 24.77 25.18
SSIM ↑ 0.7654 0.7616 0.7567 0.7708 0.7358 0.7148 0.7085 0.7421 0.6630 0.6572 0.7216
LPIPS ↓ 0.2670 0.2727 0.2766 0.3151 0.2942 0.3180 0.3018 0.3460 0.3435 0.3658 0.3009
DISTS ↓ 0.2121 0.2063 0.2121 0.2207 0.2288 0.2213 0.2135 0.2498 0.2259 0.2310 0.2223

FID ↓ 141.28 135.18 142.71 132.63 141.05 132.72 128.51 141.71 129.76 128.99 125.55
NIQE ↓ 5.6567 5.8295 6.0024 6.5311 5.7885 6.5200 5.9122 7.2635 5.3628 5.5696 5.4081

MANIQA ↑ 0.5399 0.5487 0.5485 0.3878 0.4865 0.5423 0.6221 0.5285 0.6493 0.6253 0.6442
MUSIQ ↑ 63.21 60.18 60.82 40.79 58.95 58.81 65.78 58.43 68.69 64.85 69.77

CLIPIQA ↑ 0.5001 0.4449 0.4477 0.3121 0.5270 0.5709 0.6178 0.5444 0.6590 0.6386 0.6612

DrealSR

PSNR ↑ 28.75 28.64 28.21 29.77 26.90 27.98 28.13 28.46 27.00 26.76 28.17
SSIM ↑ 0.8031 0.8053 0.8126 0.8264 0.7572 0.7453 0.7542 0.7673 0.7084 0.6576 0.7691
LPIPS ↓ 0.2883 0.2847 0.2815 0.3126 0.3169 0.3405 0.3315 0.4006 0.3931 0.4599 0.3189
DISTS ↓ 0.2142 0.2089 0.2132 0.2271 0.2235 0.2259 0.2263 0.2656 0.2515 0.2749 0.2315

FID ↓ 155.63 147.62 155.53 155.58 157.78 156.01 148.98 172.26 159.24 166.79 147.39
NIQE ↓ 6.5192 6.6928 7.1298 7.6039 5.9073 7.1677 6.5354 8.1249 5.8595 6.2935 6.3967

MANIQA ↑ 0.4878 0.4907 0.4914 0.3879 0.4420 0.5043 0.5591 0.4586 0.5850 0.5923 0.6042
MUSIQ ↑ 57.14 54.18 53.85 42.23 53.74 53.73 58.42 50.60 64.81 61.19 64.93

CLIPIQA ↑ 0.4915 0.4422 0.4310 0.3684 0.5464 0.5706 0.6206 0.5342 0.6773 0.6346 0.6804

RealLR200

NIQE ↓ 4.3817 4.2048 4.3845 4.3360 4.6357 - 4.2516 6.2878 4.1715 4.9330 4.1620
MANIQA ↑ 0.5462 0.5582 0.5519 0.4877 0.5295 - 0.5841 0.5417 0.6066 0.5902 0.6254
MUSIQ ↑ 64.87 62.94 63.11 55.67 64.14 - 63.30 60.18 68.20 62.06 69.71

CLIPIQA ↑ 0.5679 0.5389 0.5326 0.4659 0.6522 - 0.6068 0.6486 0.6797 0.6509 0.6813

4.1. Experimental Settings

Training Datasets. We train SeeSR on LSDIR [32] and the
first 10K face images from FFHQ [25]. The degradation
pipeline of Real-ESRGAN [57] is used to synthesize LR-
HR training pairs.
Test Datasets. We employ the following test datasets to
comprehensively evaluate SeeSR. (1) First, we randomly
crop 3K patches (resolution: 512×512) from the DIV2K
validation set [2] and degrade them using the same pipeline
as that in training. We name this dataset as DIV2K-Val.
(2) We employ the two real-world datasets, RealSR [3] and
DRealSR [61], by using the same configuration as [55] to
center-crop the LR image to 128 × 128 1. (3) We build
another real-world dataset, named RealLR200, which com-
prises 38 LR images used in recent literature [34, 57, 69],
47 LR images from DiffBIR [40], 50 LR images from Vide-
oLQ (the last frame of each video sequence) [4], and 65 LR
images collected from the internet by ourselves.
Implementation Details. There exist many efficient meth-
ods [11, 23, 78] of fine-tuning. We utilize the well-known
LORA (r = 8) method [23] to fine-tune the entire DAPE
module from RAM [77] for 20K iterations. The batch size
and the learning rate are set to 32 and 10−4, respectively.

1 https://huggingface.co/datasets/Iceclear/StableSR-TestSets

The SD 2-base2 is used as the pretrained T2I model. The
whole controlled T2I model is trained for 150K iterations
with the Adam [27] optimizer, where the batch size and
learning rate are respectively set to 192 and 5× 10−5. The
training process is conducted on 512×512 resolution im-
ages with 8 NVIDIA Tesla 32G-V100 GPUs. During in-
ference, we adopt the spaced DDPM sampling [44] with 50
timesteps. λ in Eq. (1) is set to 1.
Evaluation Metrics. In order to provide a comprehen-
sive and holistic assessment of the performance of different
methods, we employ a range of reference and no-reference
metrics. PSNR and SSIM [59] (calculated on the Y chan-
nel in YCbCr space) are reference-based fidelity measures,
while LPIPS3 [73], DISTS [13] are reference-based percep-
tual quality measures. FID [20] evaluates the distance of
distributions between original and restored images. NIQE
[71], MANIQA [64], MUSIQ [64], and CLIPIQA [64] are
no-reference image quality measures.
Compared Methods. We compare our SeeSR with sev-
eral state-of-the-art Real-ISR methods, which can be cate-
gorized into two groups. The first group consists of GAN-
based methods, including BSRGAN [70], Real-ESRGAN
[57], LDL [34], FeMaSR [5] and DASR [35]. The second
group consists of recent diffusion-based methods, includ-

2 https://huggingface.co/stabilityai/stable-diffusion-2-base
3 We use LPIPS-Alex by default.
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Figure 4. Qualitative comparisons of different Real-ISR methods. Please zoom in for a better view.

ing LDM [46], StableSR [55], ResShift [66], PASD [65],
and DiffBIR [40]. We use the publicly released codes and
models of the competing methods for testing.

4.2. Comparison with State-of-the-Arts

Quantitative Comparisons. We first show the quantitative
comparison on the four synthetic and real-world datasets
in Table 2. We can have the following observations. (1)
First, our SeeSR consistently achieves the best scores in
FID, CLIPIQA and MUSIQ across all the four datasets.
(2) Second, SeeSR achieves the best LPIPS and DISTS
scores on DIV2K-Val, surpassing the corresponding second-
best methods by more than 0.6% and 7.0%, respectively.
(3) GAN-based methods achieve better PSNR/SSIM scores
than DM-based methods. This is mainly because DM-based
methods can generate more realistic details, which how-
ever sacrifice the fidelity. (4) BSRGAN, Real-ESRGAN
and LDL show advantages in terms of reference percep-
tual metrics LPIPS/DISTS, but they perform poorer in no-
reference perceptual metrics such as CLIPIQA, MUSIQ and
MANIQA. This is also because DM-based methods will
generate some structures and textures that may not match
the GTs, making them disadvantageous in full-reference
metrics. Overall, compared with other DM-based methods,
our SeeSR achieves better no-reference metric scores, while
keep competitive full-reference measures.
Qualitative Comparisons. Fig. 4 presents visual compar-
isons on synthetic and real-world images, respectively. We

also provide the caption-style prompts predicted by PASD
and the tag-style prompts predicted by SeeSR. As illustrated
in the first case of Fig. 4, Real-ESRGAN fails to reconstruct
the details of the ship, which suffers from severe degrada-
tion. ResShift is unable to reconstruct the details of the ship
either due to the lack of pretrained image priors. Without
using textual cues, the output of StableSR is semantically
ambiguous between ship and building. As a result of the
ambiguous output of its degradation removal stage, Diff-
BIR wrongly reconstructs the ship into fish. Additionally,
the aforementioned methods smooth out the ripples of the
sea, reducing the liveliness of the reconstructed images. The
caption model of PASD outputs text prompts with seman-
tic errors, wrongly generating a bird. In comparison, our
well-trained DAPE module in SeeSR can still provide accu-
rate prompt even with strong degradation, aiding SeeSR to
generate semantically-accurate and details-rich results.

Similar conclusions can be drawn from the second case
with a real-world LR image. Real-ESRGAN and ResShift
generate limited and unnatural details. Concurrently, al-
though StableSR and DiffBIR utilize pretrained priors, the
detailed structure of the muntins and bricks are not or-
derly due to the absence of text prompt guidance. The text
prompts of PASD miss the building, which lead to limited
semantic details in the corresponding scene. In contrast,
SeeSR predicts most of the tags, including the building, so
that the semantic details of the windows and walls are well
recovered. Besides, thanks to the soft prompting mecha-
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Table 3. The comparison of semantic restoration performance among different Real-ISR methods.

Metrics GT Zoomed LR BSRGAN
Real-

ESRGAN LDL DASR FeMaSR LDM StableSR ResShift PASD DiffBIR SeeSR

Panoptic Segmentation (PQ) 52.5 9 16.2 19.4 17.8 15.5 15.6 18.7 26.8 21.4 23.7 27.2 30.0
Object Detection (AP) 49.1 5 10.5 13.1 11.9 9.9 10.1 11.4 18.3 14.3 15.5 18.9 21.1

Instance Segmentation (AP) 43.8 4 9.2 11.4 10.3 8.6 8.8 9.9 16.2 12.4 13.4 16.5 18.5
Semantic Segmentation (mIOU) 62.0 12 21.7 26.0 24.2 20.5 20.4 25.3 34.5 30.4 33.3 37.7 41.3

Table 4. Results of user study on synthetic and real-world data.

Methods Confusion rates
on synthetic data

Best rates
on real-world data

Real-ESRGAN 5.4% 0%
StableSR 5.4% 14.3%
ResShift 3.6% 0%
PASD 10.7% 13.4%

DiffBIR 12.5% 15.2%
SeeSR 38.6% 57.1%

nism, even the predicted tags do not explicitly include the
“tires”, SeeSR still produces tires with rich textures.

User Study. To further validate the effectiveness of our
method, we conduct separate user studies on synthetic data
and real data. On synthetic data, inspired by SR3 [49], par-
ticipants were presented with an LR image placed between
two HR images each time: one is the GT and another is
the Real-ISR output by one model. They were asked to
determine ‘Which HR image better corresponds to the LR
image?’ When making decision, participants were asked to
consider two factors: the perceptual quality of the HR im-
age and its semantic similarity to the LR image. Then the
confusion rates can be calculated, which indicate the par-
ticipants’ preference to the GT or the Real-ISR output. On
real-world data, participants were presented with an LR im-
age alongside all Real-ISR outputs, and they were asked to
answer ‘Which image is the best SR result of the LR image?’
In this experiment, best rates were calculated, which repre-
sent the probability of the model being selected.

We invited 20 participants to test six representative meth-
ods (Real-ESRGAN, StableSR, PASD, DiffBIR, ResShift
and SeeSR). There are 16 synthetic test sets and 16 real-
world test sets. The synthetic data are randomly sampled
from DIV2K-Val, and the real-world data are randomly sam-
pled from RealLR200. Each of the 20 participants was
asked to make 112 selections (16×6+16). As shown in Ta-
ble 4, our SeeSR significantly outperforms others in terms
of selection rate on both synthetic and real data. In the user
study on synthetic data, the SR results of all models cannot
compete with the GT, while our SeeSR achieves a confusion
rate of 38.6%, which is three times higher than the second-
ranked method. This implies that there is still enough room
to improve for the Real-ISR methods. In the user study on
real-world data where there is no GT, our method achieves a
best selection rate of 57.1%, approximately 3.5 times higher
than the second-ranked method.

4.3. Semantics Preservation Test

To further validate our model’s ability to preserve seman-
tic fidelity, we conduct detection [31, 45] and segmentation
tasks [17, 29, 30] on the Real-ISR output images. We resize
the original images from COCO-Val (5K images) [39] to
512 × 512 as GT, and then degrade them to generate LR
images as in training. We employ OpenSeeD [67] trained
on COCO as the detector and segmentor since it is a strong
transformer-based unified model for segmentation and de-
tection tasks. As shown in Table 3, compared to Zoomed
LR, SeeSR achieves a remarkable 3 ∼ 4 times improvement
in all four tasks, surpassing all existing Real-ISR methods
and showcasing its strong semantics preservation capability.

5. Conclusion and Limitation

We proposed SeeSR, a Real-ISR method that utilizes se-
mantic prompts to enhance the generative capability of pre-
trained T2I diffusion models. Through exploring the im-
pact of different styles of text prompts on the generated
results, we found that the image tags can greatly enhance
the local perception ability of the T2I model. However, the
tags are susceptible to complex image degradation, and they
are influenced by manually set thresholds. Therefore, we
proposed DAPE, which minimizes the influence of image
degradation on semantic prompts and simultaneously out-
puts soft and hard semantic prompts to guide the diffusion
process in image super-resolution. Furthermore, to address
the adverse effects of training-test inconsistency in diffu-
sion models, we proposed a simple yet effective LRE strat-
egy, which embeds LR latent at the starting point of diffu-
sion process, avoiding the generation of artifacts in smooth
areas. Our work made a step towards better leveraging gen-
erative priors to synthesize semantically correct Real-ISR
images, as demonstrated in our extensive experiments.

There are some limitations of SeeSR. First of all, DAPE
may predict incorrect tags for heavily degraded images, re-
sulting in wrongly restored objects. Second, the alignment
between tags and regions in the LR image can be inaccu-
rate in cases of severe degradation. Providing extra mask
information can help alleviate this issue. Third, as in other
SD-based methods, SeeSR encounters challenges in recon-
structing small-scale scene text images.
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