This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Structured Model Probing:
Empowering Efficient Transfer Learning by Structured Regularization

Zhi-Fan Wu  Chaojie Mao

Xue Wang Jianwen Jiang  Yiliang Lv

Rong Jin

Alibaba Group

Abstract

Despite encouraging results from recent developments in
transfer learning for adapting pre-trained model to down-
stream tasks, the performance of model probing is still lag-
ging behind the state-of-the-art parameter efficient tuning
methods. Our investigation reveals that existing model prob-
ing methods perform well for the easy case when the source
domain (where models are pre-trained) and the adapted
domain are similar, but fail for the difficult case when the
two domains are significantly different. Simply incorporat-
ing features extracted from multiple layers and increasing
complexity of the probing model can mitigate the gap in the
difficult case, but degrades the performance in the easy case.
To address this challenge, we propose structured model prob-
ing (SMP) that is able to deliver good performance for both
cases through structured regularization. The regulariza-
tion performs feature selection leveraging model structure
as a prior, and controls the complexity of the probing model
through the weights of selected structures. This enables us
to construct a simple adaptation model, with a small number
of selected features and a linear prediction model, for the
easy case; and to automatically increase the complexity of
adaptation model, with a large number of selected features
and a non-linear model, for the difficult case. Our extensive
empirical studies show that SMP significantly outperforms
the state-of-the-art methods for parameter efficient tuning,
and at the same time, still maintains the advantage of com-
putational efficiency for probing-based methods.

1. Introduction

The parameters of models have grown drastically with the
rapid development of deep learning [5, 37], posing chal-
lenges for adapting pre-trained models to downstream tasks.
The widely used transfer strategy, fully fine-tuning, becomes
infeasible due to excessive computation and storage over-
head. Recently, parameter efficient tuning [19, 23] has
gained attention for reducing storage costs and improving
tuning performance with few trainable parameters when lim-
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Figure 1. Performance comparison on different dataset groups (left)
and mean relative adaptation time (right) on VTAB-1k benchmark.

ited data are available for downstream tasks. Despite the
progress, parameter efficient tuning methods still face sig-
nificant computational overhead in training due to the need
to perform forward and backward passes through the pre-
trained model at each training step.

Model probing, which leverages features extracted from
the pre-trained model to perform adaptation, is promising
due to its efficiency and simplicity: The training procedure
is efficient since the pre-trained model is fixed and only per-
forms one forward propagation to extract features, and prob-
ing model is decoupled from pre-trained model that makes it
convenient to deploy small sized task-specific downstream
models. However, it is a nuisance that probing methods are
usually outperformed by state-of-the-art parameter efficient
tuning methods. This is true even after several recent im-
provements made for the probing methods [16, 45]. In this
paper, we aim to improve the performance of model probing
significantly without sacrificing its simplicity and efficiency.

We first investigate when model probing methods per-
form worse than the tuning-based methods on widely used
visual task adaptation benchmark VTAB-1k [44] as shown
in Figure 1. Target domains are categorized as easy and
difficult cases based on their similarity to the source domain
where the pre-trained model is trained on (see Section 3.1
for details). We find simple linear probing yields compara-
ble performance as the two tuning-based approaches (fine-
tuning and VPT [23]) for easy cases, whereas a significant
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Figure 2. Adaptation pipelines of Model Tuning (left) and the proposed Structured Model Probing (right).

performance gap is observed between linear probing and
tuning-based methods for difficult cases. This suggests that
model probing exhibits different behavior for various target
domains, and performance gap arises for target domains that
dissimilar to the source domain.

This is not surprising that we expect a more complicated
model than a linear probing to compensate the difference
between the source domain and the target domain. In general,
we can increase model complexity in two ways, either by
introducing more features extracted from the pre-trained
model, or by introducing a non-linear model for prediction.
A main challenge is how to develop a unified framework
of model probing that is able to handle both the easy and
difficult adaptations effectively. This is because, according to
our study in Section 3, for easy cases, a complicated probing
model (with more features and non-linear probing) performs
significantly worse than a simple linear probing.

To this end, we propose structured model probing, or
SMP for short, that effectively address both easy and dif-
ficult cases of domain adaptation. The key to our unified
framework is structured regularization. It performs feature
selection leveraging the structure of the pre-trained model
as a prior, and controls the complexity of the probing model
through the weights assigned to selected features. Thus,
for the easy case, this regularization constructs a simple
linear model with a few selected features; and for the dif-
ficult case, it automatically introduces more features from
the pre-trained model and more non-linearity in the predic-
tion module based on the value of loss function, as shown
in Figure 2. Our empirical studies show that the proposed
structured model probing performs significantly better than
state-of-the-art tuning-based approaches, while maintaining
the advantage of computational efficiency.

Our main contributions are as follows:

1. We observe and demonstrate the conflicting behaviors of
model probing: a complicated probing model with more
features and non-linear transformation can improve the
performance for difficult cases of domain adaptation, but
it yields worse performance than linear probing for easy
cases of domain adaptation.

2. We propose structured model probing (SMP) based on
structured regularization. This regularization enables us
to construct simple probing model for easy tasks, and au-
tomatically increase model complexity for difficult tasks,
to simultaneously address both the easy and difficult cases
of domain adaptation.

3. We conduct extensive empirical studies on various adap-
tation tasks. The proposed SMP method shows superior
experimental results compared to state-of-the-art prob-
ing and tuning methods, and requires significantly lower
training costs compared to tuning methods.

2. Related Work

Transfer learning has been extensively studied in vision
domain [34, 48]. It aims to improve the performance on tar-
get domain by leveraging the related information contained
in source domain. Transfer learning based on pre-trained
model [8, 20, 21] has received significant attention due to its
simplicity and good empirical performance [23, 45].

Model tuning adapts the pre-trained model to new tasks via
updating model parameters. Fully fine-tuning is a widely
used strategies due to its efficacy and simplicity [9, 25, 44].
However, it suffers from huge storage and computation over-
head due to the ever-expanding size of large-scale pre-trained
model [37, 40]. Heuristic approaches have been proposed
to improve fine-tuning performance [3, 6, 17, 18, 27]. Pa-
rameter efficient tuning [19] aims to reduce the storage re-
quirement of transferred model by updating a few parame-
ters attached to the pre-trained model [23, 47], like Prompt
Tuning [29, 30] or Adapter [22]. While originally studied
in natural language processing tasks due to the dominance
of large-scale pre-trained language models [5, 14], there is
growing interest in applying these methods to computer vi-
sion tasks [7, 23, 31, 41, 46, 47]. Though parameter efficient
tuning reduces storage cost significantly, the training cost
remains high due to the forward and backward propagation
need to pass through the entire pre-trained model [11].

Model probing utilizes frozen extracted features for adapt-
ing the pre-trained model to new tasks, thus achieving effi-
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cient adaptation. The most popular method, linear probing,
suffers from performance degradation [25], which limits
its application in transfer learning [20, 21]. Recent meth-
ods [16, 36, 45] have been proposed to improve probing
performance by leveraging side network [38, 45] or incor-
porating intermediate representations [2, 16, 32], but there
is still a significant performance gap compared to tuning
methods. This motivates us to investigate the limitation of
probing methods, and come up with a better solution.

3. Understanding the Limitation of Model Prob-
ing for Transfer Learning

In this section, we analyze the performance of probing meth-
ods across various downstream domains to understand their
limitations, motivated by the observation in Figure 1. We
assess feature informativeness for different tasks and investi-
gate the necessity of non-linear transformation.

3.1. Analysis Setup

Pre-trained model and source data. The ViT-B/16 [15] is
used as the backbone because of the extensive usage of
transformer-based models. The model is pre-trained on
ImageNet-21k [12] in a supervised learning manner.

Target data. We use the VTAB-1k benchmark, consisting
of 19 datasets that cover natural images (natural), images
captured by specialist equipment (specialized), and images
generated from simulated environments (structured), as our
target data for transfer learning. We follow the setting in [44]
and use 1000 samples as the training set per task to evaluate
adaptation with limited data as suggested in [44].

Domain similarity. Several previous works have proposed
metrics to measure the similarity between source domain
and target domain [1, 10, 13, 16, 33]. Here, we adopt the
domain similarity measure defined in [16]:

Domain similarity = ACCLinear — ACCScratch- (D

A higher domain similarity suggests that the features ex-
tracted from a pre-trained model can be utilized for the
target domain, leading to performance gains via a linear
classifier compared to training from scratch. Conversely, a
lower domain similarity indicates that training from scratch
on the target domain may be more effective than using ex-
tracted features. Thus, the domain similarity is evaluated
based on the benefit gained by a linear classifier compared to
training from scratch. We also report the label-feature corre-
lation [13] in Suppl. C.8, which exhibits a high Spearman
rank correlation (0.854) with the domain similarity scores.
Domain similarity also reflects how difficult to adapt
from source domain to target domain. As shown in Figure 4,
tasks in natural and specialized groups have higher domain
similarity to source domain where the pre-trained model is
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Figure 3. Performance of features extracted from different layers
on Sun397 (easy) and Clevr-Dist (difficult).

trained on, so we mark them as easy cases. And tasks in
structured groups have lower domain similarity to source
domain, thus they are labeled as difficult cases in Figure 1.

3.2. Informativeness of Extracted Features

To quantify the informativeness of features extracted from
different layers for downstream tasks, we use leave-one-out
k-NN testing as the surrogate performance criterion:

Z:il z;EN(x;) ]]‘{yl = y]}

Informativeness =
km

(@)

where m is the number of samples, z is the extracted fea-
tures of a sample, N (x;) represents k nearest neighbors of
x;. We simply set & = 1, which results in leave-one-out
1-NN testing. We choose k-NN, instead of linear classi-
fier, for informativeness measurement because £-NN is a
non-parametric classifier and thus avoids training additional
parameters, making the measurement more robust.

In Figure 3, we plot the informativeness of features ex-
tracted from different layers on two tasks from different
domains. For Sun397, an easy domain adaption task, we
observe the best performance achieved by features extracted
from deep layers. This explains the good performance of
linear probing for easy domain adaption tasks, as observed
in Figure 1. While for Clevr-Dist, a difficult task with tar-
get domain significantly different from the source domain,
we observe that no layer has outstanding performance. The
results echo the findings in [16].

Furthermore, we conduct experiments on gradually in-
corporating features extracted from different layers of the
pre-trained model, demonstrating the different behaviors on
easy and difficult tasks, which can be found in Section 5.4.
The results show for easy tasks, more features may lead
to overfitting, but for difficult tasks, performance improves
with more features. Therefore, when the target domain is
very different from the source domain, we need to provide
probing model with diverse features extracted from multiple
layers of the pre-trained model.
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Figure 4. Performance of extracted features with linear/ non-linear transformation on VTAB-1k. Datasets are ordered from easy tasks (left)

to difficult tasks (right) according to domain similarity.

3.3. Effects of Non-linear Transformation

Since there is no significantly informative layer for difficult
domain adaption tasks, a linear combination may not be
enough for exploiting the information in extracted features.
We further examine the efficacy of non-linear combination
on extracted features, as neural networks achieve superior
performance through non-linear feature transformation.

We employ an multiple-layer perceptron (MLP) for non-
linear transformation and compare its performance with lin-
ear transformation. Features extracted from different struc-
tures of the pre-trained model are concatenated together as
input (See Section 4.1 for details).

In Figure 4, we clearly observe that adding non-linearity
to feature transformation can significantly boost the per-
formance for the difficult domain adaption tasks (i.e. the
datasets on right end of Figure 4). This phenomenon indi-
cates that simply performing linear transformation on ex-
tracted features can not exploit the full potential of repre-
sentations extracted from the pre-trained model. On the
other hand, we notice that the performance on easy tasks
is not improved, and is even hurt with the introduction of
non-linearity. We speculate that this is because the linear
transformation can already make full use of extracted infor-
mation, while non-linearity increases model capacity, which
eventually leads to overfitting to the training data.

Discussion. Our investigation reveals that the optimal prob-
ing model differs depending on the domain of downstream
task. Incorporating diverse features from multiple layers of
the pre-trained model and performing non-linear transforma-
tion on them can significantly improve the performance on
difficult cases. However, this yields worse results on easy
tasks. On the contrary, simply performing linear combina-
tion on features from deep layers can achieve satisfactory
performance for easy adaptation tasks, but not for difficult
ones. The conflicting behaviors of model probing motivates
us to develop a unified framework that can solve the adapta-
tion problems for both easy and difficult adaptation tasks.

4. Structured Model Probing

In this section, we propose structured model probing, a uni-
fied probing method which can deal with both easy and
difficult cases of adaptation tasks. We first present how to
thoroughly extract features in a structured way, then intro-
duce our probing model with structured regularization.

4.1. Structured Feature Extraction

Incorporating diverse features extracted from the pre-trained
model can improve the performance on difficult adaptation
tasks for model probing, as shown in Section 3.2. To provide
diverse features for the probing model, we extract features
from all structures in a Vision Transformer (ViT). These
structures include features before self-attention, features af-
ter self-attention, and features after Feed Forward Network
(FFN), for each transformer layer. We also include tokenized
image inputs and pre-logits. We use V' = {vi}Lw represents
all structures in ViT, and |V/| is the total number of structures.
For an input sample, we denote each set of tokens extracted
from structure v; as X; € R**¢, where t is the dimension of
tokens and c is the dimension of channels.

To reduce feature redundancy while preserving diversity,
we apply 1D average pooling along different dimensions on
tokens X, resulting in two types of aggregation. To main-
tain channel information, we aggregate X; along the token
dimension, which produces x!. And to preserve spatial infor-
mation, we aggregate X; along the channel dimension, re-
sulting in x5. Finally, we concatenate all structured features
into a single vector, v = [z}, x5, ..., va‘ , Zfy|]. We denote
s; as the index set of elements in z, and S = {s;|i = 1...|s|}.

4.2. Probing with Structured Regularization

Our structured regularization contains two components:
structured sparsity regularizer and structured non-linearity
regularizer. We introduce them as follows.
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4.2.1 Structured Feature Selection

As shown in Section 3.2, the informativeness of extracted
features varies with tasks, and redundant features lead to
performance degradation on some tasks. Thus, we propose
to perform feature selection during the training stage of the
probing model to prevent overfitting. A popular way is to
use group lasso [16, 43] by constructing groups on feature
dimension over the weight matrix of a linear classifier:

d
min L(0) + A D [16:]]2, where [6]]2 =

=1

We use § € R¥™ to represent weight matrix, where d is the
feature dimension and 7 is the number of classes. However,
due to the high dimensionality of features, the final achieved
sparsity is hardly the optimal result. It is worth noting that
the structure of pre-trained model provides a natural way to
divide features as groups, and features extracted from the
same structure have higher relevance to each other. Thus, we
leverage the structure of the pre-trained model, to achieve the
structured sparsity with a structured sparsity regularizer:

. 1
min L(0) + A ) 7oy IPalle, where (16512 =

2
seS

n
2.2 0%
i€s j=1

“4)
s € S is the index set of a specific structure in feature as
described in Section 4.1, and |s| represents its dimension.
Compared with constructing groups by features, in our reg-
ularizer, we construct groups by leveraging the structure
of the pre-trained model. This formalization can signifi-
cantly reduce the combinations of selection and thus prevent
overfitting. With such an advantage, our method achieves
superior performance with a small number of samples under
high-dimensional features.

4.2.2 Structured Non-linear Transformation

Our discovery in Section 3.3 shows non-linear transforma-
tion can facilitate transfer performance for difficult tasks,
while could reduce performance for easy adaptation tasks,
mostly due to over-fitting. This means that we need a model
that allows flexibly incorporating non-linearity to a linear
model. We propose a structured non-linearity regularizer
that nicely integrates feature selection (i.e. choosing the sub-
set of informative features from the pre-trained model) with
model selection (i.e. choosing either a linear model or non-
linear model for prediction) inspired by hierarchical sparse
modeling [28, 42]. Specifically, we construct our model by
the combination of a linear model and a neural network:

f(z) = 0"z + fw (), (5)

where 6 € R4*" is a linear model, and fw represents an

MLP with model weights W. We use W) to represent the

input layer of the MLP, and the parameters of rest layers are

denoted as W (2.

We utilize the feature selection result ||0||2, the {2 norm
of weights assigned to the selected features, to regularize the
complexity of the non-linear model:

* When a small number of features are good enough for
prediction, we expect a small value for ||0||2. By using
[|0]|2 to control the complexity of non-linear model, we
expect the resulting model to be mostly linear.

 With increasing ||6]|2, more diverse structures from the
pre-trained model are needed for prediction. By using
[|6]]2 to regularize the size of non-linear model, we expect
the resulting model to be more non-linear.

A way to achieve such control is to add a constraint to the
objective function in Eq.(4) as follows:

%Lw,wwxgnesm

subject to ||W M ||y < M;||6s]]2, s = 1...|S], ©
W]y < My||]],.

There are two constraints in Eq.(6): the first constraint is
used to maintain the input feature sparsity of the neural net-
work, and the second term is used to control the non-linearity
through the linear model. To achieve efficient implementa-
tion, we convert the constraint in Eq.(6) into a regularization
term, which we call structured non-linearity regularizer:

0, W) = max{|[WV]|; — My||6s||2, 0}
s€s @)
+ max{||W®)||5 — My]|6]]2,0}.

This regularization term means that, when ||W||2 > M||6]|2,
W receives penalty until it achieves similar complexity as
M]|6]|. Then our final objective function is:

min L(0, W) + A ; 165112 + 2200, W). ()

We use A to control the penalty strength, and simply set
A2 = 0.1 works well in our experiments.

Loss function. Since our model f(z) consists of both linear
and non-linear parts, we decouple these two components
in loss function. This modification enables the structured
sparsity regularizer to control the complexity of ||6|| without
the interference from the non-linear part:

L(6,W) = CE(0 "z, y) + CE(sg(0 ') + fw (x),y), 9)

where y is the one-hot label vector of z, CE is cross-entropy
loss and sg means stop-gradient.
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Table 1. Median test accuracy (%) over 3 seeds on the VTAB-1k benchmark using ViT-B/16 pretrained on ImageNet-21k. * indicates results
are obtained from [23] and 1 indicates results are obtained from [16].
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Tuning Methods
Scratch' 7.6 19.1 13.1 29.6 6.7 194 23 14.0 71.0 71.0 29.3 72.0 60.8 31.6 52.5 27.2 39.1 66.1 29.7 11.7 24.1 353 32.8
Fine-tuning* 68.9 87.7 64.3 97.2 86.9 87.4 38.8 759 79.7 95.7 842 73.9 83.7 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6 65.6
Bias* 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1 62.0
VPT* 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 69.4
Probing Methods
Linear 77.2 86.8 66.6 99.1 88.8 35.7 55.1 72.7 78.4 89.6 72.2 73.7 78.5 31.0 29.9 35.2 54.9 11.7 27.7 144 23.7 28.6 55.4
Side-Tuning* 60.7 60.8 53.6 95.5 66.7 349 353 58.2 58.5 87.7 65.2 61.0 68.1 27.6 22.6 31.3 51.7 82 144 9.8 21.8 234 45.6
Head2Toe 75.3 90.9 75.0 99.5 86.1 83.5 50.9 80.2 84.4 95.7 84.4 743 84.7 51.7 59.4 44.0 65.6 47.1 40.3 32.5 41.1 47.7 67.5
Lineargs,c. 72.9 89.5 72.5 98.9 83.6 71.6 42.7 76.0 84.3 96.0 81.8 75.0 84.3 48.2 52.5 39.4 66.7 48.7 36.7 32.3 37.7 453 64.8
Linears;,c w/ FSR 782 90.1 73.4 99.3 88.1 71.7 45.4 78.0 83.9 96.1 81.9 74.1 84.0 48.5 52.8 39.6 64.4 51.4 38.6 32.9 37.0 45.7 65.7
Lineargs,c w/ SSR 1 79.0 90.2 74.1 99.1 90.4 73.4 54.2 80.1 84.6 96.3 83.8 74.4 84.8 48.8 52.9 39.8 66.9 48.7 38.9 32.5 37.9 458 66.6
MLPgyec. 66.8 88.7 70.3 97.4 82.1 71.1 33.3 72.8 81.6 959 77.0 73.5 82.0 77.2 57.7 39.3 66.5 72.3 44.1 32.7 47.7 54.7 67.1
SMP w/o SNR 71.3 89.6 72.3 99.0 85.6 72.7 45.0 76.5 84.2 959 81.9 72.8 83.7 77.4 57.1 40.8 67.1 72.4 442 32.6 484 55.0 69.0
SMP 79.3 90.9 74.9 99.3 90.4 75.0 55.3 80.7 84.8 96.3 83.1 75.0 84.8 77.5 58.0 40.8 67.5 72.5 44.5 33.0 49.0 554 70.9

5. Experiments

In this section, we evaluate the proposed structured model
probing method on multiple datasets across various tasks,
and provide detailed analysis of the proposed method.

Implementation details. We evaluate SMP on the popular
vision backbone, ViT-B/16 [15] pre-trained on ImageNet-
21k [12], which is widely used across relative research
works [16, 23]. We provide details of probing model and
hyperparameter selection in the supplementary material.

Compared methods. We compare SMP with other com-
monly used and state-of-the-art tuning (Fine-tuning, Bias [6]
and VPT [23]) and probing methods (Linear Probing, Side-
Tuning [45] and Head2Toe [16]). All hyperparameters of
baseline methods are carefully tuned, and further informa-
tion is provided in supplementary material.

5.1. Experiments on VTAB-1k

Experimental results on the VTAB-1k benchmark (Table 1)
indicate that SMP outperforms other methods, achieving a
mean performance of 70.9%, 3.4% higher than Head2Toe
and 1.5% higher than VPT. SMP also significantly outper-
forms Linear Probing, Bias, and Side-Tuning. SMP achieves
optimal results in all three dataset groups. Especially in
Structured group, SMP attains a mean accuracy of 55.4%,
surpassing other probing methods by a significant margin.
This demonstrates the incorporation of non-linear transfor-
mation is important for difficult adaptation tasks.

Ablation studies. We provide results of baseline methods
that contribute to SMP, to validate the efficacy of structured

regularization and the contribution of each component.
Linearg,,,., represents extracting features by structured
feature extraction proposed in Section 4.1, then training a
linear classifier. Compare to Linear Probing, it gets 9%
average performance gain, indicating that solely extracting
features from the last layer is inadequate for model probing.
We further compare feature sparsity regularization in
Eq.(3) (represents by Linears;,.+ FSR) to the proposed
structured sparsity regularizer (represents by Linearg, . +
SSR). Structured sparsity regularizer outperforms feature
sparsity regularization, indicating that feature selection can
mitigate the overfitting caused by high dimensions, and lever-
aging model structure as a prior can bring extra benefits.
We apply non-linear transformation on extracted features,
represents by MLPg;,,.... We find the performance on struc-
tured group gets a significant improvement over Linearsg;., ,
demonstrating the importance of non-linear transformation
on difficult adaptation tasks. However, the performance on
easy tasks, i.e., natural and specialized groups, is degraded,
suggesting the risk of overfitting from non-linear transfor-
mation. We solve this problem by leveraging structured non-
linearity regularizer (SNR), which can automatically control
the non-linearity through the norms of selected structures.

5.2. Experiments on Few-shot Learning

In this section, we evaluate our method in few-shot learn-
ing scenario, where the number of training samples varies
from 1 to 16 shots per class following existing studies. Five
fine-grained recognition tasks are chosen, i.e., Food101 [4],
CUB-200-2011 [39], Stanford Cars [26], Stanford Dogs [24]
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Figure 5. Performance of few-shot learning on fine-grained visual recognition tasks. Linears,. (F) indicates Linearg;,.. w/ FSR.

and Oxford Pets [35]. We compared SMP with two strong
baselines, Linearg;,,.. and Linearg,,. w/ FSR, and two promi-
nent methods, VPT (tuning) and Head2Toe (probing).
Experimental results presented in Figure 5 show that
SMP consistently outperforms other methods in most cases,
demonstrating its effectiveness in few-shot scenario, and its
ability to improve performance with increasing training data.
Notably, feature sparsity regularization performs worse than
SMP, highlighting the importance of leveraging pre-trained
model structure as prior knowledge in low-shot scenario.

5.3. Experiments on More Transfer Scenarios

Larger downstream datasets. We provide average results
on 9 full-size downstream datasets in Table 2. It can be
observed even in the larger data regime, SMP still achieves
competitive performance compared with tuning methods.
Full results are presented in Suppl. B.1.

Different pre-trained models. We present VTAB-1k results
on ViT-B/16 and ViT-L/14 pretrained by CLIP in Suppl. B.2.
Despite the usage of stronger pre-trained models, SMP con-
tinuously outperforms baseline methods due to the incorpo-
ration of diverse features and non-linear transformation, as
well as its flexible framework.

Different architectures. SMP is a versatile method that
can be applied to convolutional neural networks as well. In
Suppl. B.3, we present the VTAB-1k results obtained from
ImageNet pre-trained ResNet-50 models, where SMP out-
performs other methods and achieves superior performance.

Table 2. Average accuracy (%) on 9 full-size downstream datasets.

VPT
88.7

SMP
88.7

Fine-tuning Linear

88.4

Average Accuracy 81.7

5.4. Analysis and Discussion

In this section, we conduct various experiments to analyze
the components of the proposed SMP method. Full results
of this section are presented in Suppl. C.

Visualization of group norms. We visualize the /5 norm
of each structure on different tasks in Figure 6, which helps
us to understand the behavior of the proposed structured
regularization. For Sun397, an easy adaptation task, we can
observe the structures from deep layers have larger norms in
Figure 6a. This validates our analysis in Section 3.2, that for
easy adaptation tasks, features extracted from deep layers
contain more information. For Clevr-Dist, a difficult adapta-
tion task, the structures have similar norms overall, which
means for difficult tasks, information contained in intermedi-
ate layers is also important, and diverse features can improve
the performance, as we find in Section 3.2. This motivates
the proposed structured non-linearity regularization, utilizing
{5 norm to control the complexity of non-linear model.

Retraining probing model by gradually incorporating
structures. We retrain a probing model by gradually in-
corporating structures selected based on the magnitude of
their /o norm, to validate their contribution to the predic-
tion. Results are presented in Figure 7. For Sun397, an easy
adaptation task, we can see in Figure 7a that there are redun-
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Figure 6. {2 norm of structure groups on different tasks.

dant structures. And with a few selected structures, we can
achieve comparable results compared with the original SMP,
justifying the zero norm of some structured observed after
performing structure regularization in Figure 6a. However,
for Clevr-Dist, a difficult adaptation task, comparable perfor-
mance is achieved until selecting 55 structures, suggesting
intermediate structures also contribute to the final prediction.
This demonstrates the necessity of proposed structured regu-
larizer, which resolves the contradiction between easy and
difficult domain adaptation tasks.

Impact of feature aggregation designs. The primary ob-
jective of performing token and channel aggregation is to
minimize the redundancy in the extracted raw features, while
maintaining feature diversity in the compact aggregated rep-
resentation. To achieve this, two types of aggregation are
designed to preserve channel and spatial information, respec-
tively. We provide ablation studies in Suppl. C.5. Overall,
channel information (aggregating along tokens) is essential
for all datasets, while spatial information (aggregating along
channels) is beneficial for tasks that are sensitive to spatial
location, e.g., dSpr-Loc and sNORB-Azim.

Impact of different structures. To increase the feature
diversity, we incorporate features extracted from various
structures, coupled with a structured sparse regularizer to
conduct model fitting and feature selection simultaneously.
This flexible framework enables us to avoid the costly man-
ual selection of candidate structures. We provide analysis of
structures in Suppl. C.6. The results show that incorporating
all candidate structured features yields best mean results,
which demonstrates the efficacy of our method.

Cost of SMP. We compare the cost of SMP with baseline
methods, including relative adaptation time, extra inference
FLOPs, and extra parameters. The average results on VTAB-
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Figure 7. Retraining performance by gradually incorporating struc-
tures with larger /2 norm obtained by SMP.

Table 3. Cost comparison (Average results on VTAB-1k). * indi-
cates relative results compared with Fine-tuning.

Linear FT VPT SMP

Adaptation time (rel.)* 0.05 1 0.97 0.15
Extra Inference FLOPs (G) 0 0 11.01 0.01
Extra parameters (M) 0.04 85.83 0.64 6.91

1k are shown in Table 3. SMP only needs 15% adaptation
time on average compared with fine-tuning. On the con-
trary, the adaptation time of VPT is 97% of fine-tuning. This
results in a significantly lower adaptation cost of SMP com-
pared to tuning methods. SMP is also very efficient during
inference time, and only introduces 0.01G inference FLOPs
compared with fine-tuning. It can be noticed that VPT in-
troduces extra 11.01G inference FLOPs, which is far more
than SMP. SMP requires 6.91M extra parameters on average,
which is the 8% of fine-tuning. Though the requirement of
extra parameters is higher than VPT, we can leverage the
retraining method proposed in Section 5.4, which can further
reduce the extra parameters. Overall, SMP is a highly effi-
cient method with low adaptation cost, fast inference, and
fewer extra parameters, while maintaining superior perfor-
mance compared to tuning-based methods.

6. Conclusion

In this paper, we present structured model probing, an ef-
fective yet efficient probing method for transfer learning.
Our investigation reveals that model probing behaves dif-
ferently for easy and difficult adaptation tasks. To mitigate
this conflicting behavior, we propose structured model prob-
ing, a method that is able to achieve good performance in
both cases. With the proposed structured regularization, we
can construct a simple adaptation model for easy adaptation
cases, and increase the complexity of the adaptation model
for difficult cases. Our method outperforms state-of-the-art
tuning methods while maintaining computational efficiency.
Our work highlights the potential of model probing, which
motivates researchers to better exploit the use large-scale
pre-trained model and apply model probing to diverse tasks.
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