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Abstract

Training deep models for LiDAR semantic segmentation
is challenging due to the inherent sparsity of point clouds.
Utilizing temporal data is a natural remedy against the spar-
sity problem as it makes the input signal denser. However,
previous multi-frame fusion algorithms fall short in utilizing
sufficient temporal information due to the memory constraint,
and they also ignore the informative temporal images. To
fully exploit rich information hidden in long-term temporal
point clouds and images, we present the Temporal Aggre-
gation Network, termed TASeg. Specifically, we propose
a Temporal LiDAR Aggregation and Distillation (TLAD)
algorithm, which leverages historical priors to assign dif-
ferent aggregation steps for different classes. It can largely
reduce memory and time overhead while achieving higher
accuracy. Besides, TLAD trains a teacher injected with
gt priors to distill the model, further boosting the perfor-
mance. To make full use of temporal images, we design a
Temporal Image Aggregation and Fusion (TIAF) module,
which can greatly expand the camera FOV and enhance the
present features. Temporal LiDAR points in the camera FOV
are used as mediums to transform temporal image features
to the present coordinate for temporal multi-modal fusion.
Moreover, we develop a Static-Moving Switch Augmenta-
tion (SMSA) algorithm, which utilizes sufficient temporal
information to enable objects to switch their motion states
freely, thus greatly increasing static and moving training
samples. Our TASeg ranks 1st † on three challenging tracks,
i.e., SemanticKITTI single-scan track, multi-scan track and
nuScenes LiDAR segmentation track, strongly demonstrat-
ing the superiority of our method. Codes are available at
https://github.com/LittlePey/TASeg.

1. Introduction
LiDAR segmentation aims to infer the semantic information
of each point in point clouds and plays an indispensable role

* Corresponding authors.
† On the date of CVPR deadline, i.e., 2023-11-18 07:59 AM UTC.

in the autonomous driving [3, 21, 34, 42]. With the advent
of deep learning, a large quantity of LiDAR segmentation al-
gorithms [14, 19, 24, 39, 46] have been put forward. Despite
their impressive results, the segmentation performance is still
constrained by the inherent sparsity of point clouds. To alle-
viate this, it is desirable to aggregate temporal data. Previous
multi-frame models [4, 9, 22] can only fuse a few LiDAR
frames due to the GPU memory constraint, which restricts
them from utilizing rich information hidden in the long-
term temporal point clouds. Although MSeg3D [20] stacks
dozens of LiDAR frames, the memory and time overhead
are intolerable. Moreover, previous attempts concentrate
on utilizing temporal point clouds, ignoring the valuable
information hidden in temporal images.

To better leverage long-term temporal information, we
propose a Temporal LiDAR Aggregation and Distillation
(TLAD) algorithm. It can perform efficient multi-frame ag-
gregation while achieving higher accuracy. TLAD consists
of Flexible Step Aggregation (FSA) and Mask Distillation.
FSA is based on the observation that the model needs dif-
ferent amounts of temporal points for different classes. For
difficult classes, such as bicyclists, more points are needed to
yield accurate predictions. However, for easy classes, such
as cars and roads, it is unnecessary to aggregate too many
point cloud frames for them. Therefore, we propose to as-
sign different aggregation steps for different classes in point
cloud sequences, which can significantly save memory and
computation overhead on easy classes while providing suffi-
cient temporal points for difficult classes. To identify classes
of temporal point clouds, historical predictions are used,
considering the temporal data is processed in chronological
order, which is consistent with practical applications.

Interestingly, by assigning different classes with different
steps, FSA actually injects historical priors into the aggre-
gated point clouds. For classes with different steps, their
patterns can be more discriminative due to their different
densities. This makes the point cloud frames accumulated by
FSA more conducive for segmentation. Experimental results
show that FSA can not only reduce memory and time costs
but also enhance overall performance. To further verify our
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idea, we directly replace historical predictions of temporal
point clouds with their ground truth labels for FSA. We find
the performance boosts greatly. This inspires us to use the
model injected with gt priors to distill the model injected
with historical priors, which we term Mask Distillation.

To fully use the informative temporal images, we devise
a Temporal Image Aggregation and Fusion (TIAF) module.
Previous multi-modal fusion methods usually suffer from
limited image features due to the different FOVs (field of
views) between the LiDAR and the camera. We observe that
as the ego-vehicle moves forward, cameras can capture dif-
ferent FOVs. By aggregating images of different timestamps,
the FOV of the present camera can be enlarged greatly. In
addition, temporal images can provide different views for
the same region at different timestamps, which can supply
richer information. Our TIAF leverages temporal LiDAR
points in the FOV of the corresponding temporal camera to
transform historical image features to the present coordinate
with the pose matrix. After aggregating all temporal image
features, we use a series of 3D sparse convolutions to fuse
them and convert them to voxel representation. Ultimately,
we use temporal LiDAR points to gather temporal image
features for temporal multi-modal fusion. The fused fea-
tures embrace both temporal LiDAR and temporal image
information, which contribute to more precise segmentation
results. To our knowledge, we are the first to leverage tem-
poral point clouds and temporal images simultaneously for
LiDAR semantic segmentation.

Moreover, in the multi-scan task, the model needs to
distinguish the motion states (moving or static) of a movable
object, which is very challenging. In this paper, we make
full use of temporal information to remarkably increase the
multi-scan perception ability of the model. Specifically, we
propose a data augmentation strategy named Static-Moving
Switch Augmentation (SMSA). It manipulates temporal point
clouds of a movable object to switch its motion state. In
this way, we can increase the quantity of static and moving
samples significantly, even in the absence of training samples
of static or moving classes.

In summary, our major contributions are listed as follows:

• We propose a Temporal LiDAR Aggregation and Distilla-
tion algorithm, which uses Flexible Step Aggregation and
Mask Distillation techniques to largely reduce memory
and time costs while achieving higher accuracy.

• We devise a Temporal Image Aggregation and Fusion
module, which exploits temporal images to enlarge the
camera FOV and enhance present features. It also delivers
a scheme for temporal multi-modal fusion.

• We design a Static-Moving Switch Augmentation algorithm
to enable static and moving objects to switch their motion
states freely. With this technique, we can greatly increase
static and moving training samples.

• Our Temporal Aggregation Network, dubbed TASeg,
achieves impressive results on SemanticKITTI and
nuScenes benchmarks. Notably, our TASeg ranks 1st

on three challenging tracks. Thorough ablation studies are
provided to demonstrate the efficacy of our approach.

2. Related Work

LiDAR Semantic Segmentation. LiDAR semantic seg-
mentation aims to assign a unique class label to each
point in the input point cloud sequence. Recent years
have witnessed an explosion of LiDAR segmentation al-
gorithms [5, 7, 13, 15, 19, 20, 24, 27, 31, 39]. For ex-
ample, [26] is the pioneering work that approximates the
permutation-invariant function with a per-point and shared
Multi-Layer Perceptron. [46] changes traditional cubic grids
to cylindrical grids and designs a network of asymmetrical
3D convolutions. [19] divides the space with the radial win-
dow, which increases the receptive field smoothly and helps
improve the performance. Despite their good segmenta-
tion performance, these methods still take the single LiDAR
frame as input, which does not utilize the rich semantic and
geometric information hidden in temporal data.

Multi-Frame LiDAR Perception. Compared to a single
LiDAR scan, multiple LiDAR scans can provide more suf-
ficient information. Recently, many research efforts have
been put on temporal LiDAR segmentation [1, 2, 6, 8, 9, 17,
20, 22, 30, 45]. For example, [8] leverages a Bayes filter to
explore the temporal consistency. [4] shunts the historical
points into two groups to utilize historical frames efficiently.
Despite the success of previous multi-frame methods, they
can not leverage the valuable information hidden in long-
term temporal point clouds due to the GPU memory con-
straint. Although [20] stacks dozens of LiDAR scans, the
memory and time overhead are intolerable. In this paper,
we present an efficient multi-frame aggregation algorithm,
which can greatly save memory and computation consump-
tion while achieving higher performance.

Multi-Modal Fusion. Since LiDAR and camera are two
complementary sensors for 3D semantic segmentation, multi-
modal fusion has gained increasing attention in recent years
[10, 18, 24, 43, 47]. However, these multi-modal fusion
methods usually suffer from limited overlapped regions be-
tween the LiDAR and camera due to their different FOVs.
[39] proposes a cross-modal knowledge distillation method,
which is free from images at inference, while it causes much
loss of the RGB information. [20] completes the missing
camera features using predicted pseudo-camera features,
while the used image information is still restricted to the
present camera FOV. In this paper, we fully take advantage
of temporal images to enlarge the FOV of the present camera
and enhance present image features.
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Knowledge Distillation for LiDAR Perception. Knowl-
edge distillation [12] is widely used in various fields in that
it can improve the performance of the student without sac-
rificing inference efficiency. In LiDAR perception, [13, 40]
compress a cumbersome teacher to a lightweight student to
reinforce the representation learning of the student as well
as maintain high efficiency. [39] distills the prior of 2D
images to 3D point clouds with well-designed cross-modal
knowledge distillation module. [32, 44] utilizes a multi-
frame teacher to help a single-frame student learn dense 3D
features. By contrast, our method aims to transfer knowl-
edge from a multi-frame teacher injected with gt priors to a
multi-frame student injected with historical priors.

3. Methodology
3.1. Temporal LiDAR Aggregation and Distillation

A simple solution to utilize the temporal information of a
consecutive point cloud sequence is to concatenate all points
of the sequence, as shown in the following equation:

Xt = concat(Pt, Tt−1Pt−1, . . . , Tt−∆tPt−∆t),

Yt = concat(Lt, Lt−1, . . . , Lt−∆t),
(1)

where Pt−i and Lt−i denote the (t− i)th point cloud frame
and the corresponding point-wise label. Tt−i is the trans-
formation matrix that transforms the coordinate from the
(t − i)th frame to the tth frame. ∆t is the window size of
temporal point clouds and concat(.) denotes the concatena-
tion operation. Xt and Yt are the aggregated LiDAR frame
and point-wise label. Although simple, there are some prob-
lems. On the one hand, direct concatenation consumes much
GPU memory. On the other hand, the huge memory cost con-
strains the multi-frame model from utilizing more historical
frames, thereby limiting the ultimate performance.

3.1.1 Flexible Step Aggregation

To reduce the GPU memory consumption, we can sample
temporal frames with a step, while this method is also sub-
optimal. A small step introduces huge memory overhead,
whilst a large step cannot utilize sufficient temporal infor-
mation. To this end, we propose Flexible Step Aggregation
(FSA). Our method is based on the observation that for differ-
ent classes, the model needs different amounts of temporal
information. For difficult classes, such as bicycles, more
points are needed to yield accurate predictions. For easy
classes, such as cars and buildings, it is unnecessary to ag-
gregate many point cloud frames for them. Based on the
above analysis, we propose to assign different steps for differ-
ent classes according to their learning difficulty. Specifically,
we leverage historical predictions to divide the temporal
point clouds into several class groups and assign a specific
sampling step for each group. Then, we aggregate temporal

points for each group with the corresponding step. Eventu-
ally, temporal points of all groups are concatenated with the
current frame, resulting in an aggregated frame.

The group division is not strict as long as it follows the
principle that more difficult classes need smaller steps. For
example, we can simply divide all classes into three groups
according to their segmentation performance, such as [0, 80)
mIoU, [80, 90) mIoU and [90, 100] mIoU. Then, we assign
the three groups with a step of 2, 4 and ∞ (∞ means we do
not aggregate temporal points for the group). To save more
memory and computation without sacrificing performance,
a more fine-grained division can be used. Formally, suppose
we divide temporal point clouds into g groups. We aggregate
temporal points for the kth group as below:

Xk
t = concat(To1Po1M

k
o1 , . . . , TonPonM

k
on),

Y k
t = concat(Lo1M

k
o1 , . . . , LonM

k
on).

(2)

Here o = {oi|oi = t− i×sk, i = 1, 2, ..., n, n = ⌊∆t/sk⌋}.
sk is the sampling step for the kth class group and ⌊.⌋ is the
floor operation. Mk

oi is the group mask that indicates which
point of Poi belongs to the kth class group. It can be obtained
from historical predictions. Finally, we concatenate points
and labels of all groups with the current frame:

Xt = concat(Pt, X
1
t , . . . , X

k
t , . . . , X

g
t ),

Yt = concat(Lt, Y
1
t , . . . , X

k
t , . . . , Y

g
t ).

(3)

In this way, we discard massive redundant temporal points
while maintaining essential temporal information. Since
easy classes are usually large and hold a large quantity of
points, the GPU memory overhead can be further reduced.
Moreover, by assigning different classes with different steps,
FSA actually injects historical priors into the aggregated
point clouds. For classes with different steps, their patterns
can be more discriminative due to their different densities
(steps), which makes it easier to segment the multi-frame
point clouds aggregated by FSA. Experiments in Table 4
verify that the proposed FSA can not only save memory and
time costs but also achieve better performance.

3.1.2 Mask Distillation

In FSA, we use historical predictions to generate group
masks, which we call pseudo masks. Since ground truth
labels are more accurate than historical predictions, a natural
question arises: what if we use gt masks (the group masks
generated by ground truth labels) for FSA? Our experiment
shows that the performance can be improved greatly. Actu-
ally, using gt masks for FSA can produce more discrimina-
tive patterns for classes with different steps. This motivates
us to simulate features of a model trained on temporal point
clouds aggregated with gt masks. In this way, our model is
guided to learn more discriminative features to distinguish
different classes. We call this Mask Distillation. Specifically,
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Figure 1. Overview of our Temporal Aggregation Network (TASeg). (1) Temporal LiDAR Aggregation and Distillation leverages the
proposed Flexible Step Aggregation (FSA) to assign different temporal steps for different classes, and it utilizes a teacher injected with
gt priors for knowledge distillation. (2) Temporal Image Aggregation and Fusion takes temporal LiDAR points as mediums to transform
historical image features to the present coordinate. 3D sparse convolutions are employed to fuse temporal image features. Finally, we use
temporal LiDAR points to gather voxel-wise temporal image features for temporal multi-modal fusion.

we formulate the distillation on the feature map of student
F s ∈ RNs×C and the feature map of teacher F t ∈ RNt×C :

LKD = E[∥F sms − F tmt∥2]. (4)

Since temporal point clouds aggregated with pseudo masks
and gt masks are different, we use masks ms and mt to select
voxels that appeared in both F s and F t. Note that our Mask
Distillation is distinct from the methods that distill a multi-
frame model to a single-frame model [32, 44]. Both the
student and teacher in our method are multi-frame models.

3.2. Temporal Image Aggregation and Fusion

Previous multi-modal fusion methods only focus on lever-
aging present images while ignoring the precious value of
temporal images. Temporal images can provide broader
camera FOVs and richer information. Besides, they can en-
able more robust multi-modal fusion under the malfunction
condition on some cameras. In this section, we provide an
effective solution for aggregating temporal image features
and performing temporal multi-modal fusion.

Temporal Aggregation and Fusion. Since temporal im-
ages are in different feature spaces, it is difficult to establish
the relationship between different images for feature aggre-
gation. In our method, we take temporal LiDAR points as
mediums to transform temporal image features to the present

coordinate with the pose information. This way, temporal
image features are unified to the present 3D space. Specif-
ically, given an image It−∆t ∈ RH×W×3 and point cloud
Pt−∆t ∈ RN×3, we use an image network to extract the
image feature Zt−∆t ∈ RH×W×C . According to the sen-
sor calibration, we can establish the pixel-to-point mapping
between 2D pixels and 3D points. Hence, we can project
image feature Zt−∆t to 3D space, resulting in point-wise
image feature Qt−∆t ∈ RM×C , where M is the number of
LiDAR points located on Zt−∆t. By transforming Qt−∆t to
the present coordinate with the pose matrix, we realize the
aggregation of temporal image features:

Xt = concat(Qt, To1Qo1 , . . . , TonQon), (5)

where o = {oi|oi = t− i× s, i = 1, 2, ..., ⌊∆t/s⌋} and s is
the sampling step for temporal images. With temporal im-
ages aggregated, the FOV of the present camera is expanded
greatly. Moreover, temporal image feature fusion becomes
convenient because they are unified to the same 3D space.
Concretely, we can use several 3D sparse convolutions to
fuse aggregated temporal image features, which also endows
them with geometric information, as shown in Equation 6. In
addition, feature map downsampling is also utilized to gener-
ate multi-scale voxel features, providing richer information
for subsequent temporal multi-modal fusion.
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V t = SparseConv3D(Voxelization(Xt)). (6)

Temporal Multi-Modal Fusion. Benefiting from the tem-
poral image aggregation, associating temporal image fea-
tures with temporal LiDAR points also becomes convenient.
Specifically, given temporal image features converted to
unified voxel representation V t, we can establish a point-
to-voxel association between temporal LiDAR points and
V t. For each temporal LiDAR point, we generate its image
feature by pooling its nearby voxel-wise temporal image
features with trilinear interpolation instead of hard indexing.
To extract richer image features, we perform interpolation on
multi-scale feature maps. Finally, we concatenate the point
cloud features and aggregated multi-scale image features, re-
sulting in fused features, which convey powerful information
of both temporal point clouds and temporal images.

2D and 3D Supervision. To make the extracted image
features more informative, we add 2D supervision and 3D
supervision on the 2D backbone and 3D convolutions in the
image branch, respectively. The 3D supervision is just the
label of point clouds. The 2D supervision is obtained by
projecting labels of point clouds to the image plane.

3.3. Static-Moving Switch Augmentation

In the multi-scan task, the model is required to distin-
guish the motion state of movable objects. To enable the
model to explore a large data space, we design an effec-
tive data augmentation, Static-Moving Switch Augmenta-
tion (SMSA). SMSA enables a movable object to switch
its motion state freely, which can remarkably increase the
sample quantity of static and moving objects. Concretely,
considering that a unique object b has the same instance
id in all frames of a sequence, we can use its instance
mask to crop its temporal point clouds, which is denoted
as B = {Boi |i = 0, 1, ..., ⌊∆t/s⌋,Boi ∈ RN×3}. Here
o = {oi|oi = t − i × s, i = 1, 2, ..., ⌊∆t/s⌋}, s is the
sampling step and Boi is the temporal part of b at toi . By
manipulating B, we can change the motion state of b.

Static to Moving. If b is static, all temporal parts of b
locate at the same position, as shown in the upper-left of
Figure 2. To change b to a moving object, we can shift each
temporal part of b with an offset. Considering that objects
typically move at a constant speed within a short time, we
set the offset between adjacent temporal parts to be the same.
For offset itself, it is a random value to increase the diversity
of resulting moving samples. As for the direction of the
offset, it can be roughly estimated by comparing the width
and height of the minimum bounding box of b. Since static
objects often park on the side of the road, which is crowded,
the shifted temporal parts of static objects may overlap with
other objects. To alleviate this, we define a set of anchor
points around b and a coverage area for each anchor point.

Figure 2. Visualization of the augmented samples by our Static-
Moving Switch Augmentation (SMSA). Our SMSA switches the
motion state by manipulating the temporal parts of objects.

Then, we shift all temporal parts of b to the anchor point
whose coverage area contains the fewest LiDAR points (refer
to the supplementary material for more details).

Moving to Static. If b is moving, different temporal parts
of b locate at different positions. To switch its motion state
to static, we can shift all its temporal parts to the same
position. In particular, we calculate the centers of each
temporal part of b, which are denoted as C = {Coi |Coi ∈ R3}.
Considering the trajectory of moving objects in a short time
is approximate to a line and the speed is a constant, we
simply use q = Co0 − Co1 as the offset of adjacent temporal
parts of b. Eventually, we can obtain a static object by
shifting all temporal parts of b to Co0 (see Figure 2).

It should be noted that our SMSA is an online and plug-
and-play data augmentation strategy, which consumes negli-
gible storage and computation costs.

3.4. Training Objective

The final training objective is comprised of LiDAR segmen-
tation loss, mask distillation loss, fusion segmentation loss,
2D and 3D supervision loss on the image branch:

L = LLiDAR + αLKD + βLFusion + γ(L2D + L3D), (7)

where α, β, γ are the coefficients to control the effect of
different losses. We set α = 1, β = 1, γ = 1 by default.

4. Experiments
Datasets & Evaluation Metrics. Following [13, 46], we
evaluate the performance on two popular LiDAR segmen-
tation benchmarks, i.e., SemanticKITTI and nuScenes. Se-
manticKITTI contains 22 point cloud sequences, where se-
quences 0-10, 8, 11-21 are selected as training, validation
and testing, respectively. As for nuScenes, it collects 1,
000 driving scenes, where 850 scenes are chosen for train-
ing and validation, and the remaining 150 scenes are used
for testing. We conduct experiments on three tracks, i.e.,
SemanticKITTI single-scan and multi-scan semantic seg-
mentation and nuScenes semantic segmentation.
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SqueezeSegV2 [33] 39.7 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 26.3
RangeNet53++ [25] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
RandLA-Net [14] 55.9 94.2 29.8 32.2 43.9 39.1 48.4 47.4 9.4 90.5 61.8 74.0 24.5 89.7 60.4 83.8 63.6 68.6 51.0 50.7
SqueezeSegV3 [36] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
JS3C-Net [38] 66.0 95.8 59.3 52.9 54.3 46.0 69.5 65.4 39.9 88.9 61.9 72.1 31.9 92.5 70.8 84.5 69.8 67.9 60.7 68.7
SPVNAS [31] 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3
Cylinder3D [46] 68.9 97.1 67.6 63.8 50.8 58.5 73.7 69.2 48.0 92.2 65.0 77.0 32.3 90.7 66.5 85.6 72.5 69.8 62.4 66.2
RPVNet [37] 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 43.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
(AF)2-S3Net [5] 70.8 94.3 63.0 81.4 40.2 40.0 76.4 81.7 77.7 92.0 66.8 76.2 45.8 92.5 69.6 78.6 68.0 63.1 64.0 73.3
PVKD [13] 71.2 97.0 69.3 53.5 67.9 60.2 75.1 73.5 50.5 91.8 77.5 70.9 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8
2DPASS [39] 72.9 97.0 63.6 63.4 61.1 61.5 77.9 81.3 74.1 89.7 67.4 74.7 40.0 93.5 72.9 86.2 73.9 71.0 65.0 70.4
SphereFormer [19] 74.8 97.5 70.1 70.5 59.6 67.7 79.0 80.4 75.3 91.8 69.7 78.2 41.3 93.8 72.8 86.7 75.1 72.4 66.8 72.9
UniSeg [24] 75.2 97.9 71.9 75.2 63.6 74.1 78.9 74.8 60.6 92.6 74.0 79.5 46.1 93.4 72.7 87.5 76.3 73.1 68.3 68.5
TASeg (Ours) 76.5 97.7 71.8 71.4 65.2 78.7 79.9 84.6 78.6 91.6 74.0 78.0 39.3 93.5 73.4 86.6 75.0 71.7 69.6 73.8

Table 1. Comparison with state-of-the-arts on SemanticKITTI test set (single-scan). All results can be found on the online leaderboard.
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LatticeNet [29] 45.2 91.1 54.8 29.7 3.5 23.1 0.6 6.8 49.9 0.0 44.6 0.0 64.3
TemporalLidarSeg [9] 47.0 92.1 68.2 39.2 2.1 35.0 12.4 14.4 40.4 0.0 42.8 0.0 12.9
(AF)2-S3Net [5] 56.9 91.8 65.3 15.7 5.6 27.5 3.9 16.4 67.6 15.1 66.4 67.1 59.6
MarS3D [22] 52.7 95.1 78.4 39.7 5.1 36.6 10.0 16.2 58.0 1.2 67.3 0.0 36.3
SVQNet [4] 60.5 96.0 80.1 41.0 5.1 60.4 7.1 28.7 85.1 0.0 72.4 0.0 88.1
2DPASS [39] 62.4 96.2 82.1 48.2 16.1 52.7 3.8 35.4 80.3 7.9 71.2 62.0 73.1
TASeg (Ours) 65.7 94.8 72.8 53.6 35.2 71.4 53.2 36.7 80.4 32.4 75.2 12.3 89.6

Table 2. Comparison to the state-of-the-art methods on SemanticKITTI test set (multi-scan). -s indicates static and -m stands for moving.

Implementation Details. We use the MinkowskiNet [7] re-
implemented by PCSeg [23] as our baseline. Our TASeg is
trained with the SGD [28] optimizer on 4 A100 GPUs with
batch size 6 for 12 and 36 epochs on SemanticKITTI and
nuScenes datasets. The learning rate and weight decay are
set to 0.02 and 0.0001. The window size of temporal point
clouds is set to 16. Due to a large redundancy of images,
we use a step of 12 and a window size of 48 for temporal
images. Our data augmentation strategy includes random
flipping, rotation, scaling, transformation, LaserMix [16]
and PolarMix [35]. During the inference, the LiDAR seman-
tic predictions and image features of the previous timestamp
can be saved, so there is no time cost for generating histori-
cal predictions and processing temporal image aggregation.
More details are provided in the supplementary material.

4.1. Comparison with State-of-the-art Methods

We compare our TASeg with state-of-the-art LiDAR segmen-
tation methods on SemanticKITTI single-scan and multi-

scan track, and nuScenes LiDAR semantic segmentation
track, as summarized in Table 1, 2 and 3. On the Se-
manticKITTI single-scan track, our TASeg is 1.3 mIoU
higher than UniSeg [24], the best-performing published algo-
rithm on the SemanticKITTI single-scan leaderboard. On the
SemanticKITTI multi-scan track, our approach outperforms
the best multi-scan method 2DPASS [39] by 3.3 mIoU. For
nuScenes LiDAR semantic segmentation, we also achieve
superior performance over previous algorithms. As shown
in Table 3, the proposed approach surpasses the UniSeg [24]
by 1.1 mIoU. In particular, our approach holds the highest
entry on all three tracks. These encouraging results strongly
show the effectiveness of our approach.

4.2. Ablation studies

We examine the effect of each component through detailed
ablations. Unless otherwise specified, the following experi-
ments are trained on the training set of the SemanticKITTI
single-scan task and evaluated on the validation set.
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Cylinder3D [46] 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
SPVCNN [31] 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
2D3DNet [11] 80.0 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2
2DPASS [39] 80.8 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0
LidarMultiNet [41] 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6
MSeg3D [20] 81.1 83.1 42.5 94.9 92.0 67.1 78.6 85.7 80.5 87.5 77.3 97.7 69.8 81.2 77.8 92.4 90.1
SphereFormer [19] 81.9 83.3 39.2 94.7 92.5 77.5 84.2 84.4 79.1 88.4 78.3 97.9 69.0 81.5 77.2 93.4 90.2
UniSeg [24] 83.5 85.9 71.2 92.1 91.6 80.5 88.0 80.9 76.0 86.3 76.7 97.7 71.8 80.7 76.7 91.3 88.8
TASeg (Ours) 84.6 87.1 69.4 90.5 92.2 78.7 90.4 86.3 81.9 88.3 75.9 97.8 70.9 81.0 78.2 93.4 91.2

Table 3. Performance comparison with start-of-the-art methods on nuScenes test set.

Effect of Flexible Step Aggregation. In Table 4, we
compare our FSA with other multi-frame algorithms.
MSeg3D [20] utilizes temporal point clouds by directly con-
catenating all points, which introduces a large memory con-
sumption and achieves limited improvement. SVQNet [4]
leverages cross-attention to fuse temporal features while it
can only handle fewer LiDAR scans. When increasing Li-
DAR scans, the memory overhead is also huge. Our FSA
assigns different classes with different temporal steps, which
can leverage long-term temporal information with less mem-
ory and time costs. Moreover, thanks to the utilization of
historical priors, our FSA achieves better results (71.3 mIoU)
than directly concatenating (69.9 mIoU), given the same tem-
poral window size. To explore the effect of different window
sizes on FSA, we present Table 5. Results show that the
performance is saturated with a window size of 24.

Effect of Group Division. To investigate the effect of dif-
ferent group divisions for FSA, we provide Table 6. For
division1, we simply divide all classes into three groups
according to their performance on the val set. The group1
consists of the classes in [90, 100) mIoU, such as cars and
roads. The group2 consists of classes in [80, 90) mIoU, such
as motorcycles. The group3 contains the remaining classes.
We assign group1, group2 and group3 with the step of ∞,
4 and 2. A step of ∞ means we do not aggregate temporal
points for classes in the group due to their near-saturate per-
formances. The result shows that division1 can reduce the
time and memory costs largely compared to directly stack-
ing (the 2st row in Table 4). We can also use performance
top1-6, top6-12, and top12-19 for division, resulting in di-
vision2. The group division is robust as long as it follows
the principle that more difficult classes need smaller steps.
To further reduce the memory consumption, we can finetune
the group division, such as moving large-size classes (e.g.
other-ground and terrain) in group3 to group2 (division3)
or moving large-size classes in group3 and group2 to a new

Method Latency Memory mIoU
Baseline 63ms 5.0G 68.9
+ MSeg3D [20]† 284ms 69.7G 69.9
+ SVQNet [4]† 121ms 15.4G 69.5
+ FSA 79ms 8.5G 71.3
+ FSA w/ gt mask 79ms 8.5G 75.9
+ FSA + M.D. 79ms 8.5G 71.8
+ FSA + M.D. ×0.75 72ms 6.9G 71.6

Table 4. Comparison with different multi-frame algorithms. † rep-
resents our re-implementation. “M.D.” represents Mask Distillation.
“×75” represents that we reduce the model parameters to 75%.

Window size 4 8 12 16 20 24 28
mIoU 69.9 70.4 70.9 71.3 71.4 71.6 71.4

Table 5. Ablation on different window sizes for FSA.

Method Latency Memory mIoU
FSA w/ division1 92ms 14.1G 70.8
FSA w/ division2 83ms 7.2G 70.6
FSA w/ division3 79ms 8.5G 71.3
FSA w/ division4 74ms 7.7G 71.2
FSA w/ division5 74ms 7.4G 71.2

Table 6. Ablation on different group divisions for FSA.

group with step of 8 (division4). Besides, we can divide
each class group into a close and a distant group according
to the distance (such as 30 m). Considering close areas need
fewer temporal points, we can use twice the original step for
temporal aggregation of close groups (division5).

Effect of Mask Distillation. At the 5th row of Table 4, we
use gt masks of historical frames for FSA. The performance
is greatly boosted. Considering we cannot get ground truth
at inference, we use it as a teacher to distill the model trained
with pseudo masks. The result shows that the student is
improved by 0.5 mIoU after distillation. With 75% model
complexity, we can further reduce the time and memory cost
and still achieve a leading performance.
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Effect of Temporal Image Aggregation and Fusion.
TIAF delivers a temporal multi-modal fusion scheme to
make full use of temporal images. As shown in Table 7,
with zero image, only TLAD is used, achieving 71.8 mIoU.
With one image, only present images are utilized. Due to
the limited FOV of the present camera, only part of the
LiDAR points can gather image features, which limits the
multi-modal fusion. Our TIAF leverages temporal images to
enlarge the FOV of the camera and enhance present features.
The results show that with the number of images increasing,
the performance rises gradually, which verifies the effec-
tiveness of our TIAF. When using seven temporal images,
we achieve 1.0 mIoU improvement on the strong baseline.
Note that there is no extra cost to generate historical image
features because we can save them at the past moments.

Num of images 0 1 3 5 7
mIoU 71.8 72.1 72.4 72.7 72.8

Table 7. Ablation on the number of temporal images for TIAF.

Exp 2D Sup. 3D Sup. Multi-Scale mIoU
(a) ✓ ✓ 72.4
(b) ✓ ✓ 72.5
(c) ✓ ✓ 72.4
(d) ✓ ✓ ✓ 72.7

Table 8. Effect of different supervisions and multi-scale for TIAF.

We also provide the ablation on different supervisions
and multi-scale features for TIAF in Table 8. In TIAF, we
leverage 2D and 3D supervision to guide the extracted image
features to be more conducive for segmentation. Multi-scale
is also used to provide more discriminative features. The
result shows that each of the designs is beneficial for final
performance. Note that our temporal multi-modal method is
orthogonal to other single-frame multi-modal methods. We
use a simple pixel-to-point mapping at the feature projection
stage. More complex methods [20, 24] can also be utilized,
but it is not the focus of our TIAF.

Effect of Static-Moving Switch Augmentation. To verify
our SMSA, we present Table 9. From the results, we can
find that without SMSA, the accuracy of the model on many
classes is lower than 10 IoU. After using SMSA, the per-
formance of moving truck, moving other-vehicle and static
bicyclist classes is improved by more than 20 IoU, and the
overall performance boosts from 61.3 mIoU to 65.7 mIoU,
which strongly demonstrates the efficacy of our SMSA.
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61.3 95.6 79.3 49.2 9.1 61.0 5.7 39.0 87.0 0.0 72.6 4.3 76.4
✓ 65.7 94.8 72.8 53.6 35.2 71.4 53.2 36.7 80.4 32.4 75.2 12.3 89.6

Table 9. Ablation study of our SMSA on the SemanticKITTI test
benchmark of the multi-scan track.

Generalization to More Architectures. In addition to
MinkowskiNet, we also validate our temporal aggregation
method on Cylinder3D [46] and SPVNAS [31]. Detailed re-
sults are summarized in Table 10. Our TASeg brings impres-
sive improvements to both baselines, which demonstrates
the strong generalization ability of our method.

Method mIoU
Cylinder3D [46]† 66.0
Cylinder3D [46]†+ TASeg 69.6
SPVNAS [31]† 68.6
SPVNAS [31]†+ TASeg 72.7

Table 10. Performance of applying our TASeg to different baselines.
† represents our re-implementation.

Comparison on Complexity, Latency and Accuracy. As
shown in Table 11, when not utilizing temporal images, our
TASeg achieves superior performance than other methods
with comparable or less complexity and latency. With tem-
poral images, TASeg can maintain lower complexity and
latency than UniSeg [24] while achieving higher accuracy.
Besides, with 75% parameters, the latency of TASeg can be
further reduced, and the accuracy is not affected much.

Method Input Params Latency mIoU
MinkowskiNet [7]† L 37.9M 63ms 68.4
Cylinder3D [46]† L 55.9M 75ms 66.0
SPVNAS [31]† L 96.7M 105ms 68.6
RPVNet [37]† L 119.0M 110ms 68.9
UniSeg [24] L+C 147.6M 145ms 71.3
TASeg wo/ TIAF L+T 37.9M 79ms 71.8
TASeg L+C+T 46.7M 116ms 72.7
TASeg ×0.75 L+C+T 27.4M 108ms 72.5

Table 11. Comparison of the model complexity, latency and accu-
racy on SemanticKITTI val set. † represents our re-implementation
on NVIDIA A100 for a fair comparison. “L”,“C” and “T” represent
LiDAR, Camera and Temporal data, respectively.

5. Conclusion
In this paper, we present TASeg to fully exploit temporal
point clouds and temporal images. Our TASeg is comprised
of TLAD, TIAF and SMSA. We perform extensive experi-
ments to validate the efficacy of each component. Moreover,
our TASeg set a new state-of-the-art on three challenging
tracks, demonstrating the superiority of our method.
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