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Abstract

Current open-source Large Multimodal Models (LMMs)
excel at tasks such as open-vocabulary language grounding
and segmentation but can suffer under false premises when
queries imply the existence of something that is not actually
present in the image. We observe that existing methods that
fine-tune an LMM to segment images significantly degrade
their ability to reliably determine (“see”) if an object is
present and to interact naturally with humans (“say”), a
form of catastrophic forgetting. In this work, we propose a
cascading and joint training approach for LMMs to solve this
task, avoiding catastrophic forgetting of previous skills. Our
resulting model can “see” by detecting whether objects are
present in an image, “say” by telling the user if they are not,
proposing alternative queries or correcting semantic errors
in the query, and finally “segment” by outputting the mask
of the desired objects if they exist. Additionally, we introduce
a novel False Premise Correction benchmark dataset, an
extension of existing RefCOCO(+/g) referring segmentation
datasets (which we call FP-RefCOCO(+/g)). The results
show that our method not only detects false premises up to
55% better than existing approaches, but under false premise
conditions produces relative cIOU improvements of more
than 31% over baselines, and produces natural language
feedback judged helpful up to 67% of the time.

1. Introduction

Perception systems engaging with real-world environments
often need to understand and respond to complex queries
such as “find the keys with the purple heart on them” or
“bring me the remote for the television.” Solving such com-
plex visual tasks can require active reasoning, world knowl-
edge, and an implicit understanding of the scene which are
often unavailable to simple visual perception systems [33].
An extension of referring segmentation [22], “reasoning seg-
mentation,” requires that models are capable not only of
understanding the query but reasoning on the query as well.

However, what if the “keys with the purple heart” do not
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False-premise Query

There are no pineapples, but 
there is a bowl of mushrooms.
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Please segment a bowl of 
pineapple in this image. Sure, it is [SEG]. ✓❌
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Figure 1. False premise failures with LMMs: contemporary open-
source LMMs combined with segmentation decoders are able to
generate referring segments effectively but have difficulty on seg-
mentation questions which ask the model to refer to something that
is not present in the image. SESAME, our See-Say-Segment LMM,
uses model chaining and joint training to overcome this problem.

exist in the scene? While recent methods for reasoning seg-
mentation have shown remarkable performance on “positive”
queries where the query object exists in the scene, most ex-
isting approaches for reasoning segmentation fail to account
for this “false premise” scenario [33], and happily produce a
hallucinated segmentation even when the objects associated
with the query do not exist in the image [37, 66] (see Fig. 1).
It is desirable for robust reasoning segmentation systems to
not only respond in the negative but to also propose corrected
expressions when appropriate. Such robust systems should
first be able to “see”, by detecting if an object from the
query is present in an image, then “say” something about
the object itself if it’s not there, suggesting alternatives to
the user’s query and optionally providing additional helpful
information in the scene, before finally being able to “seg-
ment” by showing where in an image an object is grounded,
if the user has not withdrawn their request.

Until now, “false premise”-aware approaches have fo-
cused on the “see” and “segment” components, often using
two-stage cascaded approaches, where an auxiliary classifier
is used to “see” and a segmentation backbone is used to “seg-
ment” [37, 63, 66]. These pipeline-based approaches do not
demonstrate reasoning ability when interpreting a reference
and can not engage with users in task-directed dialogue; they
cannot “say” anything about the query if it is incorrect, unfor-
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Figure 2. SESAME is an LMM that can “see” whether objects are detected in an image and “say” by telling the user if they are there or not.
When appropriate, alternative queries can be offered or semantic errors corrected in the query. SEASAME can then “segment” by returning
the mask of the desired object.

tunately letting users continue with erroneous assumptions
and queries without correction.

Addressing this unexplored area, we introduce a novel
dataset and associated benchmarks, dubbed FP-RefCOCO,
FP-RefCOCO+, and FP-RefCOCOg. These datasets, an
expansion from RefCOCO(+/g) [43, 74], are augmented with
context-aware false-premise queries via Large Language
Models (LLMs), which are essential to train and evaluate a
model’s ability to “see”, “say” and “segment”. In this new
task, we find that existing open-source LMM-based referring
segmentation approaches often fail to “see” and “say” due
to catastrophic forgetting during instruction fine-tuning.

To counter this issue, we develop two reasoning segmenta-
tion methods resilient to false premises. Our method includes
a cascading models approach and an all-encompassing LMM,
SESAME (SEE, SAy, segMEnt), which is jointly trained
with our novel dataset. By leveraging the reasoning and ref-
erencing nature capabilities of contemporary LMMs, these
methods can not only “see” and “segment” but also “say”
what is necessary to reject or even correct a query. In sum-
mary, our contributions include the introduction of a novel
benchmark dataset and:

• An LMM that can “see”: We analyze how existing
approaches for reasoning segmentation fail to recognize
false premise queries, and show that cascading models
and joint data fine-tuning to produce relative accuracy
improvements of up to 55.45% over a baseline’s ability to
detect false-premise queries.

• An LMMs that can “say”: We further show our approach
is novel in that it can give helpful feedback about the query,
and demonstrate that such feedback is judged to be helpful
up to 67% of the time.

• An LMM that can “segment”: Finally, we demonstrate
the importance of false-premise robustness in improve-
ments in segmentation quality, showing that robust false-
premise training can result in relative cIoU improvements

over baselines of up to 31.65%.

2. Related Work

Reasoning segmentation, a subset of referring segmentation,
introduced by Lai et al. [33], focuses on complex reasoning
tasks in addition to localized references. Reasoning segmen-
tation exists in contrast to the more global tasks of semantic
segmentation, which assigns class labels to every pixel in an
image [1, 6, 8, 17, 24, 32, 40, 47, 56, 57, 60, 61, 69, 73, 78–
80, 82], instance segmentation, which detects pixels corre-
sponding to instances of objects in a scene [9, 19, 77], and
panoptic segmentation, which solve both instance and seman-
tic segmentation problems simultaneously [7, 30, 36, 67].
It is also more fine-grained than approaches for referring
object grounding and reasoning [4, 5, 14, 23, 34, 51, 59, 70,
72, 75, 76, 81], as these approaches operate on bounding
boxes corresponding to objects, and do not seek to localize
the pixels of the objects directly.

The current state-of-the-art for reasoning segmentation,
LISA [33], uses a pre-trained large multimodal model fine-
tuned to output segmentation tokens for each image. While
LISA is capable of complex reasoning, it is trained in a
manner that encourages producing segmentation/region out-
puts, even in the presence of a false-premise query. Similar
to LISA, X-Decoder [83] and SEEM [84] can both pro-
duce pixel-level segmentation and language tokens, however,
focus on multi-task performance, and struggle to perform
complex reasoning segmentation tasks [33].

While our proposed method is the first to explore false
premises in the field of reasoning segmentation, understand-
ing and detecting false premises has been studied in several
other areas in computer vision [12] including visual question
answering [54], image/text matching [15, 16, 29, 50, 68],
image-grounded conversation [46], tool usage [62] and hal-
lucination detection [55]. Indeed, it has long been known
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A man in a green shirt on the left elephant

A yellow and red bird perching
A man in a green shirt under the left elephant
An orangutan in a green shirt on the left elephant

(a) Augmented false-premise expression containing similar objects, attributes or relations

True Referring Segmentation Data: refCOCO(+/g)

A brown and black bird perching A cat on the chair

A cat below the chair
A dog on the deskA brown and black bear perching

LLM-based Augmentation

A pink and blue bird perching
A giraffe eating together
An mug in a green shirt on the left elephant A cat behind the people

A pizza on the chairA brown and black plate on the table

(b) Prior non-LLM Augmentation: Randomly sample instances and sentences from COCO

Figure 3. FP-RefCOCO Dataset Creation. Using refCOCO for base images, we employ an LLM to create a false-premise referring
segmentation dataset with similar objects, attributes, and relations. Such paired examples enable the the creation of specific correction
ground truth that is more specific than baseline methods which simply sample positive and negative examples. This data allows us to train an
LMM that has robust reasoning reference capabilities.

in visual question answering that sometimes the image can-
not entail any of the possible answers, and both datasets
[18, 25, 27, 39, 42, 58] and methods [35, 42, 44, 45, 52, 65]
have been developed which can evaluate and correct for false
premises in the case of question answering. Generally, meth-
ods for detecting false premises fall into a cascaded approach
with two components, a “detection” model which is designed
to determine if the question is answerable (“see”), and the
standard “answering” model, which actually answers the
question [35, 44, 45, 52, 63].

Beyond question answering, several explicit measures
have been designed which use pre-trained vision and lan-
guage models to determine how closely text matches with
a related image [10, 11, 20, 26, 28, 53, 71], however while
such measures can detect image/text relevance, they can
neither “segment” nor “say”.

Closest to our work, Wang et al. [63] introduce a cas-
caded method for referring segmentation in the presence
of false premises composed of an entity detection module,
an expression parsing module (which parses objects using
a textual scene graph), and a complex entity/relationship
matching detection method based on WordNet distances.
While this method is capable of understanding false premises
and giving feedback in referring expressions, it cannot han-
dle open-domain language commonly found in reasoning
segmentation tasks and is restricted to closed-domain tasks
with fixed vocabularies. Our work is the first approach that
enables false premise detection and language feedback in

open-domain reasoning segmentation tasks.

3. A New Dataset and Benchmark for False
Premise Correction

Dialog-based models with the ability to segment and rea-
son are traditionally trained on referring expression datasets
which tend to only contain positive examples—examples that
contain the object pertaining to the query language. Models
trained under these conditions will always produce positive
results, regardless of the truthfulness of the premise. Prior
false-premise strategies to tackle this often integrate a clas-
sifier ahead of the segmentation module [37, 66], but this
solution can be too restrictive, limiting the LMMs in engag-
ing with diverse, open-domain conversational scenarios.

In response, we alter both the task and the data to facil-
itate the ability for models to provide more human-like re-
sponses when presented with a question about a non-existent
object. This new task, False Premise Correction, expects
models to suggest an alternative referring expression that
more closely matches an object in the image if prompted
with a query that describes a missing object.

Although existing datasets such as R-RefCOCO [66] in-
clude queries referring to non-existent items in images, their
method of generating negative expressions through naive ran-
dom sampling often lacks context awareness. This limitation
significantly reduces their effectiveness for false-premise
correction tasks. Consider an image with a cat on a chair
as in Fig. 3 (b): contextually valid false premises that could
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Dataset Split Images Objects Sentences Positive Sentences Negative Sentences

FP-RefCOCO train 16,992 42,278 234,445 120,191 114,254
val 1,500 3,805 20,962 10,758 10,204
testA 750 1,975 11,205 5,726 5,479
testB 750 1,798 9,514 4,889 4,625

Total 19,992 49,856 276,126 141,564 134,562

FP-RefCOCO+ train 16,994 42,404 234,892 120,624 114,268
val 1,500 3,811 21,094 10,834 10,260
testA 750 1,975 11,061 5,657 5,404
testB 750 1,810 9,883 5,095 4,788

Total 19,994 50,000 276,930 142,210 134,720

FP-RefCOCOg train 21,899 42,246 157,866 80,512 77,354
val 1,300 2,573 9,554 4,896 4,658
test 2,600 5,023 18,830 9,602 9,228

Total 25,799 49,822 186,250 95,010 91,240

Table 1. Details for the FP-RefCOCO datasets, and train/val/test splits. Our dataset splits mirror those of RefCOCO (unc), RefCOCO+ (unc),
and RefCOCOg (umd). To each original dataset, we have appended an approximately equal number of negative referring expressions, each
coupled with a corresponding corrected sentence, thus creating an augmented dataset specifically for the False Premise Correction task.

be logically corrected to “a cat on the chair” might include
phrases like “a cat under the chair” or “a dog on the chair.”
However, R-RefCOCO typically produces less suitable ex-
amples, such as “a pizza on the chair” or “a cat behind the
people,” which do not align with realistic model correction
expectations. Furthermore, these datasets do not provide a
direct link between each false premise query and its corre-
sponding correct alternative, a critical aspect for effective
training and evaluation in false premise correction.

To address these issues, we present FP-RefCOCO(+/g),
a new benchmark dataset building upon the RefCOCO(+/g)
referring segmentation datasets [43, 74]. For each image,
FP-RefCOCO(+/g) not only incorporates the original posi-
tive referring queries but also pairs them with a diverse range
of contextually related false premise queries. To generate
negative samples, we modify a single element (object, ad-
jective, or relation) in the positive referring expressions by
prompting the OpenAI GPT-3.5-turbo model [2]. As de-
picted in Fig. 3 (a), our LLM-based augmentation strategy
yields false premise queries that are more closely aligned
with the context. After some basic data cleaning to ensure
the responses are parseable, we end up with a nearly 1:1 pos-
itive/negative sample ratio and the same train/test/val splits
as RefCOCO(+/g). Full statistics are provided in Tab. 1.

The FP-RefCOCO(+/g) benchmark dataset enables the
evaluation and training of Language and Multimodal Models
(LMMs) in open-domain reasoning and segmentation tasks,
focusing on three essential capabilities: “See,” “Say,” and
“Segment.” In Tab. 2 and Tab. 3, the statistics showed sig-
nificant limitations of the state-of-the-art model, LISA [33],
particularly in its complete inability to reject non-existent

items (“See”) with 0% recall on false premise query or to
provide any appropriate corrections (“Say”). LISA predicts
a segmentation for all false premise sentences, resulting
in an approximately 30% reduction in segmentation cIoU
compared to the original dataset without any false premise
queries. In response, we developed and trained an integrated
LMM to achieve notable improvements across all three ca-
pabilities, which is detailed in Sec. 4.

4. An LMM that can See, Say, and Segment
To enable intelligent interaction systems that simultaneously
possess the abilities to see, say, and segment, we first intro-
duce a novel approach cascading various LMMs with distinct
functionalities. We then present SESAME, a unified SEe,
SAy, segMEnt model with the aid of our curated dataset
described above.

Existing generic LMMs for VQA, such as GPT-4V [49]
or LLaVA-v1.5 [38], are adept at identifying objects in im-
ages and suggesting alternatives when necessary. However,
segmentation-specialized LMMs such as LISA, while capa-
ble of generating segmentation masks given diverse language
prompts, struggle with queries about non-existent objects.
In these cases, LISA often produces segmentation masks
but fails to provide relevant feedback, typically offering
generic responses like “Sure, it is [SEG].” This behavior
deviates from our desired outcome, indicating a need for
more context-aware responses in advanced interaction sys-
tems. As shown in Tab. 2, there is a significant degradation
in the performance of “seeing” and “saying”. Intriguingly,
the original LLaVA model which LISA is based on, prior
to its fine-tuning for segmentation capabilities, did possess
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Method FP-RefCOCO FP-RefCOCO+ FP-RefCOCOg
See Say Segment See Say Segment See Say Segment

GRES [37] 65.11 - 47.47 64.00 - 37.61 58.15 - 35.15
SEEM (Focal-L) [84] 51.36 - 37.92 51.32 - 40.01 51.25 - 35.87
LISA [33] 51.36 0.00 44.00 51.32 0.00 39.62 51.25 0.00 39.64
Cascading (Ours) 75.59 0.35 55.18 75.03 0.42 48.64 76.07 0.55 49.98
SESAME (Ours) 79.84 0.63 57.93 80.00 0.61 50.81 81.78 0.67 53.79

Table 2. SESAME (ours) and existing methods on various referring segmentation tasks. The See scores measure the binary classification
accuracy. Say is measured via the CLAIR score, which ranks the similarity of the suggested false premise correction against positive
referring expressions for the same referent. The Segment scores are (cIoU).

Method See Segment (cIoU)
Acc (F. Pre) Acc (T. Pre) 0% FP 25% FP 50% FP 75% FP

LISA 0.00 100.00 67.99 52.36 39.64 34.15
Cascading (Ours) 58.76 94.64 65.77 58.53 49.98 45.82
SESAME (Ours) 67.89 96.64 66.02 60.64 53.79 49.79

Table 3. Ablation on the SEE performance in detail and the amount of false premise data used at test time for the segmentation scores on the
FP-RefCOCOg dataset. As SESAME (ours) has fairly good SEE capability, it demonstrates superior segmentation performance even when
the false premise sampling rate is as high as 75%.

these abilities. This indicates a critical issue in the realm of
LMMs – the challenge of catastrophic forgetting during the
process of learning new skills.

To address this, we first propose a cascading approach for
the False Premise Correction task. The first LMM detects the
presence or absence of objects in images and also engages
in dialogue with users, providing clarifications or alternative
suggestions when necessary. Once an object’s presence is
confirmed, the query can then be passed to the second LMM
specializing in the task of “segmentation.” This second-stage
model is a segmentation-focused LMM [33] that performs
referring segmentation via prompts in the form of “Please
help me segment X in the image” and has high performance
in both conventional semantic segmentation and complex
reasoning segmentation tasks. This method coordinates be-
tween the two LMMs via prompt chaining with the first ex-
celling in accurate object detection and contextual language
response and the second in detailed image segmentation.

However, a single model with all three capabilities is de-
sired, but as described above existing approaches “forget”
how to “see” and “say”. We address the catastrophic forget-
ting problem by utilizing a joint-training strategy. As in [33]
we instantiate SESAME with LLaVa-v1.5 [38] for the “see”
and “say” portions of the pipeline and Segment Anything
[31] as the segmentation backbone.

This training utilizes three distinct datasets: the train
split (“train” from Tab. 1) of the custom-designed FP-
RefCOCO(+/g), the LLaVA VQA instruction finetuning
dataset, and the train splits from R-RefCOCO(+/g). We
call this the unified training set. The FP-RefCOCO(+/g)
dataset comprises both positive and negative queries, with

the incorrect ones being amended and always related to their
original versions. In contrast, R-RefCOCO(+/g) includes
randomly selected nonexistent COCO objects, which lack
contextual relevance to the images; this dataset is employed
to train the model to simply reject non-existent objects rather
than offer corrections.

We distributed FP-RefCOCO(+/g), LLaVA VQA, and
R-RefCOCO(+/g) in a 7:2:1 ratio for each training cycle.
For FP-RefCOCO(+/g) we specifically maintained a 9:1 ra-
tio of true to false queries to ensure a balanced focus on
the model’s ‘say’ and segmentation tasks. Training with
R-RefCOCO(+/g) conditions the model to dismiss false
premises without proposing alternatives. Relying solely on
FP-RefCOCO could lead the model to generate speculative
outputs, such as arbitrarily altering ‘left’ to ‘right’, without
genuine image analysis. This issue is detailed in our ablation
study (Fig. 6). Finally, the LLaVA VQA dataset, focused
solely on visual question answering, is integrated to retain
the model’s competence in this field.

This simple yet effective approach enables the fine-tuned
model to acquire new segmentation skills while preserving
its innate “see” and “say” abilities. Unlike previous methods
[37, 66] that used an auxiliary branch for binary responses
to detect true/false premise queries, our approach seamlessly
integrates the “see” and “say” abilities within the inherent
capabilities of the LMM. This integration results in a more
streamlined model capable of multitasking. The enhanced
LMM demonstrates an improved ability to not only accu-
rately segment objects in images while also engaging in
intelligent dialogue, handling both existent and non-existent
objects with equal finesse.
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Please find me the plate on the 
table if available. If not, locate 

where the bowl is.

Please find me the lettuce if 
available. If not, give me the 

onion is fine.

Tell me all the items on  
the table.

Sure, the items on the 
table include a cutting 
board with carrots, an 
onion, a knife, a spatula, a 
bowl, and some peppers.

Prior Work SESAME (Ours)

Sure, [SEG].

Sure, the 
segmentation 
result is [SEG].

Sure, the onion is 
present. [SEG].

Sure, the bowl is 
present. Here's the 
segment: [SEG].

Input Image

Sure, it is 
[SEG].

No visual 
output

Language Query

Figure 4. In contrast to prior work (the output of the LISA [33] is shown above), SESAME is able to handle more complicated conditional
reasoning and instruction, and is able to not output a segment when it is not requested.

5. Experimental Results
Implementation Details. SESAME’s LMM backbone,
LLaVA-v1.5-7B, and segmentation decoder, SAM, are fine-
tuned for 10 epochs via LoRA [21] using the unified training
dataset described in Sec. 4. Our loss function combines
dice and binary cross-entropy losses for segmentation, along
with cross-entropy loss for sentence prediction tasks. We
employed the AdamW optimizer with a learning rate of
3e-4, setting the batch size to 10 and the gradient accu-
mulation steps to 5. The total training time was approxi-
mately 24 hours on a single DGX A100 80GB GPU. To
ensure fair comparisons, following [33], we carefully ex-
cluded images from the training set that were also present
in the test or validation sets. This step was crucial to avoid
data contamination, especially as we merged FP-RefCOCO,
FP-RefCOCO+, and FP-RefCOCOg into a unified training
set, each having unique data splits. We will make our code
available for future research and applications.

5.1. Results

In our experiments, we assessed the “See”, “Say”, and “Seg-
ment” capabilities of SESAME, our cascading method (com-
bining the off-the-shelf LLaVA-v1.5-7B and LISA-7B), and
the baseline model LISA-7B [33]. We also compared two
non-LMM methods including GRES [37] and [84]. Results
are reported on the val sets of FP-RefCOCO(+/g) in Tab. 2.

Detection. Models’ ability to “See” is evaluated using bi-
nary classification accuracy, a metric that determines whether
models can accurately discern the presence or absence of an
object referenced in an image. In this evaluation, SESAME
achieves an accuracy of 79.84%, outperforming both our
cascading method (75.59%) and existing baselines. LISA-
7B, expectedly, underperforms due to its constant erroneous
assumption that the prompted object exists in the scene. The
superior detection accuracy of SESAME when compared to
the cascading method stems from our enhanced fine-tuning

approach. This approach integrates a more extensive and
balanced collection of both positive and negative referring
expression training data, unlike the standard VQA dataset
used in the conventional LLaVA-v1.5 fine-tuning process.

Description. We evaluate a model’s ability to “Say”
through a modified CLAIR metric [3]. CLAIR uses an LLM
(OpenAI’s GPT-4 [48]) to provide scores for candidate cap-
tions compared against a reference caption set, outputting a
similarity score in [0, 1]. We use the model’s corrected refer-
ring expression as the candidate and compare it against the
set of positive sample referring expressions belonging to the
same referent in the image. We modified CLAIR to return
the score of the best match to the reference set. When there
are multiple objects with referring expression annotations
in the same image, we only score the suggested correction
against expressions for the same object instance.

The cascading method, employing LLaVA for the “say”
function, demonstrates superior performance, surpassing
the finetuned LISA which appears to lose all the capability.
This finding underscores the problem in LISA’s fine-tuning
process. In contrast, SESAME achieves much higher CLAIR
scores (0.63, 0.61, 0.67) than the cascading method (0.35,
0.42, 0.55) on all three datasets. We theorize this is because
SESAME is fine-tuned on our customized false premise data
with ground truth false premise corrections that encourage
the model to learn to suggest the same referent rather than
other irrelevant objects in the image.
Segmentation. The segmentation score is measured us-
ing the cIoU metric, following established protocols in
prior basic and false-premise referring segmentation studies
[33, 37, 66]. This metric assesses the cumulative intersec-
tion over the cumulative union. As expected, as SESAME
has the best “See” ability, it consistently skips the creation
of segmentation masks for false premise queries, thereby
achieving the highest cIoU scores. Conversely, exiting base-
line methods generally produced segmentation masks for
most false premise queries, leading to poor cIoU scores.
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Input Prior Work SESAME (Ours)

Please segment the lion in 
the image.

No lion in sight, but giraffe is 
noticeable.

No bicycle is visible in this 
image.

Sure, [SEG].

Sure, [SEG].Find me the bicycle in the 
image.

Type

Relevant 
Objects

Irrelevant 
Objects

Please segment the woman 
in white dress with scarf in 
the scene.

No woman in white dress with 
scarf here, but there is a woman 
in black dress with scarf.

Sure, [SEG].

Similar 
Attributes

Find the basketball player 
in the image.

The basketball player isn't 
in the image, but the tennis 
player is.

Sure, it is [SEG].

Analogous 
Concept

The woman playing video games 
isn't here, but the woman using 
a food processor is.

Sure, [SEG].Find me the woman playing 
video games here.

Related 
Activities

Figure 5. Not only is SESAME robust to false premises, and does not attempt to incorrectly predict a segmentation mask when an object or
concept is not actually present in the image, but it is able to use commonsense reasoning to suggest relevant objects or concepts when a
similar instance is present, and output the segmentation mask of that instance.
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Figure 6. Ablation Studies: (a) Prior work hallucinates a segmenta-
tion even though there is no bookcase. (b) If we force the model to
correct all the false premise queries, it correctly detects that there
is no left bookcase in the image, but still hallucinates a “right book-
case” in the text response, likely because relational expressions
are often reversed (e.g., “left” to “right”) when modified to form
negative samples. (c) SESAME addresses the hallucination problem
by adding R-RefCOCO(+/g) into the unified train set, and allowing
the model to simply respond that the requested object was not found
rather than requiring it to provide an alternative expression.

5.2. Discussions

Proportion of False-premise Queries. An essential part
of our analysis involved varying the proportion of false
premise queries in our test set, as detailed in Tab. 3. A 0%
false premise (FP) scenario is equivalent to the RefCOCOg
evaluation, while a 50% FP mirrors the FP-RefCOCOg
dataset. These findings underscore that despite fine-tuning,
models, including SESAME, still have considerable potential
for improvement, specifically in detecting false premises
(FP) with the highest Recall in false premise query being
only 67.89%. This capability is particularly crucial as in-
creasing FP proportions directly impacts the performance of
downstream segmentation cIoU score.

Handling Complex Instructions. A particularly notable
example in Fig. 4 showcases SESAME’s ability to process
and respond to complex user prompts. This includes seg-
menting an alternative object based on a conditional query
and engaging in VQA only without generating a segmenta-
tion mask. In contrast, previous models like LISA lacked
these capabilities, severely limiting their human-like inter-
action potential. This finding also suggests that SESAME
could be extended to multi-round interactions, where a user
might request an intelligent agent to first summarize a scene
and then focus on segmenting specific objects of interest.

Significance of False Premise Rejection. We also investi-
gated the impact of integrating the R-RefCOCO(+/g) dataset,
specifically designed for false premise rejection, into our
training process. Excluding these data often led models to
rely on superficial word modifications in their responses
instead of genuinely interpreting the image context. This
reliance aggravated the issue of hallucination and resulted in
lower scores in the “Say” capability. A striking illustration
of this phenomenon is presented in Fig. 6.

Method refCOCO refCOCO+ refCOCOg

MCN [41] 62.4 50.6 49.2
VLT [13] 67.5 56.3 55.0
CRIS [64] 70.5 62.3 59.9
LAVT [70] 72.7 62.1 61.2
ReLA [37] 73.8 66.0 65.0
X-Decoder [83] - - 64.6
SEEM [84] - - 65.7
LISA-7B [33] 74.9 65.1 67.9

SESAME (Ours) 74.7 64.9 66.1

Table 4. Even though our method is trained to do both see, say,
and segment simultaneously, our model is still on par with prior
methods on natural setting.

Performance in Referring Segmentation Benchmarks.
Finally, we assessed SESAME in traditional referring seg-
mentation benchmarks with only positive queries. The re-
sults in Tab. 4 demonstrated the comparison between our
method and several existing approaches. While our model is
adept at handling false premises and enhancing dialogue in-
teraction, it does not compromise the segmentation abilities.
This indicates that our joint training approach, which fine-
tunes LMMs with a tailored dataset, successfully achieves
great segmentation capabilities while maintaining robust
performance in LMM’s basic ability to see and say.

6. Conclusion

In this study, we tackle the overlooked issue within the
realm of LMMs: false premise segmentation queries. We
not only highlight this challenge in existing LMM method-
ologies but also introduce a pioneering task known as
False Premise Correction, necessitating capabilities to “See,”
“Say,” and “Segment.” Alongside this new task, we present
FP-RefCOCO(+/g), a specially designed dataset for evalu-
ating LMMs on these essential skills. To address this chal-
lenge, we employ innovative cascading and joint training
techniques. Our integrated LMM, SESAME, demonstrates
substantial improvement in detecting the presence of ob-
jects (“see”), advising users about non-existent objects or
modifying queries accordingly (“say”), and precisely seg-
menting objects that are present in the image (“segment”).
This research fills a critical gap in LMM capabilities and sets
a strong foundation for future explorations into improving
LMM interactions in diverse and real-world applications.
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