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Abstract

Most image-to-image translation models postulate that a
unique correspondence exists between the semantic classes
of the source and target domains. However, this assump-
tion does not always hold in real-world scenarios due to
divergent distributions, different class sets, and asymmet-
rical information representation. As conventional GANs
attempt to generate images that match the distribution of
the target domain, they may hallucinate spurious instances
of classes absent from the source domain, thereby dimin-
ishing the usefulness and reliability of translated images.
CycleGAN-based methods are also known to hide the mis-
matched information in the generated images to bypass cy-
cle consistency objectives, a process known as steganogra-
phy. In response to the challenge of non-bijective image
translation, we introduce StegoGAN, a novel model that
leverages steganography to prevent spurious features in
generated images. Our approach enhances the semantic
consistency of the translated images without requiring ad-
ditional postprocessing or supervision. Our experimental
evaluations demonstrate that StegoGAN outperforms exist-
ing GAN-based models across various non-bijective image-
to-image translation tasks, both qualitatively and quantita-
tively. Our code and pretrained models are accessible at
https://github.com/sian-wusidi/StegoGAN .

1. Introduction

Image-to-image translation is an active research subject with
impactful applications ranging from changing the style of
images [12, 36] to automatically creating maps from satellite
images [36] or changing the modality of medical images [9].
When the source and target domains exhibit substantial dif-
ferences, ensuring the semantic consistency between input
images and their translation becomes particularly challeng-

*Equal contribution.
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(b) GAN models hallucinate spurious features.

Image from Y ... translated to X ... and back to Y
(c) CycleGAN models hide unmatchable features by steganography.

Figure 1. Non-Bijective Translation. When image domains
present classes without equivalence (a), GAN models tend to hal-
lucinate spurious features when translating images (b). A related
phenomenon is steganography, where CycleGAN-based models
covertly encode features in low-amplitude patterns to bypass cycle
consistency (c). Instead of disabling this phenomenon, we harness
steganography to prevent the hallucination of spurious features.

ing [8]. Our work explores the surprisingly uncharted field
of adversarial, non-bijective image-to-image translation.
Non-Bijective Image Translation. Existing translation
methods assume a one-to-one correspondence between
classes of the source and target domains: horses to ze-
bras [36], satellite image features to their cartographic repre-
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sentation [6, 36], or distinct cell types viewed under varying
medical imaging modalities [9]. However, as illustrated
in Figure 1a, this assumption does not always hold. For in-
stance, when considering a dataset with horses and one with
zebras in their habitat, zebra images may include background
elements with no equivalent in the source domain—like ele-
phants. Similarly, in map translation toponyms (i.e., place
names printed onto the map) do not have counterparts in
satellite images [6] . We qualify classes of the target domain
without equivalent in the source domain as unmatchable.

As illustrated in Figure 1b, by trying to reproduce the
distribution of the target domain, GANs may hallucinate
spurious features or textures in the generated images, i.e.,
objects without equivalent in the source image. This is partic-
ularly frequent for unmatchable classes [8]. While this can
be perfectly acceptable for some applications [23], adding
nonexistent tumors in MRI scans or incorrect toponyms in
maps can severely degrade the usefulness of the translation
result. Instead of detecting and removing these artifacts
in post-processing, we propose an approach that directly
prevents their generation using steganography.

GAN Steganography. To ensure its semantic consistency,
CycleGAN [36] back-translates the generated image to the
source image. However, unmatchable classes of the source
domain cannot be encoded into meaningful features in the im-
ages generated in the target domain. As shown in Figure 1c,
these models can instead cheat by encoding the necessary
information into quasi-invisible patterns in the generated
images [7]. This process, known as steganography, allows
GANs to perform seemingly impossible back-translation.
For instance, in a map-to-satellite task, the model can re-
store the correct names of towns from satellite images that
appear visually correct. This phenomenon is often viewed
as a quirky optimization flaw, easily fixable by adding noise
or blur [11, 20, 26].

StegoGAN. We propose StegoGAN, a model that leverages
steganography to detect and mitigate semantic misalignment
between domains. In settings where the domain mapping
is non-bijective, StegoGAN experimentally demonstrates
superior semantic consistency over other GAN-based models
both visually and quantitatively, without requiring detection
or inpainting steps. In addition, we publish three datasets
from open-access sources as a benchmark for evaluating
non-bijective image translation models.

2. Related Work

GAN-Based Image Translation. GAN-based image trans-
lation models transfer the style of images between domains
with an adversarial perceptual loss [13]. When pairs of
aligned images from both domains are available, the trans-
lated images can also be supervised by their fidelity with
target images [18]. In practice, such pairs are not always

available or even possible to obtain. In the absence of ex-
plicit equivalence between images, preserving the semantics
of the input in the generated image is a priority. Multiple ap-
proaches have been proposed to address this challenge, such
as density-based regularization [33], spatial mutual informa-
tion [20, 26, 30], or cycle consistency losses [17, 21, 36].

Asymmetric Image Translation. Translating between do-
mains with different semantic distributions is challenging.
Existing approaches include focusing the network’s atten-
tion on the most discriminative part of the input image [29],
augmenting the consistency loss with geometric transforma-
tions [11], replacing the consistency reconstruction term with
a contrastive loss [20, 26], or ensuring that the translation
is robust to small perturbations of the input [19]. However,
these methods assume a bijective relationship between the
classes of the source and target domains.

Closest to our work is the model of Li et al. [23], which
uses an auxiliary variable to model the information loss
from information-rich domains (such as natural images) to
information-poor domains (such as label maps). In turn, they
use this variable to create realistic poor-to-rich domain trans-
lations. Our work differs as we precisely want to avoid the
creation of spurious—albeit realistic—details when translat-
ing to a domain with unmatchable classes.

CycleGAN Steganography. Chu et al. [7] discovered that,
when faced with unmatchable classes, CycleGAN [36] hides
information in low-amplitude and high-frequency signals.
The model uses these visually imperceptible patterns to recre-
ate the source image and bypass the cycle loss. This contra-
dicts the intention of the cycle consistency loss and makes
the model more vulnerable to adversarial attacks [7]. Luck-
ily, multiple approaches can prevent steganography, such as
blurring [11], compressing [10], or adding noise [20] to the
generated source images in the back-translation. Alterna-
tively, the back-translation from poor to rich domains can be
omitted in the cycle consistency loss [27, 35].

While steganography in CycleGAN can be problematic,
it also offers an opportunity to analyse distribution differ-
ences. In StegAnomaly [3], a model is trained to translate
healthy brain scans into a low-entropy domain with cycle
consistency. When removing high-frequency components,
the model error reveals anomalous structures. This approach,
like ours, harnesses steganography for insightful domain
analysis, albeit with a different goal.

3. Methods

We consider two image domains X and Y with respective
semantic class sets KX and KY . The domains X and Y
are considered bijective if there exists a function ϕ from
KX to KY such that each class kX has a unique and natural
semantically equivalent class ϕ(kX ) in Y , and vice-versa. A
class of KY is said to be unmatchable if it doesn’t have an
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Figure 2. Architecture. To avoid spurious generation of unmatchable classes in non-bijective image translation, we propose to make the
steganographic process explicit and in feature-space. Our model runs the backward cycle first (a), then the forward translation cycle (b).
Thanks to our matchability disentanglement module (c), we can separate the matchable and unmatchable information while translating
images from domain Y to X . We can then produce generated and reconstructed images with and without unmatchable features. At inference
time (d), our model operates like a normal image translation model.

equivalent in KX . While this notion is somewhat subjective,
many applications have obvious examples: toponyms are
unmatchable in satellite images, and tumors in scans of
healthy patients.

Objective. Our goal is to learn a mapping G : X 7→ Y
such that the translation G(x) of any image x ∈ X aligns
stylistically with images from Y , while preserving the se-
mantic content of x. If KY contains an unmatchable class
kunmatch
Y , images translated from X to Y should not contain

any instances of kunmatch
Y . However, in an attempt to match

the distribution of Y , GAN models often create spurious in-
stances of unmatchable classes in their translated images. In
this paper, we propose a method that employs steganography
to prevent the generation of such spurious information.

3.1. CycleGAN

CycleGAN [36] learns unpaired image translation by enforc-
ing the consistency between the input image and its back-
translation from the generated image. It uses two generators
GX 7→Y : X 7→ Y and GY7→X : Y 7→ X , and two domain
discriminators DX : X 7→ {0, 1}, DY : Y 7→ {0, 1} which
predict whether a sample is generated (0) or real (1).

In the following, when considering images x ∈ X or y ∈
Y , we define the following short-hands: xgen := GY7→X (y)
and ygen := GX 7→Y(x) for the generated images, and xrec :=
GY7→X (ygen) and yrec := GX 7→Y(xgen) for the reconstructed
images. We now detail the losses of CycleGAN.

Adversarial loss. The adversarial loss [13] encourages the
discriminators DX and DY to distinguish between authentic

and generated images, while pushing the generators GX 7→Y
and GY7→X to create credible images:

LGAN=Ey∼Y log(DY(y))+Ex∼X log(1−DY(ygen))

+Ex∼X log(DX (x))+Ey∼Y log(1−DX (xgen)). (1)

Cycle consistency. The cycle consistency loss ensures that
the back-translation of ygen to domain X is close to the
original image x, and likewise for xgen and y:

Lcyc = Ex∼X ∥xrec − x∥+ Ey∼Y∥yrec − y∥ , (2)

with ∥ · ∥ the pixel-wise L1 norm.
Identity loss. The identity loss regularizes the generators to
be close to identity, generally improving color composition:

Lid=Ex∼X ∥GY7→X (x)−x∥+Ey∼Y∥GX 7→Y(y)−y∥. (3)

Final Loss. The final objectives are:

L(GX 7→Y , GY7→X ) = LGAN + λcycLcyc + λidLid , (4)
L(DX , DY) = −LGAN , (5)

with λcyc and λid non-negative hyperparameters.

3.2. StegoGAN

We introduce StegoGAN, a novel model building on the Cy-
cleGAN framework [36], designed specifically for scenarios
where domains X and Y lack a bijective relationship. When
generating images ygen in Y , the generator GX 7→Y may add
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spurious instances of an unmatchable class kunmatch
Y in order

to deceive the discriminator DY . Our goal is to prevent
the generation of such hallucinated instances. To achieve
this, we leverage steganography to explicitly disentangle the
matchable and unmatchable information in the backward
cycle (y 7→ xgen 7→ yrec) and prevent the network from
hallucinating in the forward translation (x 7→ ygen 7→ xrec).
See Figure 2 for the overall design of our approach.

Steganography. In order to faithfully reconstruct y with
yrec, the translated image xgen must somehow contain infor-
mation about the instances of the unmatchable class kunmatch

Y .
CycleGAN methods typically achieve this by hiding low-
amplitude and high-frequency patterns in xgen that will be de-
coded by GX 7→Y and translated back to instances of kunmatch

Y
in yrec. Adding low-intensity noise on each pixel is typi-
cally sufficient to destroy the hidden information and prevent
steganography [7].

Steganography is often viewed as an optimization flaw
that undermines the consistency loss. However, in the case
of non-bijective translation, this is the only way to let GX 7→Y
reconstruct instances of kunmatch

Y in yrec. Instead of disabling
steganography, we propose to use it to our advantage to de-
tect and prevent spurious generations. We adapt CycleGAN
so that steganography takes place in feature-space instead of
pixel-space, and in an explicit manner.

Backward Cycle. We decompose the generators GX 7→Y
and GY7→X into two components: an encoder and a decoder,
such that GX 7→Y = Gdec

X 7→Y◦Genc
X 7→Y and GY7→X = Gdec

Y7→X ◦
Genc

Y7→X . The encoders map their inputs to feature maps of
spatial dimension H ×W , where each pixel has C channels.
In the following, we denote the intermediary representation
of y in GY7→X by zgen := Genc

Y7→X (y). The feature map zgen
encodes information about both matchable and unmatchable
classes, which we want to disentangle.

We introduce a network M : RH×W×C 7→ [0, 1]H×W×C

that assigns an unmatchability score between 0 and 1 to
each pixel and channel. Here, a score of 1 indicates that the
information does not have a counterpart in domain X , while
it does for 0. This process gives us the unmatchability mask
M(zgen), which we use to split zgen into its matchable and
unmatchable parts:

zunmatch
gen = M(zgen)⊙ z (6)

zmatch
gen = (1−M(zgen))⊙ z , (7)

with ⊙ the pixel-wise and channel-wise Hadamard product.
In our model, the generated image xgen is computed using
only the matchable part of the representation:

xgen = Gdec
Y7→X (zmatch

gen ) . (8)

We produce two reconstructions of y: yclean
rec , which is a

direct back-translation of xgen into the Y domain : yclean
rec =

GX 7→Y(xgen); and yrec, which is generated by decoding a
combination of the unmatchable part of zgen and the features
extracted by Genc

X 7→Y from a noise-perturbed version of xgen:

yrec = Gdec
X 7→Y

(
Genc

X 7→Y (xgen + ϵ) + zunmatch
gen

)
, (9)

with ϵ denoting random Gaussian noise of low amplitude
applied to each pixel and channel of xgen. This noise is
added to destroy potential steganographic information in
xgen, therefore forcing GX 7→Y to rely only on zunmatch

gen to
reconstruct unmatchable features in yrec.

The key mechanisms to disentangle matchable and un-
matchable information are twofold: (i) disturbing direct
steganography with random noise, and (ii) explicitly provid-
ing unmatchable information to GX 7→Y in feature-space.
Forward Cycle. In the forward cycle x→ ygen → xrec, the
generator GX 7→Y may create spurious instances of unmatch-
able classes when translating x toY to fulfill the expectations
of the discriminator Dy. To address this, we perform two
distinct translations of x in Y: ygen has explicit access to
the steganographic information zunmatch

gen extracted from the
backward cycle, while yclean

gen does not:

ygen = Gdec
X 7→Y

(
Genc

X 7→Y(x) + zunmatch
gen

)
(10)

yclean
gen = GX 7→Y (x) . (11)

The rationale is that Gdec
X 7→Y has explicit access to informa-

tion about the unmatchable classes of y, so it is not incen-
tivized to invent them. For consistency with the backward
step, where the decoder of GY7→X processes only matchable
information as defined in (7), we use the same disentangle-
ment approach for generating xrec:

xrec = Gdec
Y7→X ((1−M (zrec))⊙ zrec) , (12)

where zrec = Genc
Y7→X (ygen) is the intermediary representation

of ygen in the forward cycle.
Mask Regularization. To avoid degenerate behaviors of our
explicit steganography mechanism, we enforce two priors on
the unmatchability masks: (i) given that a well-posed trans-
lation problem predominantly involves matchable features,
the masks should be sparse; (ii) to improve the model’s in-
terpretability, we favor mask values near 0 or 1, representing
clear decisions about matchability. To enforce these priors,
we regularize the masks with the non-convex L0.5 norm [34]:

Lreg = Ey∼Y∥M(zgen)∥0.5 + Ex∼X ∥M(zrec)∥0.5 . (13)

Matchable Consistency. The images ygen and yclean
gen , as well

as yrec and yclean
rec , should be identical outside of unmatchable

regions. To enforce this constraint, we design a function
I which takes an unmatchability mask m as input, takes
the channel-wise maximum values of all pixels, flips its
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Source Ground Truth StegoGAN CycleGAN [36] DRIT [21] GcGAN [11] CUT [26] SRUNIT [19]

Figure 3. Qualitative Comparison. We report reconstructions from the test sets of PlanIGN (top two rows), GoogleMap (row 3 and 4), and
MRI (last two rows). Contrary to the other models, StegoGAN does not hallucinate spurious toponyms, highways (orange roads), or tumors
(white areas) and shows better semantic correspondences during translation.

value from [0, 1] to [1, 0], and upsamples the results to the
dimensions of the input images.

I(m) = upsample
(
1−max

c
m
)

. (14)

The obtained consistency masks I(m) have values close to
1 for pixels with only matchable content, and close to 0
otherwise. This enables us to define a loss for yclean

gen and
yclean

rec that focuses solely on regions with matchable features:

Lmatch = Ey∼Y∥I (M(zgen))⊙
(
ygen − yclean

gen

)
∥

+ Ex∼X ∥I (M(zrec))⊙
(
yrec − yclean

rec

)
∥ . (15)

Final Objective. In addition to the standard CycleGAN
loss components (4-5), we integrate Lmatch and Lreg into
the overall loss function L(GX 7→Y , GY7→X ), weighted by

their respective coefficients λreg and λmatch. Crucially, our
proposed approach remains unsupervised, requiring neither
aligned images from X and Y nor specific annotations of
unmatchable features.

4. Experiments

In this section, we assess the improvements brought by our
method for non-bijective image translation across various
datasets and compare them with existing models, both quali-
tatively and quantitatively.

Implementation details. We follow the setting of Cyle-
GAN [36] as our baseline model: the generators are
Resnets [15] and the discriminator is based on Patch-
GAN [18]. We define the encoders as the first half of the
generator’s layers and the decoders as the second half. The
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Figure 4. Results on GoogleMaps. We report the performance of several top-performing image translation models for different ratios of
unmatchable features in the target domain of the training set. StegoGAN handles higher ratios better than competing methods.

unmatchability mask predictor M is defined as a small 3-
layer convolutional neural network (CNN). We set λcyc = 10,
λidt = 0.5 as in [36] and λmatch = 1. The amplitude of the
perturbation ϵ is 0.01 as in [7]. The Appendix provides more
architecture and training details.

4.1. Datasets

We assess the performance of StegoGAN across several
image translation tasks that feature unmatchable classes.
Each dataset follows a consistent structure: the training set
includes images from the source domain X devoid of a
specific class (e.g., tumors, motorways, toponyms) while
the target domain Y does include that class. The test set
comprises paired images from both domains, specifically
excluding the unmatchable class. This setup allows us to
quantify the models’ hallucinations: any generated instances
of the unmatchable class are necessarily spurious and due to
its presence in the training set. We release all three curated
datasets on the Zenodo platform and provide details below.

PlanIGN. X : Aerial Photo, Y : Maps, kunmatch
Y : Text.

We construct a dataset using open data from the French
National Mapping Agency (IGN), comprising 1900 aerial
(ortho-)images at 3m spatial resolution, and two versions
of their corresponding topographic maps: one with and one
without toponyms. This dataset presents a clear unmatchable
class: place names. The training set includes 1000 maps
with toponyms and 1000 aerial images, while the test set
comprises 900 map samples without toponyms and their
corresponding aerial images.

GoogleMaps.X : Aerial Photo, Y : Maps, kunmatch
Y : High-

ways. The GoogleMaps dataset [18] is a standard bench-

mark for image translation tasks [19, 20]. It contains 1096
map/image pairs for training and 1098 for testing. To create a
controlled non-bijective scenario, we exclude all satellite im-
ages that show highways and sample the maps of the training
set to contain varying proportions of maps with highways,
ranging from 0% to 65%, for a fixed total of 548 maps. For
the test set we selected 898 pairs without highways.

Brats MRI X : T1 Scans, Y : FLAIR, kunmatch
Y : Tumors.

Lastly, we used a dataset of brain MRI scans [25] with two
modalities: T1 (naive) and FLAIR (T2 Fluid Attenuated
Inversion Recovery) [14]. We adapt the protocol that Cohen
et al. [8] used for the Brats2013 datasets [24] to the more
recent Brats2018 [2] dataset by varying the percentage of
scans with tumors in the target domain. We selected trans-
verse slices from the 60◦ to 100◦ range in the caudocranial
direction [1] for both T1 and FLAIR scans. Each scan was
classified as tumorous if more than 1% of its pixels were la-
beled as such, and as healthy if it contained no tumor pixels.
The training set contains 800 images from each modality,
with all source images (T1) being healthy and the target do-
main (FLAIR) comprising 60% tumorous scans. The test set
contains 335 paired scans of healthy brains.

4.2. Evaluation metrics

We use a broad range of metrics to evaluate the performance
of StegoGAN and other image translation algorithms in the
non-bijective setting:

FID and KID. The Fréchet Inception Distance (FID) [16]
and Kernel Inception Distance (KID) [4] are widely used to
quantify the similarity between the distributions of real and
generated images in the target domain.
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Table 1. Quantitative Comparison on PlanIGN. Our model
shows a remarkably better performance than other existing models.

Method RMSE↓ Acc(σ1)↑ Acc(σ2)↑ FID↓ KID↓
CUT [26] 30.5 46.7 55.8 68.4 2.8

CycleGAN [36] 27.0 15.1 57.6 97.5 6.6
DRIT [21] 34.8 33.6 36.9 76.4 3.8

GcGAN [11] 32.7 54.5 56.9 110.8 8.2
SRUNIT [19] 32.3 48.8 52.8 60.2 2.2

StegoGAN (ours) 22.5 66.1 74.8 58.4 2.4

RMSE, Acc(σ1), and Acc(σ2). As the test sets comprise
paired images from both domains, we can directly compare
the Root Mean Square Error (RMSE) between the real and
predicted images in the target domain. We count a predicted
pixel as correctly predicted if it deviate by less than a fixed
threshold in any of the color channels [11]. We use σ1 = 5
and σ2 = 10 for the GoogleMap dataset and σ1 = 2 and
σ2 = 5 for the less colorful PlanIGN dataset.

pFPR and iFPR. In the GoogleMap dataset, highways
are always depicted in orange, allowing us to label pixels
where all color channels differ by less than 20 units from
(240, 160, 30) as highways. In the Brats MRI dataset, we
use a pretrained tumor detector [5] to find spurious tumors in
the generated images. This allows us to compute the average
false positive rate per pixel (pFPR) and per instance (iFPR)
of the generated images.

4.3. Results

Qualitative Results. Figure 3 showcases StegoGAN’s qual-
itative performance against other image translation algo-
rithms. Notably, StegoGAN effectively avoids generating
unmatchable classes such as texts, highways, and tumors,
while producing high-quality image translations.

Quantitative Results. On the PlanIGN dataset (Table 1)
and the Brats MRI dataset (Table 2), StegoGAN outperforms
others in fidelity, achieving the lowest RMSE by a margin of
4.5 on PlanIGN and by 3.5 for Brats MRI. Furthermore, it
significantly enhances pixel accuracy, with improvements of
+11.6 in Acc(σ1) and +17.2 in Acc(σ2) on PlanIGN. In the
MRI dataset, StegoGAN dramatically reduces false positive
rates—–over 20× lower than CycleGAN and 10× less than
the next best model SRUNIT (for pFPR).

On the GoogleMap dataset, as shown in Figure 4, Ste-
goGAN’s performance is on par with CycleGAN at 0% un-
matchable cases and remains stable even as this ratio in-
creases, unlike other methods that degrade. Remarkably,
StegoGAN maintains a consistent false positive rate of 0
across all tests, while this rate increases for all other meth-
ods.

Unmatchability Masks. In Figure 5, we illustrate the emer-
gent ability of the unmatchability masks to trace the outline
of unmatchable class instances like toponyms, highways,
and tumors. This aspect highlights the versatility of our

Table 2. Quantitative Comparison on Brats MRI Flair → T1.
Our model outperforms competing method in terms of both recon-
struction accuracy and consistency.

Method RMSE↓ pFPR(‱)↓ iFPR↓ FID↓ KID↓
CUT [26] 39.8 17.0 23.0 103.9 8.8

CycleGAN [36] 39.9 21.9 22.7 89.8 7.7
DRIT [21] 53.0 18.5 41.2 123.4 11.6

GcGAN [11] 41.7 24.7 22.4 61.9 3.5
SRUNIT [19] 42.5 15.1 21.8 58.9 2.9

StegoGAN (ours) 36.3 1.1 4.2 58.5 2.4

Target Source Mask

Figure 5. Unmatchability Masks. The unmatchability masks
predicted in the backward cycle follow the instances of unmatchable
features in the target domain: toponyms, highways, and tumors.

Table 3. Ablation Study on Encoder Depth. We evaluate the
impact of changing the depth of the encoder on the reconstruction
fidelity and the quality of unmatchability masks. Depth= -1 or 8
means no encoder or no decoder, respectively.

Depth
Mask Prediction

mIOU↑Prec.↑ recall↑ RMSE↓ A(σ1)↑A(σ2)↑ FID↓ KID↓

-1 26.6 27.1 81.2 22.4 64.3 74.2 58.8 2.5
1 25.2 25.8 81.2 22.5 66.1 74.8 58.4 2.4
3 27.1 27.9 80.4 22.8 61.6 73.4 62.9 3.0
5 30.8 33.4 69.5 24.2 52.7 70.6 62.3 2.6
8 47.3 60.1 60.0 24.5 53.5 70.7 62.7 2.7

approach, which functions without explicit supervision or
aligned images, offering a tool to explore the pairwise se-
mantic differences between arbitrary datasets.

4.4. Ablation study and analysis

We explore the impact of our main design choices, as well
as further capabilities and limitations of our approach. See
the Appendix for further ablations.
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Source Target Depth = -1 Depth = 1 Depth = 3 Depth = 5 Depth = 8

Figure 6. Impact of Encoder Depth. We visualize the unmatchability mask for encoders of different depths for the PlanIGN dataset.
Shallower encoders consider more features as unmatchable.

Encoder Ablation. We conducted an ablation study on the
definition of the intermediary representation z by varying the
depth at which the ”encoder” ends and the ”decoder” starts
within the generator. Given that our generators consist of
9 consecutive convolutional blocks, we experimented with
different configurations: −1 (indicating no decoder), 1 (the
configuration used in our paper), as well as depths of 3,
5, and 8 (implying no decoder). We report in Table 3 the
reconstruction error of these models, as well as the fidelity
of the consistency mask with the toponym text mask. We
observe that shallow encoders have better reconstruction
accuracy while the consistency masks of deeper encoders
better approximate the text masks.

Visualizing these masks in Figure 6, we observe that shal-
low encoders consider complex features such as highways
and rivers as unmatchable features, while deeper encoders
do not. Shallower encoders seem more influenced by the
variation in appearance (e.g., rivers being sometimes covered
in vegetation or with varying colors) while deeper encoders
focus on high-level semantics. We argue that both definitions
are equally valid, and that varying the depth of the encoders
can provide insights into the nature of the semantic mismatch
between datasets.

Parameterization. In Table 4, we analyze the effects of
omitting the additional terms Lreg and Lmatch from the loss
function L in Equation (4). We show that while Lmatch gen-
erally yields modest improvements across all metrics, Lreg is
pivotal, particularly for learning the target distribution. This
outcome aligns with our expectations, as the absence of Lreg
allows the network to transmit all information, matchable or
not, to the GY7→X decoder without repercussions, impeding
the training of the GX 7→Y encoder.

Limitations. We augment the CycleGAN framework with a
module M and two hyper-parameters λmatch and λreg, thereby
adding to the complexity of its training dynamics. Moreover,
the concept of unmatchability, integral to our approach, is
inherently subjective. Given enough semantic detail, any
two distinct datasets could be considered unmatchable. As
a result, fine-tuning the hyperparameter λreg is essential to
balance the elimination of hallucinations against the reten-

Table 4. Impact of Additional Loss Terms. We evaluate on the
GoogleMap dataset the effect of removing our proposed losses.
Lmatch has a small impact while Lreg is pivotal.

Settings RMSE↓ Acc(σ1)↑ Acc(σ2)↑ FID↓ KID↓Lreg Lmatch

✓ ✓ 22.7 41.7 67.1 77.3 6.8
✓ ✗ 24.1 41.5 64.7 88.0 7.5
✗ ✓ 26.7 26.7 58.9 271.1 26.6
✗ ✗ 25.0 25.0 61.0 303.6 33.4

tion of necessary details: increasing its value leads to more
conservative masks and improves the visual appearance of
the generated images, at the cost of more spurious features.
Visualizing the consistency mask is often a useful form of
guidance. More details on learning strategies can be found
in the Appendix.

We also acknowledge the potential of recent denoising dif-
fusion models for image-to-image translation tasks [22, 32].
While our method is not confined to GANs and could
be adapted to diffusion models with cycle consistency
losses [28, 31], unpaired image translation with diffusion
models is a nascent field with unique challenges. We plan to
explore this area in future research.

5. Conclusions

We have introduced StegoGAN, a model built upon the
CycleGAN framework, which leverages the mechanism of
steganography to address the challenges of non-bijective
image-to-image translation. Our model demonstrates an im-
proved capability to handle divergent distributions between
domains, as evidenced by its performance across various
datasets, including aerial imagery, topographic maps, and
MRI scans. We hope that our work will inspire further re-
search in the little-studied area of non-bijective image trans-
lation. We find this research direction inportant to ensure
image translation models are transferable and applicable in
real-world scenarios, where datasets rarely conform to the
level of curation typically found in research benchmarks.
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