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Figure 1. Existing diffusion-based text-to-image generators (e.g., DALL-E 3 [16]) generally struggle to precisely generate images that
correctly align with complex input prompts, especially for the ones that require numeracy and spatial relationships. Our Self-correcting
LLM-controlled Diffusion (SLD) framework empowers these diffusion models to automatically and iteratively rectify inaccuracies through
applying a set of latent space operations (addition, deletion, repositioning, etc.), resulting in enhanced text-to-image alignment.

Abstract

Text-to-image generation has witnessed significant progress
with the advent of diffusion models. Despite the ability
to generate photorealistic images, current text-to-image
diffusion models still often struggle to accurately interpret
and follow complex input text prompts. In contrast to
existing models that aim to generate images only with their
best effort, we introduce Self-correcting LLM-controlled
Diffusion (SLD). SLD is a framework that generates an im-
age from the input prompt, assesses its alignment with the
prompt, and performs self-corrections on the inaccuracies
in the generated image. Steered by an LLM controller, SLD
turns text-to-image generation into an iterative closed-loop
process, ensuring correctness in the resulting image. SLD is
not only training-free but can also be seamlessly integrated
with diffusion models behind API access, such as DALL-E
3, to further boost the performance of state-of-the-art
diffusion models. Experimental results show that our
approach can rectify a majority of incorrect generations,
particularly in generative numeracy, attribute binding, and
spatial relationships. Furthermore, by simply adjusting the
instructions to the LLM, SLD can perform image editing
tasks, bridging the gap between text-to-image generation
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and image editing pipelines. Our code is available at:
https://self-correcting-llm-diffusion.github.io.

1. Introduction

Text-to-image generation has made remarkable advance-
ments, especially with the advent of diffusion models.
However, these models often struggle with interpreting
complex input text prompts, particularly those that require
skills such as understanding the concept of numeracy, spa-
tial relationships, and attribute binding with multiple ob-
jects. Despite the astonishing scaling of model sizes and
training data, these challenges, as illustrated in Fig. 1, are
still present in state-of-the-art open-source and proprietary
diffusion models.

Several research and engineering efforts aim to over-
come these limitations. For instance, methods such as
DALL-E 3 [16] focus on the diffusion training process and
incorporate high-quality captions into the training data at a
massive scale. However, this approach not only incurs sub-
stantial costs but also frequently falls short in generating
accurate images from complicated user prompts, as shown
in Fig. 1. Other work harnesses the power of external mod-
els for a better understanding of the prompt in the inference
process before the actual image generation. For example,
[6, 11] leverages Large Language Models (LLMs) to pre-
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process textual prompts into structured image layouts and
thus ensures the preliminary design aligns with the user’s
directives. However, such integration does not resolve the
inaccuracies produced by the downstream diffusion models,
particularly in images with complex scenarios like multiple
objects, cluttered arrangements, or detailed attributes.

Drawing inspiration from the process of a human paint-
ing and a diffusion model in generating images, we ob-
serve a key distinction in their approach to creation. Con-
sider a human artist tasked with painting a scene featuring
two cats. Throughout the painting process, the artist re-
mains cognizant of this requirement, ensuring that two cats
are indeed present before considering the work complete.
Should the artist find only one cat depicted, an additional
one would be added to meet the prompt’s criteria. This con-
trasts sharply with current text-to-image diffusion models,
which operate on an open-loop basis. These models gen-
erate images through a predetermined number of diffusion
steps and present the output to the user, regardless of its
alignment with the initial user prompt. Such a process, ir-
respective of scaling training data or LLM pre-generation
conditioning, lacks a robust mechanism to ensure the final
image aligns with the user’s expectations.

In light of this, we propose our method Self-correcting
LLM-controlled Diffusion (SLD) that performs self-checks
to confidently offer users guarantees of the alignment be-
tween the prompt and the generated images. Departing
from conventional single-round generation methods, SLD is
a novel closed-loop approach that equips diffusion models
with the ability to iteratively identify and rectify errors. Our
SLD framework, illustrated in Fig. 2, contains two main
components: LLM-driven object detection as well as LLM-
controlled assessment and correction.

The SLD pipeline follows a standard text-to-image gen-
eration setting. Given a textual prompt that outlines the de-
sired image, SLD begins with calling an image generation
module (e.g., the aforementioned open-loop text-to-image
diffusion models) to generate an image in a best-effort fash-
ion. Given that these open-loop generators do not guaran-
tee an output that aligns perfectly with the prompt, SLD
then conducts a thorough evaluation of the produced im-
age against the prompt, with an LLM parsing key phrases
for an open-vocabulary detector to check. Subsequently, an
LLM controller takes the detected bounding boxes and the
initial prompt as input and checks for potential mismatches
between the detection results and the prompt requirements,
suggesting appropriate self-correction operations, such as
adding, moving, and removing objects. Finally, utilizing a
chosen base diffusion model (e.g., Stable Diffusion [20]),
SLD employs latent space composition to implement these
adjustments, thereby ensuring that the final image accu-
rately reflects the user’s initial text prompt.

Notably, SLD is agnostic to the initial generation pro-

cess, which allows us to use DALL-E 3 APIs as a sub-
routine to generate initial images and then employ the open-
source Stable Diffusion model family to conduct latent op-
erations to attain self-correction. Furthermore, none of
these operations require additional training on our base dif-
fusion model [20], which easily allows our method to be
applied to various diffusion models without external human
annotation or training.

We demonstrate that our SLD framework can achieve
significant improvement over current diffusion-based meth-
ods on complex prompts with the LMD benchmark [11].
The results show that our method can surpass LMD+, which
is a strong baseline that already leverages LLM in the im-
age process generation, by 9.0%. More importantly, with
DALL-E 3 for initial generation, the generated images from
our method achieve 26.5% performance gains compared to
ones before self-correction.

Finally, since the SLD pipeline is agnostic to the initially
generated image, it can easily be transformed into an im-
age editing pipeline by simply changing the prompts to the
LLM. While text-to-image generation and image editing are
often treated as distinct tasks by the generative modeling
community, our SLD can perform these two tasks with a
unified pipeline. We list our key contributions below:
1. SLD is the first to integrate a detector and an LLM to

self-correct generative models, ensuring accurate gener-
ation without extra training or external data.

2. SLD offers a unified solution for both image generation
and editing, enabling enhanced text-to-image alignment
for any image generator (e.g., DALL-E 3) and object-
level editing on any images.

3. Experimental results show that SLD can correct a ma-
jority of incorrect generations, particularly in aspects of
numeracy, attribute binding, and spatial relationships.

2. Related Work
2.1. Text-to-Image Diffusion Models

Diffusion-based text-to-image generation has advanced sig-
nificantly. Initial studies [19–21] showed diffusion mod-
els’ ability to create high-quality images, but they struggle
with complex prompts. Subsequent research [3, 10, 18, 24–
26] has incorporated additional inputs such as keypoints and
bounding boxes to control the diffusion generation process.

Recent advancements have incorporated LLMs to con-
trol the generation of diffusion models, bypassing the need
for additional complementary information as inputs [6, 7,
11–13, 27]. In these approaches, LLMs play a central role in
directly interpreting user textual prompts and managing the
initial layout configuration. Despite some progress, these
models often operate in an open-loop fashion, producing
images in one iteration that cannot guarantee the generated
images align with user prompts.
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Figure 2. Our proposed Self-correcting LLM-controlled Diffusion (SLD) enhances text-to-image alignment through an iterative self-
correction process. It begins with LLM-driven object detection (Sec. 3.1), and subsequently performs LLM-controlled analysis and cor-
rection (Sec. 3.2). The entire pipeline is outlined in Algorithm 1.

Unlike prior work, SLD is the first closed-loop diffusion-
based generation method. Integrating advanced object de-
tectors and LLMs, SLD performs iterative self-checking
and correction, significantly enhancing text-to-image align-
ment. This improvement spans numeracy, attribute binding
to multiple objects, and spatial reasoning, applicable to var-
ious models, including those like DALL-E 3. Also, SLD ex-
tends beyond existing NLP self-correction techniques [17]
by incorporating bounding box spatial representation and
novel latent editing mechanisms tailored for text-to-image
tasks. These designs are essential for ensuring high-quality,
precise self-correction in image generation tasks.

2.2. Diffusion-based Image Editing

Recent advancements in text-to-image diffusion models
have significantly expanded their applications in image
editing, encompassing both global and local editing tasks.
Techniques like Prompt-2-prompt [8] and InstructPix2Pix
[2] specialize in global edits, such as style transformations.
Conversely, methods like SDEdit [15], DiffEdit [4], and
Plug-and-Play [22] focus on local edits, targeting specific
areas within images. Despite their progress, these meth-
ods often struggle with precise object-level manipulation
and tasks that require spatial reasoning, such as resizing or
repositioning objects. While recent approaches like Self-
Guidance [5] offer fine-grained operations, they still neces-

sitate user inputs for specific coordinates when moving or
repositioning objects.

Unlike these methods only focus on diffusion models,
SLD introduces the combination of detectors and LLMs in
the loop of editing, enabling fine-grained editing with only
user prompts. Also, SLD excels in various object-level edit-
ing tasks, including adding, replacing, moving, and modify-
ing attributes, swapping, and so on, demonstrating a notable
improvement in both ease of use and editing capabilities.

3. Self-correcting LLM-controlled Diffusion

In this section, we introduce our Self-correcting LLM-
controlled Diffusion (SLD) framework. SLD consists
of two main components: LLM-driven object detec-
tion (Sec. 3.1) as well as LLM-controlled assessment and
correction (Sec. 3.2). Moreover, with a simple change of
the LLM instructions, we show that SLD is applicable to
image editing, unifying text-to-image generation, and edit-
ing as discussed in Sec. 3.3. The complete pipeline is shown
in Algorithm 1.

3.1. LLM-driven Object Detection

Our SLD framework starts with LLM-driven object detec-
tion, which extracts information necessary for downstream
assessment and correction. As shown with green arrows in
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## Objective: Analyze user prompts to identify objects and 
their attributes. 

[Task Description + In-context Examples] 

[Question] 
User prompt: A realistic photo with a monkey sitting above a 
green motorcycle on the left and another raccoon sitting 
above a blue motorcycle on the right

Reasoning: The description mentions four main objects in the 
image: a monkey, a green motorcycle, a raccoon, and a blue 
motorcycle…

Objects: [(“monkey”, [None]), (“motorcycle”, [“green", “blue"]), 
(“raccoon", [None])]

Negation: None

(a) LLM Parser: Identify key objects from user prompts

## Objective: Manipulate bounding boxes in square images according 
to user prompt while maintaining visual accuracy. 

[Task Description + In-context Examples] 

[Question] 

User prompt: A realistic photo with a monkey sitting above a green 
motorcycle on the left and another raccoon sitting above a blue 
motorcycle on the right 
Current Objects: [('green motorcycle #1', [0.016, 0.329, 0.971, 0.676]), 
('monkey #1', [0.009, 0.056, 0.481, 0.821]), ('raccoon #1', [0.354, 0.123, 
0.526, 0.62])] 
Reasoning: ... the current objects only include a monkey, a green 
motorcycle, and a raccoon, with no blue motorcycle mentioned ... 

Updated Objects: [[“monkey #1", [0.009, 0.006, 0.481, 0.821]], ["green 
motorcycle #1", [0.016, 0.329, 0.506, 0.6]], ["blue motorcycle #1", 
[0.516, 0.329, 0.484, 0.6]], ["raccoon #1", [0.46, 0.123, 0.526, 0.62]]

(b) LLM Controller: Offer new bounding boxes coordinations
Parsing: Compare bounding 

box differences

Form latent space operations

to do downstream editing— LLM Input Prompt          — LLM Output Content

Resize

Move

Add

Move

Figure 3. Our self-correction pipeline is driven by two distinct LLMs: (a) The LLM parser analyzes user prompts P to extract a list of key
object information S, which is then passed to the open-vocabulary detector. (b) The LLM controller, taking both the user prompt P and
currently detected bounding boxes Bcurr as input, outputs suggested new bounding boxes Bnext. These are subsequently transformed into
a set of latent space operations Ops for image manipulation.

Fig. 2, the LLM-driven object detection includes two steps:
1) We leverage an LLM as a parser that parses the user
prompt and outputs key phrases that are potentially relevant
to image assessment. 2) The phrases are then passed into
an open-vocabulary object detector. The detected boxes are
supposed to contain information that supports the assess-
ment of whether the image is aligned with the specifications
in the user prompt.

In the initial step, an LLM parser is directed to extract
a list of key object details, denoted as S, from the user-
provided text prompt P . This parser, aided by text instruc-
tions and in-context examples, can easily accomplish this
as shown in Fig. 3 (a). For a user prompt that includes
phrases like “a green motorcycle” and “a blue motorcycle,”
the LLM is expected to identify and output “green” and
“blue” as attributes associated with “motorcycle.” When the
prompt references objects without specific quantities or at-
tributes, such as “a monkey” and “a raccoon,” these descrip-
tors are appropriately left blank. Importantly, the LLM’s
role is not limited to merely identifying object nouns; it also
entails identifying any associated quantities or attributes.

In the second step, an open-vocabulary detector pro-
cesses the list of key object information, S, parsed in the
first step, to detect and localize objects within the im-
age. We prompt the open-vocabulary object detector with
queries formatted as image of a/an [attribute]
[object name], where the “attribute” and “object
name” are sourced from the parser’s output. The re-
sulting bounding boxes, Bcurr, are then organized into
a list format like [("[attribute] [object name]
[#object ID]", [x, y, w, h])] for further pro-
cessing. A special case is when the prompt poses con-
straints on the object quantity. For cases where attributed
objects (e.g., “blue dog”) fall short compared to the required

quantities, a supplementary count of non-attributed objects
(e.g., “dog”) is provided to provide context for the subse-
quent LLM controller deciding whether to add more “blue
dogs” or simply alter the color of existing dogs to blue. We
will explain these operations, including object addition and
attribute modification, in greater detail in Sec. 3.2.1.

3.2. LLM-controlled Analysis and Correction

We use an LLM controller for image analysis and the sub-
sequent correction. The controller, given the user prompt
P and detected boxes Bcurr, is asked to analyze whether
the image, represented by objects bounding boxes, aligns
with the description of the user prompt and offers a list of
corrected bounding boxes Bnext, as shown in Fig. 3 (b).

SLD then programmatically analyzes the inconsistencies
between the refined and original bounding boxes to output
a set of editing operations Ops, which includes addition,
deletion, repositioning, and attribute modification. How-
ever, a simple set-of-boxes representation does not carry
correspondence information, which does not allow an easy
way to compare the input and the output layout of the LLM
controller when multiple boxes share the same object name.
For example, when there are two cat boxes in both the
model input and the model output, whether one cat box cor-
responds to which cat box in the output layout is unclear.
Rather than introducing another algorithm to guess the cor-
respondence, we propose to let the LLM output correspon-
dence with a very simple edit: we give an object ID to each
bounding box, with the number increasing within each ob-
ject type, as a suffix added after the object name. In the
in-context examples, we demonstrate to the LLM that the
object should have the same name and object ID before and
after the proposed correction.

6330



Algorithm 1 Self-correction for Image Generation.

Input: User prompt P , Initial generated image I , Maxi-
mum number of self-correction round K.

1: for k ← 1 to K do
2: S ← LLM-Parser(P )
3: Bcurr ← Detector(S)
4: Bnext ← LLM-Analysis(P,Bcurr)
5: Ops← Diff(Bcurr, Bnext)
6: if Ops ̸= ∅ then (i.e., Bnext ̸= Bcurr)
7: I = Correction(Ops,Bnext, Bcurr)
8: else
9: break

10: end if
11: end for
Output: Image I .

3.2.1 Latent Operations for Training-Free Image Cor-
rection

The LLM controller outputs a list of correction operations
to apply. For each operation, we first transform the origi-
nal image into latent features. Our approach then executes
a series of operations Ops, such as addition, deletion, repo-
sitioning, and attribute modification, applied to these latent
layers. It is worth noting that although there are only four
operations, they are sufficient to handle a majority of mis-
alignments naturally. We explain how each operation is per-
formed below.

Figure 4. Our latent operations can be summarized into two key
concepts: (1) latent in removed regions are re-initialized to Gaus-
sian noise, and latent of newly added or modified objects are com-
posited onto the canvas. (2) Latent composition is confined to the
initial steps, followed by “unfrozen” steps for a standard forward
diffusion process, enhancing visual quality and avoiding artificial
copy-and-paste effects.

Addition. Inspired by [11], the addition process entails two

phases: pre-generating an object and integrating its latent
representation into the original image’s latent space. Ini-
tially, we use a diffusion model to create an object within a
designated bounding box, followed by precise segmentation
using models (e.g., SAM [9]). This object is then processed
through a backward diffusion sequence with our base diffu-
sion model, yielding masked latent layers corresponding to
the object, which are later merged with the original canvas.
Deletion operation begins with SAM refining the boundary
of the object within its bounding box. The latent layers as-
sociated with these specified regions are then removed and
reset with Gaussian noise. This necessitates a complete re-
generation of these areas in the final denoising process.
Repositioning involves modifying the original image to
align objects with new bounding boxes, taking care to pre-
serve their original aspect ratios. The initial steps include
shifting and resizing the bounding box in the image space.
Following this, SAM refines the object boundary, succeeded
by a backward diffusion process to generate its relevant la-
tent layers, similar to the approach in the addition opera-
tion. Latent layers corresponding to the excised parts are
replaced with Gaussian noise, while the newly added sec-
tions are integrated into the final image composition. An
important consideration in repositioning is conducting ob-
ject resizing in the image space rather than the latent space
to maintain high-quality results.
Attribute modification starts with SAM refining the object
boundary within the bounding box, followed by applying
attribute modifications such as DiffEdit [4]. The base dif-
fusion model then reverses the image, producing a series of
masked latent layers ready for final composition.

After editing operations on each object, we proceed to
the recomposition phase as shown in Fig. 4. In this phase,
while latents for removed or repositioned regions are reini-
tialized with Gaussian noise, the latents for added or modi-
fied latents are updated accordingly. For regions with mul-
tiple overlapping objects, we place the larger masks first to
ensure the visibility of the smaller objects.

The stack of modified latent then undergoes a final for-
ward diffusion process, which begins with steps in which
regions not reinitialized with Gaussian noise are frozen (i.e.,
forced to align with the unmodified latent at the same step).
This is crucial for the accurate formation of updated ob-
jects while maintaining background consistency at the same
time. The procedure finishes with several steps where ev-
erything is allowed to change, resulting in a visually coher-
ent and correct image.

3.2.2 Termination of the Self-Correction Process

While we observe that one round of generation is often
enough for a majority of the cases, subsequent rounds could
still benefit the performance in terms of correctness further,

6331



Accuracy

Method Negation Numeracy Attribute Spatial Average

MultiDiffusion [1] 29% 28% 26% 39% 30.5%
Backward Guidance [3] 22% 37% 26% 67% 38.0%
BoxDiff [23] 22% 30% 37% 71% 40.0%
LayoutGPT + GLIGEN [6, 10] 36% 65% 26% 78% 51.3%

DALL-E 3 [16] 25% 38% 74% 71% 52.0%
+ 1-round SLD (Ours) 90% 61% 80% 83% 78.5% (+ 26.5)

LMD+ [11] 100% 82% 49% 86% 79.3%
+ 1-round SLD (Ours) 100% 98% 63% 92% 88.3% (+ 9.0)

Table 1. Our method can be applied to various image generation methods and improves the generation accuracy by a large margin.

making our self-correction an iterative process. Thus, de-
termining the optimal number of self-correction rounds is
critical for balancing efficiency and accuracy. As outlined
in Algorithm 1, our method sets a maximum number of at-
tempts on the correction rounds to ensure the process fin-
ishes within a reasonable amount of time.

The process completes when the LLM outputs the same
layout as the input (i.e., if the bounding boxes suggested by
the LLM controller (Bnext) align with the current detected
bounding boxes (Bcurr)), or when the maximum rounds of
generation are reached, indicating that the method is unable
to make a correct generation for the prompt. This iterative
process provides guarantees on the correctness of the image,
up to the accuracy of the detector and the LLM controller,
ensuring it aligns closely with the initial text prompt. We
explore the efficacy of multi-round corrections in Sec. 4.3.

3.3. Unified text-to-image generation and editing

In addition to self-correcting image generation models, our
SLD framework is readily adaptable for image editing ap-
plications, requiring only minimal modifications. A key dis-
tinction is in the format of user input prompts. Unlike image
generation, where users provide scene descriptions, image
editing requires users to detail both the original image and
the desired changes. For instance, to edit an image with two
apples and a banana by replacing the banana with an orange,
the prompt could be: “Replace the banana with an orange,
while keeping the two apples unchanged.”

The editing process is similar to our self-correction
mechanism. The LLM parser extracts key objects from
the user’s prompt. These objects are then identified by
the open-vocabulary detector, establishing a list of cur-
rent bounding boxes. The editing-focused LLM controller,
equipped with specific task objectives, guidelines, and in-
context examples, analyzes these inputs. It proposes up-
dated bounding boxes and corresponding latent space oper-
ations for precise image manipulation.

SLD’s ability to perform detailed, object-level editing

distinguishes it from existing diffusion-based methods like
InstructPix2Pix [2] and prompt2prompt [8], which mainly
address global image style changes. Also, SLD outperforms
tools like DiffEdit [4] and SDEdit [15], which are restricted
to object replacement or attribute adjustment, by enabling
comprehensive object repositioning, addition, and deletion
with exact control. Our comparative analysis in Sec. 4.2
will further highlight SLD’s superior editing capabilities
over existing methods.

4. Experiments

4.1. Comparison with Image Generation Methods

Setup. We evaluate the performance of the SLD frame-
work with the LMD benchmark [11], which is specifically
designed to evaluate generation methods on complex tasks
such as handling negation, numeracy, accurate attribute
binding to multiple objects, and spatial reasoning. For each
task, 100 programmatically generated prompts are fed into
various text-to-image generation methods to produce cor-
responding images. We evaluate the images generated by
our method and the baselines with open-vocabulary detector
OWL-ViT v2 [14] for a robust quantitative evaluation of the
alignment between the input prompts and the generated im-
ages. We compared SLD with several leading text-to-image
diffusion methods, such as Multidiffusion [1], BoxDiff [23],
LayoutGPT [6], LMD+ [12], and DALL-E 3 [16]. To en-
sure fair comparisons, all models incorporating LLMs used
the same GPT-4 model. In our SLD implementation, we uti-
lized LMD+ as the base model for latent space operations
and OWL-ViT v2 for the open-vocabulary object detector.
Results. As shown in Tab. 1, applying the SLD method to
both open-source (LMD+) and proprietary models (DALL-
E 3) significantly enhances their performance in terms of
generation correctness. For negation tasks, as LMD+ con-
verts user prompts containing “without” information into
negative prompts, which already achieves a remarkable
100% accuracy without SLD integration. In contrast, even
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Figure 5. SLD enhances text-to-image alignment across diverse diffusion-based generative models such as SDXL, LMD+, and DALL-E
3. Notably, as highlighted by the red boxes in the first row, SLD precisely positions a blue bicycle between a bench and a palm tree, while
maintaining the accurate count of palm trees and seagulls. The second row further demonstrates SLD’s robustness in complex, cluttered
scenes, effectively managing object collision through our training-free latent operations.

though DALL-E 3 also uses an LLM to rewrite the prompt,
it still fails for some negation cases, likely because the
LLM simply puts the negation keyword (e.g., “without”)
into the rewritten prompt. In this case, our SLD method
can automatically rectify most of these errors. For numer-
acy tasks, integrating SLD with LMD+ results in a signif-
icant improvement, with up to 98% accuracy. We noted
that DALL-E 3 often struggles to generate an image with
the correct number of objects. However, this issue is sub-
stantially mitigated by SLD, which enhances performance
by over 20%. For attribute binding tasks, SLD improves
the performance of both DALL-E 3 and LMD+ by 6% and
14%, respectively. Notably, DALL-E 3 initially outper-
forms LMD+ in this task, likely due to its training on high-
quality image caption datasets. Finally, for spatial reason-
ing tasks, the integration of SLD with both LMD+ and
DALL-E 3 demonstrates enhanced performance by 12%
and 6%, respectively.

4.2. Application to Image Editing

As discussed in Sec. 3.3, SLD excels in fine-grained image
editing over existing methods. As demonstrated in Fig. 6,
our integration of an open-language detector with LLMs en-
ables precise modifications within localized latent space re-
gions. SLD adeptly performs specific edits, like seamlessly
replacing an apple with a pumpkin, while preserving the
integrity of surrounding objects. In contrast, methods like
InstructPix2Pix [2] are confined to global transformations,
and DiffEdit [4] often fails to accurately locate objects for

Figure 6. When instructed to perform object-level image editing.
InstructPix2Pix [2] completely fails to accomplish the task, and
DiffEdit [4] falls short, as highlighted in the green box of the im-
age. Conversely, our method demonstrates a significantly better
performance in executing these object-level edits.

modification, leading to undesired results.
Furthermore, as exemplified in Fig. 7, SLD supports a

wide array of editing instructions, including counting con-
trol (such as adding, deleting, or replacing objects), attribute
modification (like altering colors or materials), and intricate
location control (encompassing object swapping, resizing,
and moving). A standout example is featured in the “Ob-
ject Resize” column of the first row, where SLD precisely
enlarges the cup on the table by an exact factor of 1.25×.
We encourage readers to verify this with a ruler for a clear
demonstration of our method’s precision. This level of pre-
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Figure 7. SLD can handle a diverse array of image editing tasks guided by natural, human-like instructions. Its capabilities span from
adjusting object counts to altering object attributes, positions, and sizes.

Figure 8. SLD struggles with objects of complex shapes, as the
SAM module may unintentionally segment adjacent parts during
the process.

cision stems from the detector’s exact object localization
coupled with the LLMs’ ability in reasoning and sugges-
tions for new placements. Such detailed control over spatial
adjustments is unmatched by any previous method, high-
lighting SLD’s contributions to fine-grained image editing.

4.3. Discussion

Multi-round self-correction. Our analysis in Tab. 2 high-
lights the benefits of multi-round self-correction and the fact
that the first round correction is always the most effective
one and has a marginal effect. The first round of corrections
substantially mitigates issues inherent in Stable Diffusion
[20]. Then, a second round of correction still yields signifi-
cant improvements across all four tasks.
Limitations and future work. A limitation of our method
is illustrated in Fig. 8, where SLD fails to accurately remove
a person’s hair. In this instance, despite the successful iden-

Accuracy

Method Negation Numeracy Attribute Spatial Average

SD [20] 19% 38% 24% 33% 28.5%
+ 1-round SLD 69% 55% 25% 69% 54.5% (+ 26.0)
+ 2-round SLD 73% 61% 31% 75% 60.0% (+ 31.5)

Table 2. While the majority of errors are typically rectified in
the first round, multi-round correction consistently outperforms a
single-round approach.

tification and localization of the hair, the complex nature
of its shape poses a challenge to the SAM module used for
region selection, resulting in the unintended removal of the
person’s face in addition to the hair. However, since the per-
son’s cloth is not removed, the base diffusion model fails to
generate a natural composition. This suggests that a better
region selection method is needed for further improvements
in the generation and editing quality.

5. Conclusion
We introduce the Self-correcting Language-Driven (SLD)
framework, a pioneering self-correction system using detec-
tors and LLMs to significantly enhance text-to-image align-
ment. This method not only sets a new SOTA in the im-
age generation benchmark but is also compatible with var-
ious generative models, including DALL-E 3. Also, SLD
extends its utility to image editing applications, offering
fine-grained object-level manipulation that surpasses exist-
ing methods.
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