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Abstract

In the realm of video object tracking, auxiliary modal-
ities such as depth, thermal, or event data have emerged
as valuable assets to complement the RGB trackers. In
practice, most existing RGB trackers learn a single set
of parameters to use them across datasets and applica-
tions. However, a similar single-model unification for multi-
modality tracking presents several challenges. These chal-
lenges stem from the inherent heterogeneity of inputs – each
with modality-specific representations, the scarcity of multi-
modal datasets, and the absence of all the modalities at
all times. In this work, we introduce Un-Track, a Unified
Tracker of a single set of parameters for any modality. To
handle any modality, our method learns their common la-
tent space through low-rank factorization and reconstruc-
tion techniques. More importantly, we use only the RGB-
X pairs to learn the common latent space. This unique
shared representation seamlessly binds all modalities to-
gether, enabling effective unification and accommodating
any missing modality, all within a single transformer-based
architecture. Our Un-Track achieves +8.1 absolute F-score
gain, on the DepthTrack dataset, by introducing only +2.14
(over 21.50) GFLOPs with +6.6M (over 93M) parameters,
through a simple yet efficient prompting strategy. Exten-
sive comparisons on five benchmark datasets with different
modalities show that Un-Track surpasses both SOTA unified
trackers and modality-specific counterparts, validating our
effectiveness and practicality. The source code is publicly
available at https://github.com/Zongwei97/
UnTrack.

1. Introduction

Video object tracking [9, 12, 86, 90] is a fundamental task
in computer vision with wide-ranging applications spanning
from surveillance [89] to augmented reality [23], where
accuracy and robustness are paramount. While traditional
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Figure 1. Un-Track is a unified tracker with a single parameter set
that seamlessly integrates any modality (of RGB-X).

RGB trackers have shown promise in general settings, they
often struggle with challenging scenarios such as occlu-
sions [40, 47], low visibility [83, 92], or fast-moving objects
[10, 48]. For more reliable tracking under such challenging
conditions, the integration of auxiliary modalities (X) like
depth [20, 68], thermal [83, 87], and event [79, 98] have
proven effective in multimodal tracking.

While the idea of fusing RGB with other modalities
holds promise [82, 84], the main challenge is the discrep-
ancy in the representation of information across different
modalities. Despite the success of previous fusion works
[15, 60] tailored for each specific scenario to improve RGB
trackers, their reliance on modality-specific designs limits
adaptability. Recent initiatives [69, 91] towards a uniform
architecture for various modalities show promise but neces-
sitate modality-specific fine-tuning. This approach leads to
multiple parameter sets, as shown in Fig. 1(a), thereby com-
promising practicality in diverse real-world applications.

In this work, we aim to avoid such modality-specific
fine-tuning to keep only one model-parameter set at all
times. Another practical constraint arises from the differ-
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ences in available auxiliary modalities across settings. Uni-
fying modalities by a common representation can handle
any modality at its disposal, addressing the mentioned prob-
lems by its virtue. However, two additional multifaceted
challenges emerge from the scarcity of multimodal datasets
and the absence of all paired data combinations. The former
makes cross-modal mappings through a large-scale data
prior unfeasible [19, 39, 76], while the latter leads to miss-
ing modalities and renders joint learning using all possible
combinations of paired data unfeasible [41, 80].

To achieve such a unification, in this paper, we present
Un-Track, denoting “one” in French, which learns a cohe-
sive embedding across diverse input modalities. Unlike pre-
vious approaches [51, 58, 73, 80], Un-Track relies solely
on RGB-X pairs for training, with X representing auxiliary
modalities, without the need for all modalities to co-occur.
Our objective is to discover a shared embedding seamlessly
binding all auxiliary modalities (as depicted in Fig. 1(b)).
More specifically, we leverage the factorization prior, al-
lowing reasoning about a common embedding directly from
the low-rank latent space. Factorization is a simple compo-
sition prior with the assumption that the global approxima-
tion can be constructed from a set of subset vectors. The
factorization prior, successfully utilized in previous stud-
ies [1, 4, 24], is employed in our work to reconstruct a
shared embedding. This process transforms the heteroge-
neous modal representation into a uniform one, thereby fa-
cilitating the emergent cross-modal alignment.

Moreover, to harness the full potential of auxiliary in-
puts while maintaining efficiency, we leverage cross-modal
features as prompts to enable RGB-X interaction. Different
from previous works [25, 27], our goal is to enhance less
reliable tokens, defined by a learnable score function, us-
ing multimodal cues. We approach this as a token recovery
problem and leverage low-rank factorization to achieve the
goal, which is first suggested in multimodal fusion, to the
best of our knowledge. With its unified model architecture
and prompting blocks, Un-Track is the first to offer support
for cross-modality alignment under a single architecture
with uniform parameters. In comparison to our RGB base-
line with 21.50 GFLOPs and 92M parameters, Un-Track
introduces only +2.14 GFLOPs with +6.6M parameters, re-
sulting in a significant +8.1 absolute F-score gain demon-
strated on the DepthTrack dataset. Extensive comparisons
across five datasets with different modalities validate Un-
Track’s superiority over specialized SOTA models, surpass-
ing both unified trackers and modality-specific fine-tuned
counterparts by a substantial margin.

2. Related Works
Multimodal tracking: Video object tracking [7, 71] aims
to detect objects in a video sequence based on their initial
positions. Early approaches treated tracking as a per-frame

target-matching problem, with Siamese networks [32, 33,
50, 61, 74, 85] being a notable example. More recently,
transformer-based methods [2, 5, 6, 11, 54, 63] have gained
popularity for feature extraction and per-frame correlation
in tracking. Large-scale training datasets [14, 22, 42, 45]
have empowered RGB trackers to uniformly apply param-
eters across various applications. While RGB trackers de-
liver promising results, challenges such as occlusion, low
illumination, and fast-moving scenes have led to the ex-
ploration of additional modalities. Several works have in-
vestigated the role of depth [70, 95], thermal [37, 38],
and event modalities [49, 55] in enhancing tracking perfor-
mance. Specifically, depth cues [16, 67] contribute to han-
dling objects with different camera distances; thermal cam-
eras [56, 60] address challenges such as low illumination;
event cameras improve the temporal awareness [57, 78, 97].

Despite the plausible achievements, many rely on
modality-specific blocks designed for individual modalities
[88, 93], limiting their adaptability. Recent efforts have fo-
cused on achieving architectural unification [69, 91], yet
they still necessitate modality-specific fine-tuning, resulting
in distinct parameter sets for different modalities. The ideal
scenario would involve a large-scale dataset encompass-
ing all possible modal combinations, but current tracking
datasets predominantly feature a single modality — depth
[66, 94], thermal [35, 36], or event [55] — posing chal-
lenges for a unified model with a single parameter set.
Learning with Missing modalities: Recent research has
addressed real-world scenarios where models must cope
with missing modalities [41, 44]. One common strategy
involves estimating missing values by learning joint mul-
timodal representations [31, 75], feasible when complete
samples are available during training. However, tracking
datasets typically exhibit only one modality at a time, com-
plicating the learning of such joint representations. Other
works [19, 39] implicitly learn cross-modal alignment end-
to-end using large-scale datasets and deep networks, de-
manding substantial computational resources. Extending
such approaches to tracking is challenging due to lim-
ited downstream datasets and real-world applicability con-
straints [26, 64]. In contrast to existing methods, our ap-
proach investigates cross-modal relationships by leveraging
edge priors to learn a joint representation that unifies all
modalities. Our method does not require the simultaneous
occurrence of all modalities, offering a unique perspective
on dealing with diverse and individual modalities.

3. Methods

3.1. Overall Framework

In this paper, our primary focus is on multimodal track-
ing, with the constraint that only one modality is available
at a time, as shown in Fig. 2. We define our multimodal
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Figure 2. Our proposed framework, termed Un-Track, is composed of a shared embedding, a modal prompting, and a LoRA-finetuned
pretrained RGB tracker. The shared embedding learns a joint representation that unifies all modalities (Sec. 3.2). The modal prompting
block enhances feature modeling with modal awareness at each scale (Sec. 3.3). To track the target object, we finetune a pretrained
foundation model [72] using the LoRA technique (Sec. 3.4). Our model achieves a unified model applicable across different modalities
under a single parameter set. During inference, Un-Track seamlessly integrates any image-paired data, thanks to the emergent alignment.

tracking dataset as M = {MD,MT ,ME}, where MX repre-
sents the subset dataset with only a single modality X avail-
able. Conventional methods tackling missing modalities of-
ten use dummy inputs for the absent pixels [31, 53], sim-
ulating complete datasets with all possible combinations of
paired datasets. In contrast, our method transforms any aux-
iliary input into a shared embedding, seamlessly binding all
modalities together and creating a complete and paired rep-
resentation with the master RGB feature.

To mitigate overfitting on sparse downstream mul-
timodal datasets, we adopt a transformer-based RGB
tracker with frozen parameters and fine-tune it for multi-
modal tracking. Leveraging a lightweight outer prompting
method, we identify uncertain tokens at each scale and en-
hance them with cross-modal awareness. Simultaneously,
an inner fine-tuning process is implemented using the LoRA
technique [21].

During training, our model learns the shared embedding
from samples in the mixed dataset M, effectively binding all
modalities together. As for inference, our model can accom-
modate any modal input X , thanks to the emergent align-
ment. Our trainable parameters only include cross-modal
binding, outer prompting parameters, and inner LoRA pa-
rameters, ensuring a training-friendly pipeline that can be
efficiently employed end-to-end on a single 24G GPU.

3.2. Shared Embedding

Explicit Edge Awareness: We observe that, as illustrated
in Fig. 2(a), depth data introduce 3D distance informa-
tion, effectively delineating objects with varying granular-
ity and enhancing the sharpness of 3D boundaries; ther-
mal images generate a scene heat map, highlighting objects
based on their temperatures and providing clearer contours;
event data capture intensity changes, particularly around
an object’s outbound region. Notably, a consistent feature
emerges across these modalities: the representation of the
“true” objects’ shape, often manifested through edges.

Motivated by this observation, our objective is to harness

edge embedding to unify all modalities. To achieve this, as
shown in Fig. 3, we generate gradient maps from auxiliary
modalities by computing differences between neighboring
pixels along both the x- and y-axes. Simultaneously, with-
out compromising texture edge, we also generate RGB gra-
dient maps. Subsequently, all gradient maps are integrated
with the visual feature, forming the gradient feature G.
Implicit Low-Rank Reconstruction: While edges present
a shared feature across different modalities, exclusively
transforming all modalities into edges may risk overlook-
ing modality-specific clues. Therefore, we introduce an im-
plicit learning pipeline to complement this by discovering
the shared embedding, guided by the previously generated
explicit edge awareness. This combined approach allows
for a more effective identification of the shared embedding,
leveraging both data-driven learning and edge priors.

In technical terms, we redefine the challenge of learning
the shared embedding as a quest for the shared low-rank
approximation. Both objectives share the essence of distill-
ing common features across all modalities. However, direct
estimation of the low-rank approximation becomes imprac-
tical due to the distinct data domains and modal represen-
tations. In response, we propose a pragmatic strategy: de-
composing the shared low-rank vector into the low-rank of
each subset component. This alternative, more manageable
and feasible within a single domain, lays the groundwork
for approximating the global shared low-rank from these
individual low-rank components.

The overall algorithm can be found in Algorithm 1.
Specifically, let M be the input feature with mixed aux-
iliary modalities, decomposed into subset features D,T,E
representing depth, thermal, and event samples from subset
datasets MD,MT ,ME . Their respective kth low-rank matri-
ces Dk,Tk,Ek, are approximated by:

Dk = σd(D), Tk = σt(T ), Ek = σe(E), (1)

where σx is the modality-specific learning through a simple
MLP projecting features from input channel c to the low-
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Algorithm 1 Implicit Shared Embedding
Input: M - Mix Modal Feature, G - Explicit Gradient Binding.
Output: F - Reconstructed feature
1. Initialize: Separate M into subsets, each representing a
modality-specific feature: D,T,E.
2. In-Domain Approximation: Train individual approxima-
tors σx for each modality x to derive domain-specific low-rank
matrices Dk,Tk,Ek. Idem for explicit low-rank gradient Gk.
3. Fuse and Guide: Merge Dk,Tk,Ek through a fusion function
ϕ1. Incorporate the explicit gradient Gk using addition, after
projecting it into a compatible latent space through ϕ2.
4. Reconstruct: Train a reconstruction function ΦR to construct
the shared embedding F , considering the explicit guidance G in
the original feature space.

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝐿𝑜𝑤-𝑅𝑎𝑛𝑘 
𝐴𝑝𝑝𝑟𝑜𝑥.

𝑅𝑒𝑐𝑜𝑛𝑠𝑡.

Explicit Edge 

Implicit Learning

  𝑅𝐺𝐵

 𝑀

 𝐺  𝐹

  
RGB: Image   M: Mixed Modalities   G: Gradient Feature   F: Shared Embedding 

Figure 3. Shared Embedding. We derive a joint representation
through low-rank factorization and reconstruction. Such an im-
plicit learning is additionally integrated with explicit edge aware-
ness to enhance the embedding.

rank space k (k < c). Simultaneously, we compute the low-
rank matrix Gk from the gradient feature G.

The global shared low-rank matrix Mk is then approx-
imated by fusing the subset low-rank matrices Dk,Tk,Ek,
along with the gradient guidance. Technically, we concate-
nate Dk,Tk,Ek and learn the joint low-rank approximation,
incorporating it with the gradient guidance. This pipeline
can be expressed as follows:

Mk = ϕR1([Dk,Tk,Ek])+ϕR2(Gk), (2)

where [.] is the channel concatenation and ϕRi are the MLP
projections to the low-rank latent space. Finally, we recon-
struct the shared embedding F through:

F = ΦR(Mk)+G, (3)

where ΦR is another MLP that projects the jointly-learned
low-rank matrix back to the departing feature space. Our
ablation studies validate that this subset low-rank approxi-
mation and regrouping efficiently unify all input modalities,
despite their heterogeneous representations.
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Figure 4. Modal Prompting. For the visual feature I, we em-
ploy a score function to categorize tokens into negative, uncertain,
and positive segments. Using a token exchange policy, we dis-
card negative tokens, enhance uncertain ones with corresponding
tokens from F , and retain positive ones. Then, we transform the
feature fusion task into a token recovery problem, addressed by
low-rank factorization. Similarly, we extract the most informative
low-rank matrix from F to fuse and reconstruct the shared output.

3.3. Outer Modal Prompting

RGB-tracker may fail to perform accurately in corner cases
where auxiliary clues can contribute. Drawing inspiration
from the success of adapting large pre-trained models to
specific downstream tasks [21, 25], we introduce a modal
prompting method devised to enhance RGB token I with
modality-awareness F , as shown in Fig. 4.

Specifically, our approach employs a shrinkage token fu-
sion strategy. Taking I as an example, we categorize tokens
into three groups—negative, uncertain, and positive—based
on a dynamic scoring function s. These regions are defined
with mask form, expressed as mn,mu,mp = s(I). To harness
multimodal clues effectively, we replace negative tokens
with those from the other modality, omit uncertain ones
with dummy values, and retain the positive tokens. Subse-
quently, these modified tokens undergo projection into the
low-rank space using the approximation function σc. Our
objective is to enhance robustness by completing uncertain
tokens with information from reliable neighboring tokens.
Mathematically, we obtain the first low-rank matrix Il1 by:

Il1 = σc(mn ·F +mp · I). (4)

Next, we target the uncertain tokens by merging them
with the paired tokens from the other modality and approx-
imate the low-rank matrix similarly. Here, we aim to throw
out the possible noise, resulting in a matrix that is more
informative than the original. Let σn be another approxima-
tion function, we obtain the second low-rank matrix Iln by:

Il2 = σn(mu ·F +mu · I). (5)

Then, we fuse these two low-rank matrices in low-rank
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Depth-Specific Parameters Uni-model with a Single Set of Parameters

ATCAIS
[28]

DDiMP
[28]

DeT
[66]

SPT
[94]

ProTrack
[69]

ViPT
[91]

Un-Track
(ours)

Stark
[62]

AiATrack
[17]

OSTrack
[72]

UniNext
[65]

SeqTrack
[8]

ViPT
[91]

Un-Track
(ours)

F-score(↑) 0.476 0.485 0.532 0.538 0.578 0.594 0.612 0.397 0.515 0.569 0.422 0.590 0.561 0.610
Re(↑) 0.455 0.469 0.506 0.549 0.573 0.596 0.610 0.406 0.526 0.582 0.432 0.600 0.562 0.610
Pr(↑) 0.500 0.503 0.560 0.527 0.583 0.592 0.613 0.388 0.505 0.557 0.413 0.580 0.560 0.610

Table 1. Overall performance on DepthTrack test set [66]. Red/Green/Blue stands for the best/second/third performance. Our depth-
specific model sets the SOTA record, while our uni-model with single parameters set also outperforms previous depth-specific SOTA.

space, forming the shared low-rank matrix Il for input I. In
such a manner, we improve the image token modeling by
fully benefiting from the auxiliary clues. Mathematically,
the whole process can be formulated as:

Il = ϕP([Il1 , Il2 ]), (6)

where ϕP is learnable fusion. Similarly, from the input F ,
we follow the same process to obtain the low-rank matrix
Fl . For the cross-modal fusion, we add these two low-rank
matrices and then project back to the original space. We can
obtain the fused output O by:

O = ΦP(Il +Fl), (7)

where ΦP is another learnable MLP.
Our method can be regarded as a mixer of token ex-

change (for negative tokens) and token fusion (for uncer-
tain tokens), while retaining the most informative modality-
specific clues (for positive tokens). As the majority of fu-
sion operations occur in the low-rank feature space, our pro-
gressive cross-modal shrinkage avoids imposing a signifi-
cant additional computational burden, while being able to
excavate and accumulate the rich cues from each modality
for effective modal prompting.

3.4. Inner Finetuning

In addition to the outer modal prompting, we incorporate
the LoRA technique [21] for more efficient finetuning. For
each transformer attention module with the weight matrix
W0 ∈ Rd×k, we introduce two learnable matrices: B ∈ Rd×r

and A ∈ Rr×k. This leads to the replacement of the frozen
attention mechanism h=W0xxx with the new LoRA attention:

h =W0xxx+BAxxx. (8)

To train our network, we adopt the same loss functions
as our baseline tracker [72] for end-to-end learning.

4. Experiments

4.1. Training Data

In the absence of a comprehensive multi-modal tracking
dataset encompassing all possible combinations (RGB-D-
T-E), we have only one RGB+X (i.e. RGB+depth, or

RGB+thermal, or RGB+event) at a time. The conven-
tional modality-specific adapted settings are referred as “X-
Specific”, whereas the main target of this paper with one
model trained on all modality pairs is called “Uni-model”
(or a single set of parameters). The training and evaluation
settings are summarized as follows:

Model Trained on Evaluated on
X-Specific RGBi+Xi RGBi+Xi
Uni-model

⋃
iRGBi+Xi RGBi+Xi

Our RGB-D samples are sourced from DepthTrack [66],
a pioneering RGB-D tracking benchmark with 150 training
long-term sequences. RGB-T samples are extracted from
the extensive LasHeR [36] dataset, featuring 979 diverse
training sequences. RGB-E samples are obtained from Vi-
sEvent [55], which boasts 500 real-world sequences. Each
D/T/E input is transformed into an RGB-like form.

4.2. Within distribution Evaluation

Given that DepthTrack [66], Lasher [36], and VisEvent [55]
provide domain-specific testing sequences, our initial eval-
uation focuses on these within distribution sequences. For
each dataset, we adhere to the metrics specified in the orig-
inal papers and prior standards [69, 91] for evaluation.
Comparison on DepthTrack [66]: For evaluation, we use
metrics such as precision (Pr) and recall (Re), as well as
the F-score, which are the primary metrics. As shown in
Tab. 1 When exclusively trained and fine-tuned on Depth-
Track, Un-Track achieves a +2.1% absolute precision im-
provement over the current depth-specific SOTA ViPT [91].
Notably, even when trained with mixed data using a sin-
gle parameter set, Un-Track outperforms the depth-specific
ViPT. Furthermore, when the current ViPT is jointly trained
on all datasets with a single set of parameters, its perfor-
mance significantly deteriorates.

Additionally, we observe that trackers excelling in other
tracking datasets [14, 22, 42] might struggle in RGB-
D downstream settings. UniNext [65], a leading tracker
trained on various large-scale tracking datasets and related
image/ video tasks, exhibits poor performance. In contrast,
our model achieves cross-modal unification within a single
set of parameters, surpassing all depth-specific counterparts
and performing closely to our specialized version. This un-
derscores the efficacy of our shared embedding in achieving
global alignment across diverse modalities.
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Thermal-Specific Parameters Uni-model with a Single Set of Parameters

SGT
[34]

FANet
[96]

mfDiMP
[81]

DAFNet
[18]

MaCNet
[77]

ProTrack
[69]

ViPT
[91]

Un-Track
(ours)

Stark
[62]

AiATrack
[17]

OSTrack
[72]

SeqTrack
[8]

ViPT
[91]

Un-Track
(ours)

PR(↑) 0.327 0.441 0.447 0.448 0.482 0.538 0.651 0.667 0.418 0.463 0.530 0.582 0.608 0.646
SR(↑) 0.232 0.309 0.343 0.311 0.350 0.420 0.525 0.536 0.333 0.365 0.422 0.441 0.490 0.513

Table 2. Overall performance on the Lasher thermal testing set [36]. Our thermal-specific model sets a new SOTA record. Our uni-model
variant competes strongly with the previous SOTA thermal-specific models and significantly surpasses its unimodel version.

Event-Specific Parameters Uni-model with a Single Set of Parameters

SiamCar
[62]

Stark E
[62]

VITAL E
[46]

PrDiMP E
[13]

TransT E
[5]

ProTrack
[69]

ViPT
[91]

Un-Track
(ours)

Stark
[62]

AiATrack
[17]

OSTrack
[72]

SeqTrack
[8]

ViPT
[91]

Un-Track
(ours)

Precision(↑) 0.599 0.612 0.649 0.644 0.650 0.632 0.758 0.763 0.616 0.626 0.691 0.665 0.740 0.755
Success(↑) 0.420 0.446 0.415 0.453 0.474 0.471 0.592 0.597 0.448 0.444 0.525 0.504 0.579 0.589

Table 3. Overall performance on VisEvent dataset [55]. Our event-specific model sets a new SOTA record. Our uni-variant, with the same
parameter set as in Depth and Thermal, consistently achieves competitive performance across various modalities, leading to a significant
margin over the uni-variant of the SOTA modality-specific model [91].

Comparison on LasHer [36]: Similarly, we conduct eval-
uations on the LasHer testing set for RGB-T tracker as-
sessment as shown in Tab. 2. Precision (PR) and success
rates (SR) are reported following conventional standards
[36, 69, 91]. Initial comparisons under domain-specific
settings reveal the challenges of achieving an architecture-
unified model across RGB-D and RGB-T domains, with
ProTrack [69] and ViPT [91] being the only works consis-
tently leading in both settings. Our Un-Track, following
domain-specific finetuning, outperforms the leading ViPT
by a significant margin and sets a new SOTA record. In the
cross-domain joint learning with a single set of parameters,
our uni-model achieves a +3.8% absolute gain over ViPT.
Remarkably, our model with a single set of parameters al-
ready achieves very competitive performance compared to
the thermal-specific ViPT version.

Comparison on VisEvent [55]: We also evaluate tracker
performance with RGB-Event input. Event data, being in-
herently sparse compared to depth and thermal information,
presents challenges in extending existing RGB-D or RGB-T
fusion designs for effective integration, hence necessitating
specific fusion designs [3, 43, 98]. In contrast, we adopt
a unified cross-modal prompting method based on shrink-
age fusion. Our approach, with gradual token exchanges
between RGB and event modalities, effectively preserves
crucial modality-specific clues to enhance feature model-
ing. Performance-wise, under the event-specific setting, our
Un-Track outperforms all counterparts, as shown in Tab. 3
and in Fig. 5. In the single set of parameters setting, our
uni-model achieves a +1.1% absolute gain in precision over
the current SOTA. This underscores the effectiveness of our
approach in handling the unique challenges posed by event
data integration, which can be mainly contributed to our
shared binding that learns the global RGB+X alignment.

Figure 5. More precision/success comparisons on VisEvent
dataset [55]. “Uni” stands for models with a single parameter set.
“ E” stands for the extension of RGB trackers with event fusion.

4.3. Generalization Across Datasets

In this section, we assess the versatility by evaluating per-
formance on datasets that differ from the training ones,
aligning with the goal of achieving a universal model check-
point applicable to diverse scenarios.
VOT-RGBD2022 [30]: We first perform inference on the
VOT-RGBD2022 dataset. Notably, our uni-model achieves
superior performance compared to the depth-specific ViPT
with a +0.5% absolute gain in accuracy.
RGBT234 [35]: We also test our model on the other
thermal dataset RGBT234, which encompasses sequences
with different distributions. Our uni-model surpasses the
thermal-specific ViPT with a notable +0.7% absolute preci-
sion gain, as shown in Tab. 5.

Moreover, we present a detailed per-attribute comparison
with the fine-tuned ViPT in Fig. 6. We are particularly in-
terested in sequences with motion blur-fast motion-camera
moving, as well as sequences with heavy occlusion-scale
variants-background clutter. The former motion-related
challenges can typically benefit from event clues, renowned
for asynchronous computing, while the latter geometry-
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Depth-Specific Parameters Uni-model with a Single Set of Parameters

DRefine
[29]

Stark D
[29]

DMTracker
[30]

DeT
[66]

SBT D
[30]

SPT
[94]

ProTrack
[69]

ViPT
[91]

Stark
[62]

AiATrack
[17]

OSTrack
[72]

SeqTrack
[8]

Un-Track
(ours)

EAO(↑) 0.592 0.647 0.658 0.657 0.708 0.651 0.651 0.721 0.445 0.641 0.666 0.679 0.718
Accuracy(↑) 0.775 0.803 0.758 0.760 0.809 0.798 0.801 0.815 0.714 0.769 0.808 0.802 0.820

Robustness(↑) 0.760 0.798 0.851 0.845 0.864 0.851 0.802 0.871 0.598 0.832 0.814 0.846 0.864

Table 4. Overall performance on VOT-RGBD2022 [30]. Our uni-model, trained on a mix of all modalities, shows robust generalization
and outperforms all depth-specific models and other uni-model counterparts.

Thermal-Specific Parameters Uni-model with a Single Set of Parameters
mfDiMP

[81]
SGT
[34]

DAFNet
[18]

FANet
[96]

MaCNet
[77]

CMPP
[52]

APFNet
[59]

ProTrack
[69]

ViPT
[91]

Un-Track
(ours)

Stark
[62]

AiATrack
[17]

OSTrack
[72]

SeqTrack
[8]

Un-Track
(ours)

MPR(↑) 0.646 0.720 0.796 0.787 0.790 0.823 0.827 0.795 0.835 0.837 0.677 0.711 0.755 0.806 0.842
MSR(↑) 0.428 0.472 0.544 0.553 0.554 0.575 0.579 0.599 0.617 0.618 0.496 0.508 0.569 0.599 0.625

Table 5. Overall performance on RGBT234 dataset [35]. Our uni-model sets new SOTA records without specific thermal finetuning.

Figure 6. Per-attribute analysis on the thermal dataset RGBT234
[35]. Challenges related to motion and geometry are generally
better addressed by event and depth cameras, respectively. Nev-
ertheless, when inferring only with RGB-T data, our Un-Track
surpasses both the SOTA thermal-specific method and the current
leading uni-tracker. This success underscores our ability to learn
emergent alignment across diverse modalities.

related challenges can typically benefit from depth cameras.
However, these event/depth clues are not directly available
in the RGB-T setting. Nevertheless, our Un-Track, trained
on all modalities, outperforms both thermal fine-tuned ViPT
[91] and the current leading uni-tracker [8] with large mar-
gins. This underscores our capability in learning event and
depth priors through shared binding, without the need for
the presence of these modalities during inference.
RGB-only: In practical scenarios, challenges arise when
there are no modal clues available, a typical case is when
the auxiliary sensor fails to work properly. We address this
demanding case in our study by substituting the modal in-
put with dummy values. Under a such challenging setting,
as shown in Tab. 6, our uni-method consistently outper-
forms both our RGB baseline fine-tuned counterparts sig-
nificantly. Notably, such an improvement is achieved with
a very limited increase in learning parameters, i.e., +6.65M
with +2.14 GFLOPs.

RGB Baseline
[72]

ViPT
[91]

Un-Track
(ours)

GFLOPs 21.50 21.80 23.64
Params (M) 92.08 92.96 98.73

F-score(↑) 0.529 0.542 0.558
Re(↑) 0.522 0.538 0.557
Pr(↑) 0.536 0.546 0.560

Table 6. Overall performance on DepthTrack test set [66] with
dummy depth input.

w/o
Shared Embed

[91] as
Modal Prompt

w/o
LoRA Finetune

F-score(↑) 0.599 0.579 0.594
Re(↑) 0.602 0.575 0.598
Pr(↑) 0.597 0.584 0.596

Table 7. Key component analysis.

5. Ablation Studies

In this section, we perform all experiments on the Depth-
Track testing set [66] under a single parameter set setting.
Key Component Analysis: We begin by studying the ef-
fectiveness of key components, including the shared em-
bedding, modal prompting, and LoRA finetuning, as sum-
marized in Tab. 7. We initially remove the shared embed-
ding by directly feeding mixed modalities into the learn-
ing diagram. It can be seen that this equal treatment of all
modalities harms network performance due to the heteroge-
neous representation across modal domains. Secondly, we
replace our prompting block with a recent counterpart that
computes fovea attention from additional input [91]. Our
designed gradual shrinkage fusion, allowing token-wise in-
teraction, proves to be more effective. We also report per-
formance when we remove the inner fine-tuning with Lora.
It can be seen that the performance deteriorates.
Low-Rank: Low-rank approximation plays a vital role in
our model, influencing our shared embedding, modal fu-
sion, and LoRA-finetuning. Hence, the choice of rank is
crucial for both the efficiency and effectiveness of our ap-
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Table 8. Low Rank Approximation Our plain version is highlighted in gray .

(a) Rankk (Sec. 3.2 )

2 4 8

F-score(↑) 0.607 0.610 0.602
Re(↑) 0.606 0.608 0.601
Pr(↑) 0.608 0.611 0.604

(b) Rankl (Sec. 3.3 )

4 8 16

0.596 0.610 0.606
0.593 0.608 0.609
0.599 0.611 0.604

(c) LoRA (Sec. 3.4 )

2 4 8

0.601 0.610 0.600
0.599 0.608 0.598
0.602 0.611 0.602

(d) Percentile (Sec. 3.3 )

1/8 1/4 1/3

0.604 0.610 0.595
0.606 0.608 0.593
0.602 0.611 0.596

proach. In Tab. 8, we systematically explore the impact of
low-rank choices within each component.
Shared Embedding: Our objective is to identify an opti-
mal low-rank latent space for merging different modalities
effectively. Tab. 8(a) presents our ablation study, where
we explore ranks of 2, 4, and 8. Lower ranks result in
poorer performance due to sparse representations. Con-
versely, higher ranks capture too many modality-specific
details, complicating the search for a shared embedding.
Modal Prompting: As shown in Tab. 8(b), similar trends are
observed when investigating the low-rank choices for modal
prompting with rank values of 4, 8, and 16, as low ranks
struggle to capture essential information, while higher ranks
introduce an overload of modality-specific details.
LoRA-finetuning: We also vary the ranks between 2, 4,
and 8 for the LoRA finetuning technique, as shown in
Tab. 8(c). Lower ranks exhibited consistently poor per-
formance, while higher ranks in this case tend to result in
poorer performance, likely due to overfitting.
Remarks: These experiments emphasize the importance of
selecting the best low-rank representations. Nevertheless,
our model shows great resilience to the choice of LoRA,
showcasing consistent performance across different low-
rank configurations. Notably, all our low-rank variants out-
perform the current SOTA ViPT under the uni-setting, vali-
dating our robustness and effectiveness.
Modal Prompting: During the prompting fusion, a learn-
able score function is used to categorize tokens into three
groups based on their confidence scores. Here, we explore
different percentiles for the number of positive, which is
the same as the number of negative tokens, leaving the rest
as uncertain tokens. As shown in Tab. 8(d), the choice of
percentile can influence overall performance. Lower per-
centiles result in poorer performance, as recovering uncer-
tain tokens from very few neighboring tokens is challeng-
ing. Higher percentiles also lead to performance degrada-
tion since the focus is on token exchange rather than token
fusion. The choice of 1/4 leads to the best balance between
exchanger and fuser, leading to the best performance.
Shared Embedding: Here, we perform ablation studies on
our shared embedding, a foundational component of our
uni-model. The quantitative results are presented in Tab. 9.
We begin by exploring a scenario where our shared embed-
ding is replaced with a variant lacking explicit edge guid-
ance (w/o Explicit Edge). In this configuration, the network

w/o
Explicit Edge

w/o
Implicit Learning

w/o
In-domain Approx.

F-score(↑) 0.600 0.604 0.581
Re(↑) 0.602 0.609 0.583
Pr(↑) 0.598 0.599 0.579

Table 9. Ablation on shared embedding

learns the shared embedding solely without any edge prior.
The results highlight a substantial performance drop, under-
scoring the pivotal role of explicit edge guidance — a nat-
ural and static embedding that binds all modalities together
— in facilitating this implicit learning process.

We also conduct experiments using only the explicit
edge as the shared embedding, excluding any additional
learning modules (w/o Implicit Learning). This approach,
too, yields suboptimal performance, primarily due to the ne-
glect of modality-specific clues within each domain.

Finally, we directly compute the low-rank approxima-
tion from mixed modalities, bypassing the initial in-domain
approximation and subsequent fusion steps (w/o In-domain
Approx.). We observe that the network struggles in learning
a shared embedding in this direct low-rank approximation
setup, primarily due to the intricately mixed representation
caused by the domain gap between different modalities.

6. Conclusion and Future Work

We present a successful case of a single-model and any-
modality tracker for video object tracking. The proposed
method achieves a shared embedding that binds all modal-
ities together, overcoming their heterogeneous representa-
tions. This unification is facilitated by lightweight modal
prompting and inner finetuning, inheriting benefits from
large-scale pre-trained trackers without introducing a sub-
stantial computational burden. Exhaustive experiments
showcase our improved tracking performance and robust
generalization, with any modality input.
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Roman Pflugfelder, Joni-Kristian Kämäräinen, Hyung Jin
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